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Identification and Control of Pneumatic Servodrives

Željko Šitum, Branko Novaković and Joško Petrić

Abstract-- This paper deals with the control of an electro-pneumatic servodrive for translational task. In order to obtain approximate model of the pneumatic servosystem the off-line identification procedure in closed-loop from experimental measured data has been made. The real discrete-time control system has been presented with pseudo-continuos-time (PCT) system for the sake of the simplification of the dynamic synthesis. The simulation results from the identified model and PCT system are compared with experimental measured system output on varying reference signal.

Index Terms-- electropneumatic servodrive, identification, position control

I. Introduction

Pneumatic servo-technology have an important role in applications of modern industrial mechatronic systems, offering in many cases a cost-effective solutions for a wide range of intelligent motion applications. Pneumatic actuators give suitable solutions for quickly transporting materials between workstations and for movements in automatic control and flexible manufacturing systems. The advantages of pneumatic actuators are their high load-volume ratios, high speed action capabilities, high amount of available forces, cleanliness, simple working mechanism. Because of that pneumatic plants have been designed for a variety of applications in industrial environment. However, the application of pneumatic drives is limited in practice by the problems in controlling these plants. Pneumatic actuators are characterized by high-order, time-variant dynamics, nonlinearities due to compressibility of air, internal and external disturbances and wide range of supply pressure and payload variations. These problems originate mainly from the phenomena of using compressible working fluid, which results in nonlinearities of pressure-flow characteristics. For many applications of pneumatic servodrives, fast moving in operation and good position accuracy without overshoot in response are often a prerequisite. This implies that the motion controller should be able to operate on various types of motion task. However, it is very difficult to get an accurate dynamic model for describing pneumatic servodrives behavior. The classical approach to position control of pneumatic drives is based on the linearization of the nonlinear dynamic of the system around the desired set point. Such models are valid only for small deviations about an operating point [1].
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1 - Linear potentiometer,
2 - Pneumatic rodless cylinder

3 - Pressure sensor,

4 - Proportional 5/3 valve

5 - Filter-regulator unit, 
6 - Control computer

Fig. 1. The experiment system setup (a) photo of the laboratory model, (b) schematic diagram of the control system

In this work the off-line identification procedure for pneumatic servodrive in closed-loop using least-squares method from sampled data of input-output measurements has been made.

A. Schematic representation of the system

In Fig. 1. the photo and the schematic representation of the experimental electropneumatic servosystem for translational positioning is shown. The physical model is composed of a pneumatic rodless cylinder, SMC CDY1S15H-500 with inertial load and proportional 5/3 electropneumatic valve, FESTO MPYE-5-1/8. A horizontal linear potentiometer fixed on the cylinder is used for measuring the position of the piston and for providing the position feedback. All signals are sending to a microcomputer via an 12 bit A/D converter board. The computer can accomplish a control algorithm based on these signals and set an output value of voltage via a D/C converter. The input signal of the valve is the control voltage from the computer. The change of input voltage produces the change of valve flow through the valve and also faster or slower motion of the piston of the cylinder. The position of the piston is a controlled variable.

II. Identification Procedure

System identification deals with the problem of building mathematical models of dynamic systems based on observed data from the systems [2,3]. The discrete time model of the process can be described by a linear difference equation:
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where 
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is the discrete dead time.

From equation (1) the z-transfer function becomes:
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An ARX (autoregressive with external input) model to pneumatic actuator system was used. It is assumed that the level of external noise in the servomechanism is negligible, and modeling of noise is not necessary. To get a good mathematical model it is very important how to select the data, so that they are as informative as possible. The considered system was excitated to a pseudo random binary signal input of varying amplitudes (APRBS). In order to obtain more information about the system dynamics, the input signal has been designed that it varies over the entire admissible region (from 0 to 10 V). The identification procedure was used with a period of 10 ms. The input signal of the process is the voltage from the computer and the output of the process is the position of the piston, measured in volts by a linear potentiometer. The system off-line identification example described in this section are based on measured input-output data obtained during the experiment. From the process 800 input-output data points were collected and loaded into MATLAB in ASCII form. The data was split into two halves: first 400 data points were used for building (estimation) a mathematical model of the system and the other 400 data points were used for model-validation test. A validation procedure is generally necessary to comparing the degree of compatibility between the estimated model and the system. First 400 values of the input and the output is shown in Fig. 2.
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Fig 2. Portion of the input-output data used for model estimation

