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1. Introduction

Next Generation Sequencing (NGS) has dominated the bioinformatics scene for the

last couple of years and is rapidly becoming a cornerstone of clinical medicine. NGS

methods are based on high throughput methods that produce short and very accurate

reads. Reads are subsequently assembled into contigs that, on their part, have low error

rates.

The limiting factor that has slowed down wider adoption of NGS technologies is

the inability to reconstruct genomic regions with high repeat rates since a single read

can span only up to 300 base pairs. This situation has led to the creation of countless

highly accurate genome assemblies that are not yet finished. The sequence of these

assemblies is usually close to error free but a genome that should be unified ends up

divided in several disjoint components called contigs.

Current gap closure methods based on mate pair reads have a very heavy laboratory

footprint and can take several months to complete. While such results are vital for

scientific research, they are not relevant for clinical diagnosis because of the prolonged

time frame.

There have been many attempts to address the gap closing issue, either with post-

assembly tools or by de-novo assembly with longer reads. The scaffolder presented in

this thesis is a post-assembly tool that aims to close gaps in unfinished NGS assemblies

by using long reads. The input taken by the EAGLER scaffolder is a draft genome

created by any modern assembler, such as SGA[1], ABySS[2] or SPAdes[3], and a set

of long reads.

Currently, the state-of-the-art long reads sequencer is the Pacific Bioscineces’ PacBio

RS II[4, 5], while the latest addition to this field of science is the MinION MkI[6] se-

quencing device designed by Oxford Nanopore Technologies[7].

The MinION is a plug-and-play device slightly larger than a common USB memory

that produces real time data. DNA molecules pass through the nanopore membranes

of the device and generate a specific electric current. By correlating current wave

forms to nucelotide K-mers using a base-calling software, the MinION reconstructs
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the sequence of a molecule. The MinION is still an experimental piece of technology

and has been commercially available only since May 2015.

Figure 1.1: MinION MkI device illustration[8].

Unlike short reads, long reads have an error rate anywhere from 15%, PacBio reads,

up to 35%, 1D Nanopore reads. Since virtually all tools designed for short reads use

exact matching algorithms they are unusable on error prone long reads. This fact has

led to a recent boom in new algorithms and tools specifically created for long reads of

either type, but a clear community accepted standard set of tools has yet to emerge.

A recent paper by Jain et al.[9] has given significant insights into the performance

of the MinION sequencer. Maximum likelihood estimated rates for insertion, deletion

and substitution have been calculated by using the expectation maximization algo-

rithm. High quality 2D reads presented an average identity of 85% with error rates of

4.9%, 7.8% and 5.1% for insertion, deletion and substitution respectively.

Long reads technologies have already been proven useful in resolving genomic

structures that are not detectable by short reads only assemblies. Ashton et al. in their

paper[10] have given a concrete example of how Oxford Nanopore reads sequenced

with a MinION device can identify genomic structures undetected by Illumina only

assemblies. They have successfully resolved the position and structure of a bacterial

antibiotic resistance island in the Salmonella Typhi H58 strain genome.

Several groups have developed hybrid assemblers that can take long reads as in-

put, in addition to the standard short reads dataset. Antipov et al. recently released

hybridSPAdes[11], a tool in the SPAdes[3] genome assembly framework. SPAdes

constructs a de Bruijn graph from the input short reads and transforms it into an assem-

bly graph. The assembly graph is a filtered and simplified instance of the previously

constructed de Bruijn graph. Once the assembly graph is constructed, long reads are
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mapped to the graph and used to resolve gaps in the assembly and ambiguous repeating

regions. Gaps are closed by calculating the consensus of all the long reads that span a

specific gap. Repeats are amended by using the exSPAnder[12] module of the SPAdes

framework in a similar way as done with paired-end and mate-pair libraries.

One of the first publicly available scaffolder for Oxford Nanopore reads was pub-

lished in August 2015 by Warren et. al. The LINKS[13] scaffolder proposed in the

paper leverages the fact that Nanopore reads tend to have sequential errors and hence,

sequential correct bases. K-mers of user-defined length are extracted from the given

long reads over a sliding window. Two contigs are allowed to create a scaffold if suffi-

cient K-mers derived from one read uniquely map to both contigs.

All the previously mentioned tools close gaps by having a single long read span the

whole length of the void in the assembly. The extension-based approach introduced

with the EAGLER scaffolder does not have this limitation. The EAGLER scaffolder

can use any long read that maps to one edge a contig to iteratively extends that contig.

Contig extensions are computed as the consensus of all long reads spanning that region.

Once two contigs begin to overlap each others extensions they are merged together into

a scaffold.
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2. Extension Based Scaffolding

Scaffolding is in some regards very similar to sequence assembly. They both share

the same goal of reducing the input dataset to a set of significant, disjoint and unique

elements.

The input for a Next Generation Sequence assembler is a set of short reads, usually

the output of an Illumina sequencing machine. The assembler seeks to combine the

reads in meaningful elements, contigs, that span different areas of a genome. The

sequence of a single contig can be the result of the combination of tens of thousands

of reads each consisting of no more than 300 base pairs.

A scaffolder takes as input the contigs generated by an NGS assembler and an

additional source of information. This secondary source can be either of:

– Illumina mate pair reads [14]

– Pacific Biosciences long reads [4]

– Oxford Nanopore long reads [7]

The goal of a scaffolder is to reduce the number of contigs by merging them to-

gether using the secondary information source to guide the process. The ideal output

is a dataset that contains as many scaffolds as there are chromosome-like structures in

the analyzed genome.

The most obvious difference between the two described tasks is the starting point

of the process. The sequence assembly starts from a blank sheet of paper and has no

initial reference point, hence the commonly used term de-novo assembly. Scaffolding

on the other hand, has a very clear starting position since each contig can be considered

as a reference point from which to start the process.

The extension based scaffolding concept presented in this thesis leverages exactly

this notion. Since the input contigs are considered disjoint parts of the reference se-

quence, appending one single base to each side of a contig gets the scaffolder closer to

its goal.

This single-base extension process is repeated until the originally disjoint contigs
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begin to overlap. Once two extended contigs are overlapped with a sufficient level

of significance they can be safely joined together in a single scaffold. The scaffolder

iteratively tries to extend and join contigs until all contigs are joined in a single scaffold

or there is not sufficient data to further extend the remaining contigs.

The pseudocode in Algorithm 1 gives a high level view of the main procedure for

the EAGLER scaffolder. The algorithm takes as inputs the contigs from a draft genome

and a set of long reads, either PacBio long reads or Oxford Nanopore 2D reads.

Algorithm 1 High level scaffolding algorithm (draft_genome, long_reads)

1: extended_contigs← [ ]

2: sam_file← align(draft_genome, long_reads)

3: for contig in draft_genome do
4: alignments← fetch_alignments(sam_file, contig.id)

5: extensions← compute_extensions(alignments)

6: left← consensus(extensions.left)

7: right← consensus(extensions.right)

8: extended_contigs.append(left+ contig.seq + right)

9: end for
10: scaffolds← join_contigs(extended_contigs)

11: return scaffolds

A pairwise alignment between all contigs and reads is performed at the beginning

of the algorithm as shown on line 2. Once the alignments are computed, each contig is

processed independently.

All relevant alignments for a specific contig are extracted from the SAM file out-

putted by a sequence aligner. The overhanging part of each aligned read is classified

either as a left or right extension as shown in Figure 2.1. The exact algorithm to calcu-

late an extension given an alignment record will be presented in section 2.1.

Figure 2.1: Representation of sequence types involved in the scaffolding process.
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The consensus algorithm called on lines 6 and 7 takes as input a list of extensions

and computes the consensus sequence. The different consensus algorithms supported

by the scaffolder will be discussed later in this chapter and in the next one.

The original sequence of the contig is prefixed and suffixed by the generated con-

sensus sequences to create an extended contig. After all contigs have been processed

and their extended sequences have been collected to the extended_contigs list, the

merging procedure is called. The algorithm employed by the join_contigs function

to create the final scaffolds will be detailed in chapter 4.

2.1. Extracting Contig Extensions

This section presents the algorithm employed to extract the contig extensions given an

alignment record. The algorithm takes as input a structure representing an alignment

record from a SAM file and the contig that the read mapped to. The output consists

of the left and right extending sequences, if they exist for the examined contig and

alignment record pair.

Aligners tend to map overhanging sequences close to the end of the contigs, but

often fail to align correctly the last few bases. This happens either as an imprecision

of the alignment software or because of the presence of a mismatch or indel close to

the ends of the contig. Both cases end up soft clipping the aligned read earlier than

necessary.

Aligners describe an alignment using the CIGAR format. This format can be

viewed as the sequence of operations an aligner has taken to align a query sequence

to the given reference, starting from the beginning of the query. A CIGAR string is

represented as a list of pairs where the first element is the number of bases that the

second element, the operation, is applied to. Table 2.2 presents all CIGAR operations

and the correspondent description.

Figure 2.2 shows an example of such behavior. An aligner can opt to soft clip the

first 3 or 6 bases of the read, Cigar string 1 and 2 respectively. The margin concept is

introduced here to define how far can the beginning of an alignment be to still consider

it to extract an extension sequence.

The EAGLER scaffolder defines two types of margins: inner and outer. The first

type, the inner margin, defines the maximum distance of the first match in the align-

ment from its closer edge of the contig. Reads that align within the inner margin are

given the opportunity to immediately output an extension. Reads that align between

the inner and outer margin are flagged as dropped and will not be used to output an
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Position: 0 1 2 3 4 5 6 7 8 9 10 11 12

Contig: A T C A A C C T A A G A G

Aligned read: T C G A T T A A C C T A - G A

Extension: T C G

Cigar string 1: 6S 6M 1I 2M

Cigar string 2: 3S 9M 1I 2M

Figure 2.2: Alignment margin issue example.

extension immediately, but will be reconsidered further down the scaffolding pipeline.

More details on the usage of dropped reads will follow in chapter 3. If a read aligns

after the outer margin, it is discarded completely and will not be considered for contig

extension at any subsequent step in the pipeline.

Figure 2.3: Inner and outer margins for a contig in the extension process.

Figure 2.3 illustrates the margin concept for the right end of a contig. The reads

above the contig aligned within the inner margin and they will construct an extension.

The first read below the contig has its last match between the inner and outer mar-

gin, hence it will be dropped and reconsidered for realignment in future steps of the

pipeline. The last read mapped before the outer margin and is discarded.

The aligned read in Figure 2.2 has a left margin of 3 and 0 base pairs respectively

for Cigar strings 1 and 2. Table 2.1 illustrates various possible outputs of the extension

extraction procedure defined in Algorithm 2 depending on the values set for the inner

and outer margins.

Algorithm 2 shows the computation needed to extract the extension sequences.

The extension structure stores the extending sequence and a Boolean flag indicating
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Table 2.1: Outputs for Algorithm 2 given inputs presented in Figure 2.2.

Margins [0, 2] [0, 5] [5, 10]

Cigar string 1 read discarded extension dropped extension outputted

Cigar string 2 extension outputted extension outputted extension outputted

whether the extension is dropped or not.

To extract any extensions, the alignment record has to successfully map on the

contig, this is check at line 6. The next if statement checks if the read is a left extension.

To be a left extension, a read has to have a soft clipping at its beginning and its first

match to the contig has to happen before the inner margin limit. The left extension is

created by truncating the read sequence at the beginning of the contig. The position

for this operation is calculated by subtracting the position of the first match from the

length of the soft clipped head of the read.

Generating the right extension is slightly more complex because the typical SAM

record does not expose the end position of the alignment as it does the begin position.

The number of bases covered in the alignment has to be calculated by iterating through

the Cigar string and is performed by the functions called at lines 17 and 18. CIGAR

operations M,D,X and = contribute to the length of the sequence used from the

contig, while operations M, I, S,X and = contribute to the length used by the read.

The sequence for the right extension is generated by taking the last r_len base pairs

from the read sequence, where r_len is given as the subtraction of the right margin, as

calculated at line 19, from the length of the soft clipped tail of the read.

Table 2.2: CIGAR string operations.