The suitable model which gives the best fit for the reference set is four order model with four poles, without zeros and single time delay, i.e. [
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The polynomial parameters (with estimated standard deviations) of the ARX model structure (1) are estimated using the least-squares method, and they are listed below in table I:

TABLE I

LEAST-SQUARES PARAMETER ESTIMATION OBTAINED DURING OFF-LINE IDENTIFICATION METHOD
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To find how good is this model, we have been simulated it and compared the model output with measured system output on a portion of the original data that was not used to the estimation of the model (from sample 400 to 800). The agreement of the model and the measured output is shown in Fig. 3.
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Fig. 3. Model validation test

The plots of the auto-correlation function for the residuals and the cross-correlation between the input and the residuals for 99 percent confidence levels are given in Fig.4.
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Fig. 4. Auto-correlation function of residuals and cross-correlation function between input and residuals

III. Control of the Pneumatic Servodrive

The real discrete-time control system can be approximated with the pseudo-continuous-time equivalent control system (PCT system), [4], shown in Fig. 5. 
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Fig. 5. (a) Block sheme of digital control of pneumatic servosystem, (b) Block diagram of PCT system

An usual approach to position control of pneumatic drives are based on linearization of the nonlinear dynamics around an equilibrium state. A simplified model which still reflects essential characteristic of pneumatic drive controlled by proportional valve can be shown:
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where 
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 is the natural frequency of the loaded cylinder drive, 
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 is its damping ratio, 
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 is the velocity gain. The natural frequency, and damping ratio of the cylinder can be expressed as [5]:
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The symbols are defined in the Table II.

In general, the bandwidth of electropneumatic proportional valves is much higher than that of the cylinder with load, so it is assumed that the valve dynamics can be neglected for control purposes. System is a natural integrator, i.e. the output (the position of the piston) is proportional to the integral of the output (control voltage from the computer).

The velocity gain 
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 applied on the spool of the valve, Fig. 6. The gain 
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Fig. 6. Open-loop step response

The transfer function of the D/A converter is approximated using the first-order Padé approximation, as follows:
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(6)

In order to simplify the synthesis of the control system the nondominant time constant of the sampler and the zero order hold can be added to process time constant:
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The closed-loop transfer function as the ratio of measured piston position to applied reference value can be expressed: 
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(8)

where the gain 
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 is product of all system gains: the controller gain 
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Applying Hurwitz stability criterion on the transfer function from (8), we get the following condition for the stability of closed-loop system:
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Hence, the system will be stable for the condition:
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and the stable system behavior is guaranteed for the controller gain:
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IV. Experimental Results

The experimental system used is shown in Fig. 1. with system parameters listed in Table II.

The control program is written in the C language, and the control algorithm is implemented with a sampling period of 10 ms. The program for simulating PCT system has been developed in Matlab/Simulink( environment. 

Figure 7. show the output of the identified transfer function, the output of the PCT system and measured responses of the system for applied reference signal.
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Fig. 7. Simulated and measured output of the system

The errors in the responses of the simulated and identified model compared with experimental measured output are caused by unmodeled effects like static friction, varying of the supply pressure, servovalve deadband, air leakage. It can be seen that the system with only proportional gain is able to track the reference value, but with large steady-state error. In order to improve closed-loop characteristic a PD controller is applied. Zero of the controller is settled near the system's time constant 
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, compensating thus its influence and achieving better responses of the system, Fig.8.
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Fig. 8. Experimental results of pneumatic cylinder positioning using PD controller

V. Conclusion

Pneumatically powered drives are characterized by high order dynamics, they usually have poor damping and low stiffness, significant friction effects and limited bandwidth. In such conditions, the accuracy and repeatability of pneumatic drives with classical controllers are not so effective, because high order system tend to became unstable if the gains are high in order to achieve steady-state accuracy. In practical positioning applications the procedures for tuning controller parameters require an accurate model of the process. To get an appropriate model of the electropneumatic servodrives it is not easy because of the nonlinearities and parameter variations in the system dynamics. One way to get an approximated model of the system is the identification procedure based on experimental sampled data. For the task of classical control synthesis a linear pseudo-continuous-time system can be used. These model's can be useful for preliminary study of the closed-loop control system , on which can be built more complex structure in order to get better performance of the system.

APPENDIX
Experiments and simulations are performed using parameters listed in table below.

TABLE II

NUMERICAL VALUES OF SYSTEM PARAMETERS

Cylinder stroke length
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D/A converter gain
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A/D converter gain
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Measuring system gain
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Damping ratio
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Process time constant
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