Operation Description

= Alignment Match

X Alignment Mismatch

M Match or mismatch

I Insertion

D Deletion

N Skipped region of the reference

S Soft clipped region of the query

H Hard clipped region of the query

P Padding
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Algorithm 2 Extension extraction algorithm (contig, aln)

1: struct extension {

2: string seq

3: bool is_dropped

4: }
5: r_ext← NULL

6: if aln.mapped then
7: if aln.cigar[0].op == S and aln.beginPos <= outer_margin then
8: l_len← aln.cigar[0].count− aln.beginPos

9: if l_len > 0 then
10: l_seq ← reverse(aln.seq[0 : l_len])

11: l_is_dropped← aln.beginPos > inner_margin

12: l_ext = extension(l_seq, l_is_dropped)

13: end if
14: end if
15: if aln.cigar[−1].op == S then
16: clip_len← aln.cigar[−1].count
17: used_read_len← get_used_read_len(aln.cigar)

18: used_contig_len← get_used_contig_len(aln.cigar)

19: margin← contig.len− aln.beginPos− used_contig_len

20: r_len← clip_len−margin

21: if r_len > 0 and maring <= outer_margin then
22: r_seq ← aln.seq[used_read_len− r_len : aln.seq.len]

23: r_is_dropped← margin > inner_margin

24: r_ext← extension(r_seq, r_is_dropped)

25: end if
26: end if
27: end if
28: return l_ext, r_ext

9



2.2. The POA Algorithm

The EAGLER scaffolder supports two algorithms to compute the consensus of the

extending sequences. The first algorithm is the well known Partial Order Alignment

algorithm[15, 16] designed by Christopher Lee. The second algorithm used to compute

the consensus extending sequence is a novel approach that combines majority vote

calculations, local read error corrections and global read realignments. This algorithm

will be discussed in great detail in chapter 3.

The POA algorithm uses a modified Smith-Waterman local alignment algorithm to

calculate an alignment graph. The alignment graph is a directed acyclic graph (DAG)

where each edge counts the number of sequences that aligned to the graph passing

thought that edge.

The alignment graph is built iteratively by adding new sequences to it one by one.

Each time the graph is edited, topological sorting is performed to generate a linear

ordering of all nodes so that all predecessors for any given node appear in the sorted

array before that node. Once the nodes have been sorted, the dynamic programming

step is carried out by visiting the nodes in the computed order and all predecessors are

considered for align and insert moves.

Extracting a consensus sequence from the graph can be reduced to the well known

problem of finding the maximum weight path in the alignment DAG. Nodes are iterated

in the reverse topological order so that each node is visited before all its predecessors.

The score of each node is initially set to 0 and remains 0 for all nodes that have no

outbound edges. The score of all other nodes is updated to maximize the sum of the

weight of an outbound edge and the score of the node it points to. Once the node with

the highest score has been found, the maximum weight path can be trivially computed

by following the heaviest edges from each node.

The POA algorithm has proven to be an order of magnitude slower than the new

consensus algorithm proposed in this thesis. The two consensus algorithms achieve

similar identity values of the consensus sequence and both showed an indel bias to-

wards insertions. In the case of the POA algorithm the bias is however drastically

more pronounced, with deletions barely present in the consensus. The advantage of

using the POA algorithm is in its ability to produce long consensus sequence in low

coverage states for which the Global/Local Realign algorithm produces very short,

although accurate, extensions.
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3. Predicting the Next Base

This chapter will present the default algorithm used by the EAGLER scaffolder to

compute the consensus sequence given a list of extensions. The algorithm leverages 3

key concepts:

– Majority voting

– Local error correction

– Full read realignment

A modified majority vote algorithm is used to iteratively produce each base of the

consensus sequence starting from the edge of the contig. Every time a new base is

pushed to the output and is considered finalized, all reads that did not contribute to the

vote for that base are checked for errors such as indels and mismatches. The full read

realignment is used to reset the state of the algorithm once the read errors have become

too severe to correct them locally.

3.1. Simple Majority Vote

Algorithm 3 presents the basic version of the majority vote algorithm used to deter-

mine one base of the consensus sequence. The extension structure employed by the

algorithm is an extended version of the structure defined in Algorithm 2. Each exten-

sion keeps track of its first base that has not yet been used to produce an output base in

the position variable.

The algorithm takes as input a list of extensions and returns a counter array. Each

element of the counter array tracks the number of appearances of a specific base. In-

dexes 0 to 3 correspond to bases A, T , G and C respectively. The output base can be

easily found by converting the index of the maximum value in the counter array using

the previously mentioned mapping.

The algorithm iterates over all given extensions and increments the counter for the

base at the current position. Some extensions may be too short to participate in the
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majority vote so they have to be skipped. This case in checked by the if statement at

line 8.

Algorithm 3 Simple majority vote (extensions)

1: struct extension {

2: string seq

3: bool is_dropped

4: int position

5: }
6: counter ← [0, 0, 0, 0]

7: for ext in extensions do
8: if ext.position < ext.seq.len then
9: base← ext.seq[ext.position]

10: increment(counter, base)

11: end if
12: end for
13: return counter

3.2. Modified Majority Vote

The modified majority vote described in Algorithm 4 uses the same extension structure

and produces the same output as Algorithm 3 presented in the previous section. The

two algorithms differ in the input arguments, the modified majority vote takes two

additional arguments.

The first additional argument is an integer offset that is added to the position at

which the output base is extracted from the extension sequence. The second additional

argument is a function that takes as input a character representing a base and returns

a Boolean. This function acts as a filter and controls whether an extension should be

considered in the current majority vote based on the passed argument. The filtering

mechanism is useful because it enables the calculation of the majority vote over a

subset of extensions without the need to actually instantiate that subset in memory.

This custom majority vote algorithm that offers more granulated control over which

extension may vote and what base is taken from eligible extensions is the main building

block for the Confirming Majority Vote algorithm used by the EAGLER scaffolder to

compute a single base of the extension sequence.
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Algorithm 4 Modified majority vote (extensions, offset, is_ext_eligible)

1: counter ← [0, 0, 0, 0]

2: for ext in extensions do
3: if ext.is_dropped then
4: continue
5: end if
6: if ext.position+ offset < ext.seq.len then
7: base_check ← ext.seq[ext.position]

8: base_output← ext.seq[ext.position+ offset]

9: if is_ext_eligible(check_base) then
10: increment(counter, base_output)

11: end if
12: end if
13: end for
14: return counter

3.3. Confirming Majority Vote

The confirming majority vote algorithm takes as input a list of extensions, usually one

of the results of a call to the procedure defined in Algorithm 2.

The algorithm first of all computes a majority vote over the given extensions using

the procedure defined in section 3.2. This majority vote is computed over all non-

dropped extensions without offsetting the position stored in the extension structure.

To output a base, the algorithm needs to meet a preset minimum coverage. The

coverage is calculated as the sum of the values in a counter array, i.e. the total number

of extensions that contributed to a vote. Given sufficient coverage, the confirming part

of the algorithm is executed.

A second majority vote, as defined in Algorithm 4, is calculated only over the

subset of extensions that voted for the most frequent base in the first voting run, i.e.

output_base from line 6. The position for the vote is also offset by +1 to target the first

position after the one used in the previous majority vote computation.

Only if the confirming majority vote achieves a coverage of at least 60% of the

minimum coverage, the output base is returned to the caller along with the resulting

base for the confirming majority vote. The idea behind this safety check is that if there

is sufficient confidence to output a base in the current iteration, there should also be a

fairly high confidence in the next base to be pushed to the output considering only the
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extensions that agreed on the first voted base.

The returned base at this point is considered finalized and will appear in the ex-

tended contig computed by the scaffolder. Both bases returned by a procedure call

to Algorithm 5 will later be used to attempt to correct local errors in the extensions

that did not vote on line with the majority. More on this topic will follow in the next

section.

Algorithm 5 Confirming majority vote (extensions)
1: function true_predicate(base)

2: return true
3: end function
4: bases← majority_vote(extensions, 0, true_predicate)

5: if coverage(bases) >= min_coverage then
6: output_base = output_bp(bases);

7: function is_read_eligible(base)

8: return base == output_base

9: end function
10: confirming_counter = majority_vote(extensions, 1, is_read_eligible)

11: next_base = output_bp(confirming_counter)

12: if coverage(confirming_counter) >= 0.6 ∗min_coverage then
13: return output_base, next_base

14: end if
15: end if
16: return NULL,NULL

3.4. Local Realignment

The local realignment procedure detailed in Algorithm 6 uses the two resulting bases

from the confirming majority vote algorithm to correct single-base errors in the exten-

sions that did not vote for the output base.

Four bases are mutually tested to determine the type of error correction to be per-

formed for each extension. The first two, which are constant for all extensions, are the

bases resulting from Algorithm 5. The third base is the base at the current position in

the extension, while the fourth one is the one immediately after it. Because of this pre-

requisite, every extension that does not have at least 2 unused bases left is immediately

dropped as shown on line 6.
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The tests over the four mentioned bases attempt to classify which of the following

operations should be performed: match, mismatch, insertion or deletion. The first

performed test detects a match, i.e. the extension voted for the output base, and in that

case the position for the given extension moves forward by +1.

A deletion is detected by comparing the current base in the extension to the second

output base predicted by the confining majority vote. If these two bases match, the

position for the examined extension is not edited since it will most likely contribute to

the next majority vote.

When the majority voted next base and the next base in the extension coincide,

but the extension did not vote for the output base, a mismatch is detected. In terms of

position offsetting, this case is handled the same way as a match.

Algorithm 6 Local realignment (extensions, output_base, next_mv_base)
1: for ext in extensions do
2: if ext.is_dropped then
3: continue
4: end if
5: if ext.position >= ext.seq.len− 2 then
6: ext.is_dropped← true
7: continue
8: end if
9: current_base← ext.seq[ext.position]

10: next_base← ext.seq[ext.position+ 1]

11: if current_base == output_base then
12: handle_operation(ext, MATCH)

13: else if current_base == next_mv_base then
14: handle_operation(ext, DELETION)

15: else if next_base == next_mv_base then
16: handle_operation(ext, MISMATCH)

17: else if next_base == output_base then
18: handle_operation(ext, INSERTION)

19: else
20: ext.is_dropped← true
21: end if
22: end for
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The last test checks whether the output base matches the next base in the examined

extension. Upon a positive test result, the operation is classified as an insertion and the

position in the current extension is moved +2 positions forward.

In some cases all tests yield negative results and the algorithm fails to classify an

operation. When this scenario is realized, the extension is marked as dropped and will

not participate in the next output base voting round. The next section will present a

method to recover dropped extensions when the scaffolder starts lacking coverage and

cannot output the next extension base.

Figure 3.1 gives an example of 8 extensions contributing to a consensus sequence

where all test cases are present. The green bases represent a match, the red one is a

mismatch, while the orange one is an insertion. The blue colored bases indicate the

positions for the next round of voting and in case of Extension 5 it also indicates a

deletion. Extension 7 fails all tests defined in Algorithm 6 and is dropped, hence it

does not have a position for the next voting round.

Extension 1: A G C T T T T C A T C T G A C

Extension 2: A G C T T T T C A T C T G A C

Extension 3: A G C T T T T C G T C T G A C

Extension 4: A G C T T T T C A T C T G A C

Extension 5: A G C T T T T C T C T G A C T

Extension 6: A G C T T T T C G A T C T G A

Extension 7: A G C T T T T C G G C T G A C

Extension 8: A G C T T T T C A T C T G A C

Consensus: A G C T T T T C A * * * * * *

Figure 3.1: Error classification in the local realignment algorithm.

3.5. Global Realignment

The previous sections have explained in great detail the consensus sequence generation

algorithm. The last issue left to address to complete the contig extension algorithm is

the Global Realignment algorithm used to amend low coverage states.

The consensus sequence generation algorithm starts with a given coverage level,

i.e. the number of reads that mapped within the inner margin. With each output base
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the algorithm can only stay at the current coverage level or drop to a lower coverage.

The Global Realignment is invoked when the scaffolder does not have sufficient cov-

erage to output the next base or when it does not have sufficient coverage to confirm it,

as seen in Algorithm 5.

The algorithm attempts to recover some coverage using dropped extensions. There

are two sources of dropped extensions: out of margin reads and unclassified local

errors. Out of margin reads are those reads that aligned to the contig between the inner

and outer margin and were dropped during the extension extraction phase. Unclassified

local errors also produce dropped extensions as shown in Algorithm 6.

The Global Realignment algorithm is similar to the first pairwise alignment be-

tween contigs and reads carried out at the very beginning of the scaffolding pipeline.

The algorithm however operates on a single contig and on a reduced set of reads to

boost performance.

The procedure takes as input an extended contig, the original set of long reads

and the left and right extensions at the moment of insufficient coverage. The output

consists of two lists, the right and left extensions respectively, obtained by realigning

the dropped reads onto the extended contig.

The extension structure defined in Algorithm 3 is expanded to also include the ID

of the read which the extension originated from. This integer ID is used to rapidly

fetch the read associated to an extension from the input dataset as shown in lines 8 and

18.

The procedure iterates over all given extensions and creates a list of reads that have

to be realigned, while non-dropped extensions are saved so that they can be propagated

to the output. If the realign_reads list is not empty, the underlying aligner is invoked

to align the selected reads to the extended contig.

The SAM file produced by the aligner is forwarded to the compute_extensions

procedure defined in Algorithm 2 along with the contig that the alignment records

refer to. The final output extension lists are generated by combining the extensions

extracted from the SAM file and the previously saved extensions.
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Algorithm 7 Global realignment (contig, reads, left_extensions, right_extensions)

1: realign_reads← [ ]

2: keep_left_exts← [ ]

3: keep_right_exts← [ ]

4: for ext in left_extensions do
5: if ext.is_dropped then
6: read_id← ext.read_id

7: if read_id not in realign_reads then
8: realign_reads.append(reads[read_id])

9: end if
10: else
11: keep_left_exts.append(ext)

12: end if
13: end for
14: for ext in right_extensions do
15: if ext.is_dropped then
16: read_id← ext.read_id

17: if read_id not in realign_reads then
18: realign_reads.append(reads[read_id])

19: end if
20: else
21: keep_right_exts.append(ext)

22: end if
23: end for
24: if realign_reads.size > 0 then
25: sam_file← align(contig, reads)

26: realn_left, realn_right← compute_extensions(contig, sam_file.aln)

27: left_extensions = keep_left_exts+ realigned_left

28: right_extensions = new_right_exts+ realigned_right

29: end if
30: return left_extensions, right_extensions
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4. The Scaffolder

Chapters 2 and 3 presented the building blocks for the extension based EAGLER scaf-

folder. This chapter will rework the generic extension based scaffolding procedure

presented in Algorithm 1 to closely match the one used in the EAGLER C++ imple-

mentation.

The first step of the scaffolding pipeline is the pairwise alignment between all con-

tigs from the input draft genome and all given long reads. Once the alignment is ready,

each contig can be processed independently and its extended version can be collected

in the extended_contigs list.

The contig extension process is controlled by two Boolean flags, the should_ext_left

and the should_ext_right one. The current contig is iteratively extended while either

flag is set using the mv_local_realign function defined in Algorithm 9. This function

combines the Confirming Majority Vote from Algorithm 5 and the local error correc-

tion from Algorithm 6 to produce one consensus extending sequence.

Once both the left and right consensus sequences have been computed, the ex-

tended contig can be constructed by prefixing the original contig with the left consen-

sus and suffixing it with the right consensus sequence, as shown on line 17. The left

consensus has to be reversed before attaching it to the contig because the extension ex-

traction and consensus computation procedure treat all extensions as right extensions.

The maximum length by which a contig should be extended on each side is a scaf-

folder parameter saved in the max_ext_len variable. This limitation is introduced to

avoid unnecessary work since an approximation of the gap sizes for the analyzed

genome are usually known. There is no benefit in setting the maximum extension

length to a value greater than the size of the largest gap.

The extension process for one side of the contig is stopped either when the cur-

rent iteration does not produce a new output base or when the maximum extension

length is reached. If either side of the contig are extended in the next iteration a global

realignment is carried out as per Algorithm 7.
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Algorithm 8 EAGLER Scaffolder (draft_genome, long_reads)

1: extended_contigs← [ ]

2: sam_file← align(draft_genome, long_reads)

3: for contig in draft_genome do
4: extended_contig ← copy(contig)

5: should_ext_left← true
6: should_ext_right← true
7: left_exts, right_exts← compute_extensions(sam_file.aln)

8: while should_ext_left or should_ext_right do
9: if should_ext_left then

10: left_consensus← reverse(mv_local_realign(left_exts))

11: should_ext_left← left_consensus.seq.len > 0

12: end if
13: if should_ext_right then
14: right_consensus← mv_local_realign(right_exts)

15: should_ext_right← right_consensus.seq.len > 0

16: end if
17: extended_contig.seq ← left_consensus.seq + extended_contig.seq +

right_consensus.seq

18: if extended_contig.left_ext.seq.len > max_ext_length then
19: should_ext_left← false
20: end if
21: if extended_contig.right_ext.seq.len > max_ext_length then
22: should_ext_right← false
23: end if
24: if should_ext_left or should_ext_right then
25: left_exts, right_exts ← global_realign(extended_contig,

long_reads, left_exts, right_exts)

26: end if
27: end while
28: extended_contigs.append(extended_contig)

29: end for
30: scaffolds← join_contigs(extended_contigs)

31: return scaffolds
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Algorithm 9 Confirming majority vote with local realignment (extensions)
1: extension← ””

2: while true do
3: output, next← confirming_majority_vote(extensions)

4: if output == NULL then
5: break
6: end if
7: extension← extension+ output

8: local_realign(extensions, output, next)

9: end while
10: return extension

4.1. The Contig Connection Algorithm

The last step in the scaffolding pipeline is joining overlapping contigs in the scaffolds

that will be the final output of the pipeline.

Merging overlapping contigs may look like a simple task but actually presents quite

a few challenges, the first one being the size of the contigs. The contigs produced by

NGS assemblers can be very large and Megabase lengths are not uncommon.

Aligners built for mapping reads, either short or long, onto a reference don’t usually

cope well when given two contigs as input. For this reason, the Contig Connection

algorithm cannot use the whole sequence of a contig to detect overlaps but rather uses

relatively short representative sequences from the ends of the contigs. This sequences

are termed anchors and combine the extended part of a contig with a preset chunk size

of the original contig sequence as shown in Figure 4.1.

Figure 4.1: Anchors for an extended contig.

The aim of an anchor is to unequivocally identify the edge of a contig. By defini-

tion, the original contigs from a draft genome are not overlapping, at least not signifi-

cantly. This fact leads to the conclusion that the only way for two extended contigs to
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overlap is for their anchors to overlap. Hence, an expensive Megabase scale, contig to

contig, alignment can be avoided and is replaced by a Kilobase scale, anchor to contig,

alignment.

The anchor mechanism has however a drawback, the extended contigs have to meet

a minimum length criterion. The extended contig has to be large enough to yield two

non-overlapping anchors or otherwise the contig will not be merged with any other

contigs, yielding a singleton scaffold.

Each anchor has its unique ID that is constructed by concatenating the strings ”|L”
or ”|R” to the name of the contig.

Algorithm 10 Create contig anchors (extended_contigs)

1: anchors← [ ]

2: for contig in extended_conitgs do
3: left_len← contig.left_ext.seq.len

4: right_len← contig.right_ext.seq.len

5: if conitg.seq.len < 2 ∗ anchor_len+ left_len+ right_len then
6: continue
7: end if
8: left_anchor ← conitg.seq[0, left_len+ anchor_len]

9: right_anchor = contig.seq[−right_len− anochor_len : conitg.seq.len]

10: left_id = contig.name+ ”|L”
11: right_id = contig.name+ ”|R”

12: anchors.append((left_id, left_anchor)))

13: anchors.append((right_id, right_anchor)))

14: end for
15: return anchors

Algorithm 11 presents the pseudocode for the Contig Connection algorithm. The

algorithm takes as input a list of extended contigs and outputs a list of disjoint scaf-

folds. To simplify the passage of arguments to other functions, the connector structure

is defined.

The connector context tracks all contigs, scaffolds and anchors used in the Contig

Connection algorithm. The components of the connector are listed as collection objects

for simplicity, but the implementation also uses additional data structures to speed-up

the computation and element retrieval. A set is used to store the names of all contigs

that are part of scaffold, while free contigs are tracked in a map with the contig name

as key. The scaffold that a contig is part of can be found in constant time by using a
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hash map that uses contig IDs as keys and references to scaffolds as values.

The create_scaffold functions creates a new scaffold given a connector context.

The function detects the first contig in the connector that is not part of a scaffold

and constructs a new scaffold with the found contig at its core. The function will

also append the newly created scaffold to the list of scaffolds saved in the connector

context. In case there are no free contigs, the function will not be able to create a new

scaffold and will return NULL.

The procedure iteratively calls the connect_next function which attempts to connect

a free contig to the current scaffold. Details for this function are given in Algorithm

12. When the current scaffold cannot be merged with any more contigs, a new scaffold

is created by picking one of the remaining free contigs. The iterative loop continues

until all input contigs are part of a scaffold.

Algorithm 11 Join extended contigs (extended_contigs)

1: struct connector {

2: collection contigs

3: collection scaffolds

4: collection anchors

5: }
6: anchors← create_anchors(extended_contigs)

7: context← connector(extended_contigs, [ ], anchors)

8: current← create_scaffold(context)

9: while current 6= NULL do
10: found← connect_next(context, current)

11: if not found then
12: current← create_scaffold(context)

13: end if
14: end while
15: if trim_circular_genome then
16: for scaffold in context.scaffolds do
17: correct_circular_scaffold(scaffold)

18: end for
19: end if
20: return context.scaffolds
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The trim_circular_genome is a setting of the scaffolder that controls whether the

scaffolder should be checked for circularity. When working with circular genomes, a

scaffold may start to circle on itself, i.e. the left and right ends of the scaffold may

overlap. This phenomenon introduces redundant bases in the output and depending

on the purpose of the scaffolding procedure may be wanted or not. When the men-

tioned flag is set, the ends of each scaffold will be checked for overlaps and redundant

genomic material will be trimmed from the output.

The procedure given in Algorithm 12 takes as input the connector context and

the current scaffold. The return value is a Boolean indicating whether the procedure

successfully joined a contig to the scaffold.

A new contig is always concatenated to the right end of a scaffold, never to the left

end. At first sight this may seem as an error since a free contig can indeed align to both

sides of the scaffold but it is not the case. Contigs that map to the left of a particular

scaffold will eventually become scaffolds themselves and the first scaffold will than

map to the right of the newly formed scaffold. This merge right-only policy drastically

simplifies the algorithm since it has to know how to handle only one case instead of

two, very different, cases.

To evaluate prospective candidates for merging, all contig anchors are aligned to

the last contig in the scaffold. Each alignment record is examined until a suitable one

is found. The should_connect function is a preliminary test to check if a record is

eligible. Various conditions are tested such as the mapping status and the contig state.

The contig name can be easily accessed through the anchor alignment record by

removing the last two characters from the read name stored in the record. The test at

line 8 checks if the candidate contig is already in the scaffold. The positive result of

this test is a strong indication of a circular genome and that the current scaffold should

not be extended further.

Figure 4.2: Contig and extension contributions to the sequence of a scaffold.

When two contigs are merged, they both contribute to the scaffold sequence as

shown in Figure 4.2. Each contig propagates to the end sequence its original non-
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Algorithm 12 Connect next (connector, current_scaffold)
1: current_contig ← current_scaffold.last_contig

2: sam_file← align(current_contig, connector.anchors)

3: for record in sam_file.aln do
4: if not should_connect(connector, current_contig, record) then
5: continue
6: end if
7: next_id← record.name[0 : −2]
8: if is_in_scaffold(next_id, current_scaffold) then
9: break

10: end if
11: next_scaffold← scaffold_for_contig_id(connector, next_id)

12: if next_scaffold 6= NULL and not is_edge(scaffold, next_id) then
13: continue
14: end if
15: next_contig ← find_contig(connector, next_id)

16: if record.complement then
17: next_contig ← reverse_complement(next_contig)
18: end if
19: merge_start← max(current_contig.right_ext_pos, record.beginPos)

20: right_ext_len← current_contig.seq.len−merge_start

21: next_start← min(right_ext_len, next_contig.left_ext.seq.len)

22: merge_end← next_start+ record.beginPos

23: merge_len = merge_end−merge_start

24: add_contig(scaffold, merge_start + merge_len/2, next_start −
merge_len/2)

25: if next_scaffold 6= NULL then
26: merge(connector, scaffold, next_scaffold)

27: end if
28: return true
29: end for
30: return false
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extended part which, as a result of an NGS assembler, is considered to be without

errors. The gap between two contigs is filled by their extensions in such a way that

both contigs contribute equally to the end sequence of the scaffold. The arithmetic to

compute this contribution boundaries can be seen on lines 19 through 24.

At the end, if the merged contig was part of a previously formed scaffold, all contigs

from that scaffold are also merged into the current scaffold.

26



5. Implementation Details

The EAGLER scaffolder is implemented in C++ and uses the C++11 language stan-

dard. The tool should be compatible with most UNIX flavors and has been successfully

tested on the following operating systems:

– Mac OS X El Capitan 10.11.1

– Mac OS X Yosemite 10.10.3

– Ubuntu 14.04 LTS

As of version v1.0.1, available at https://github.com/mculinovic/EAGLER/

releases/tag/v1.0.1, the implementation presents the metric displayed in Table

5.1. The implementation has 4 top-level dependencies as shown in Figure 5.1.

Table 5.1: Implementation metrics obtained by running cloc[17] in the root of the project

before initializing the submodules.

Language Files Lines of code

C++ (.cpp) 11 1339

C++ (.h) 11 492

Python 7 342

Shell 3 176

Make 3 49

Sum 35 2398

The following libraries are needed at compile time by the EAGLER scaffolder:

– SeqAn[18]

– CPPPOA[19]

SeqAn is an efficient C++ library for sequence analysis. The EAGLER scaffolder

uses it mainly for the input and output of standard bioinformatics formats such as

FASTA files containing reads and contigs, and SAM files created by aligners. The
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Figure 5.1: A high level dependency diagram for EAGLER scaffolder.

implementation of the Partial Order Alignment algorithm from the CPPPOA library

is used to provide an alternative to the default Global/Local Realign algorithm. Both

libraries will be automatically downloaded, configured and built by entering the instal-

lation commands (see 5.1) in a terminal window.

The scaffolder currently supports 2 aligners and their executables are required at

runtime:

– BWA[20]

– GraphMap[21]

The end user is responsible for installing the aligners on the host system and mak-

ing sure that the executable for the selected aligner is reachable from his ’PATH’ envi-

ronment variable.

The Burrows-Wheeler Aligner is the de facto industry standard for aligning long

reads to a reference genome and is the default aligner used by the EAGLER scaffolder.

Support for a second aligner has been provided for testing and comparison purposes,

as well as to reduce the workload required to add support for another aligner in future

releases.

The GraphMap aligner was selected for this purpose as one of the most promising

novelties in its field. GraphMap is an optional requirement and the scaffolder can run

without it being installed on the host system, as long as the command line flags are not

explicitly enabling it. See Table 5.2 for details.

The scaffolder relies on an aligner abstraction instead of the concrete implemen-

tation for a specific aligner. Any tool that can satisfy the minimum interface defined

by the Aligner abstract class from the ’src/aligners/aligner.h’ file is compatible with

the EAGLER scaffolder. The most important constraint being the possibility to mark

multiple significant alignments as primary.

Adding support for a new aligner requires implementing a wrapper to the terminal
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interface of the aligner realized as a class inheriting the previously mentioned Aligner

base class. A new command line option would also be necessary to trigger the activa-

tion of the aligner.

The only part of the code aware of all concrete aligner implementations is the

static method ’init’ from the ’src/aligners/aligner.cpp’ file that is used to instantiate the

desired aligner at the beginning of the scaffolding pipeline. The ’init’ method is the

last element that would have to be edited in order to support a new alignment.

The provided dependency graph in Figure 5.2 shows how the core of the EAGLER

scaffolder depends exclusively on the abstract aligner defined in the header file ’align-

ers/aligner.h’ and each concrete aligner has its own isolated dependency graph. The

included header files from the standard library, such as string or vector, are not repre-

sented in the graph to make it more readable.

src/main.cpp

seqan/sequence.h

parsero/parsero.h

aligners/aligner.h

utility.h

scaffolder.h

contig.h

connector.h

seqan/bam_io.h

extension.h

scaffold.h

Figure 5.2: Include graph for the main file of the EAGLER scaffolder.
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5.1. Building the executable

To be able to build the scaffolder, the executables for the programs listed below must

be reachable from the ’PATH’ variable of the user’s shell:

– git[22]

– g++[23]

– GNU Make[24]

– Doxygen[25]

The Version Control System used to track the development of the project is Linus

Torvalds’ git, while the build system in charge of creating all the necessary files to run

the scaffolder is GNU Make. The g++ compiler is used to compile and link the C++

source code. The version of g++ should be 4.9.0 or higher to correctly compile the

C++11 standard code. The Doxygen package is used to create the project documenta-

tion in HTML and PDF formats, and is optional in case the user does not require the

code manual.

To build the EAGLER scaffolder, the following commands are to be used from the

folder where the tool will be installed:

git clone https://github.com/mculinovic/EAGLER.git

cd EAGLER/

git checkout v1.0.1

git submodule update --init --recursive

make

The first two commands will download the source code of the project from it’s

remote host and position the user in the root folder of the project. The third command,

’git checkout v1.0.1’, is used to activate the specific version 1.0.1 that is discussed

in this thesis. The fourth command initializes the project submodules, SeqAn and

CPPPOA, and fetches the required files from their remote repositories.

The last command will initiate the build process for the scaffolder executable and

will trigger the make process for the submodules as needed. Running the ’make’ com-

mand without arguments will build the release version of the tool as the binary file

’./release/eagler’.

To build the debug version of the tool use:

make debug

To build both the debug and release versions use:

make all

30



Once the release version has been built the following command may be used to

install the EAGLER scaffolder in the ’/usr/local/bin’ shared location. By doing this,

the executable becomes available to the user throughout the UNIX shell and third-party

applications can easily locate it.

make install

Depending on the operating system and user type, this command might require

super-user privileges in order to run correctly. In that case the user will be prompted

automatically to enter his password in the terminal, there is no need to prepend ’sudo’

to the ’make’ command.

To delete all files generated during the build process, both for the debug and release

versions, use:

make clean

The previous command, however, will not remove the files created by the install

command. To remove those files, use the command listed below. The same level of

privileges as for using the install command will be required.

make uninstall

5.2. The Documentation

The source code comments of the scaffolder are written to be compatible with the

Doxygen documentation generator. To successfully generate the documentation, the

’doxygen’ executable must be reachable from the user’s ’PATH’. The Graphviz[26]

open source graph visualization software must also be present on the host system to

render the graphs present in the documentation.

To create the documentation in HTML and LATEX format, run the following com-

mand from the root of the scaffolder:

make docs

The HTML documentation is placed in ’./docs/html’ and can be viewed by pointing

any web browser at ’docs/html/index.html’.

The LATEX documentation is placed in ‘docs/latex‘ and needs compiling before it

can be viewed. The PDF documentation is obtainable by compiling the generated

LATEX code with the provided makefile.

Use the following commands from the root of the project to access the PDF version

of the documentation:
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cd docs/latex/

make

open refman.pdf

5.3. Running the scaffolder

The EALGER scaffolder expects 3 arguments from the command line and supports

the options detailed in Table 5.2. To run the scaffolder, use the following command

format:

./release/eagler [options] <draft_genome.fasta> <long_reads.fasta>

<output_prefix/output_dir>

The 3 mandatory arguments are detailed as follows:

draft_genome.fasta
Path to the FASTA file containing the draft genome created by an NGS assembly

pipeline such as SGA or Spades.

long_reads.fasta
Path to the FASTA file containing long reads, PacBio or Nanopore, to be used in

the scaffolding process.

output_prefix/output_dir
The prefix to be added to the output files or the directory where the scaffolder

will store the results. If the given argument is an existing directory, than the

results will be placed in that directory with default file names. If the argument

is not a valid directory, it will be treated as a prefix that will be prepended to the

name of each output file stored in the current working directory.

The settings for the default configuration, i.e. no command line options, expect-

ing PacBio reads as input, will use the BWA aligner and the Global/Local Realign to

compute the consensus of the contig extensions. The implementation will also auto-

matically detect the number of hardware threads supported by the system and adjust

accordingly. A detailed view of all the default settings is given in Table 5.3.

Usage instructions can be accessed through the terminal once the EAGLER scaf-

folder is installed on the host system by using the following command:

./release/eagler -h
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Table 5.2: EAGLER command line options available as of v1.0.1.

Option Type Description

-c INT Set the minimum coverage to output an extension base

-g FLAG Use GraphMap aligner instead of the default BWA aligner

-k FLAG Disable circular genome trimming

-m INT,INT Set the inner and outer margins in base pairs

-p FLAG Use the POA consensus algorithm instead of the default G/L Realign algorithm

-s INT Set the maximum extension size in base pairs

-t INT Set the number of parallel threads to be used by the aligner

-v FLAG Print the version of the scaffolder and exits

-x ENUM Set the input reads type [pacbio, ont]

Table 5.3: Default settings for the EAGLER scaffolder.

Setting Default Value

Read Type PacBio

Aligner BWA

Consensus Algorithm G/L Realign

Minimum Coverage 5

Inner Margin 5 BP

Outer Margin 15 BP

Maximum Extension Length 1000 BP

Circular Genome Trimming Enabled

Parallel Threads Physical Cores

Usage Example 1

./release/eagler -x pacbio -t 16 draft.fasta reads.fasta output_dir/

The above command will run the scaffolder over the draft genome ’draft.fasta’

using 16 parallel threads. The input for this example is a set of PacBio long reads from

the ’reads.fasta’ file, the type of input reads is set by the ’-x’ option. The output of the

scaffolder will consist of 3 files stored in the ’output_dir’ directory as show in Table

5.4.
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Table 5.4: Output files created by running the first EAGLER usage example.

Output File Content

output_dir/contigs.fasta Contigs from the draft genome extended by the scaffolder

output_dir/extensions.fasta Left and right extensions for each contig in the draft

output_dir/scaffolds.fasta Final scaffolds created by merging overlapping extended contigs

Usage Example 2

./release/eagler -g -p -x ont draft.fasta ont_reads.fasta example_2

The second usage example will run the scaffolder over the draft genome ’draft.fasta’

using as many parallel threads as there are cores on the host machine. In this case the

input is a set of Oxford Nanopore 2D reads stored in the ’ont_reads.fasta’ file and the

GraphMap aligner will be used to map the reads onto the draft genome. The extension

will be computed by the POA algorithm, ’-p’ option, instead of the default Global/Lo-

cal Realign algorithm. The output of the scaffolder will consist of 3 files stored in the

current working directory as shown in Table 5.5.

Table 5.5: Output files created by running the second EAGLER usage example.

Output File Content

example_2.contigs.fasta Contigs from the draft genome extended by the scaffolder

example_2.extensions.fasta Left and right extensions for each contig in the draft

example_2.scaffolds.fasta Final scaffolds created by merging overlapping extended contigs

Usage Example 3

./release/eagler -k -m 10,25 -s 3000 draft.fasta pacbio_reads.fasta ex3_out/

The last usage example will run the scaffolder over the draft genome ’draft.fasta’

and will take as input a set of PacBio reads. The inner and outer margins are set to 10

and 25 bases respectively by the ’-m’ option. To avoid overextension, the maximum

extension length for both sides of each contig is set to 3000 base pairs by the ’-s’

option. The ’-k’ option will ensure that the scaffolds are not checked for circularity.

The output of the scaffolder will consist of 3 files stored in the ’ex3_out’ directory

following the same patter shown in Table 5.4.
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6. Test results

6.1. PacBio Reads

The EAGLER scaffolder has been tested on a simulated draft genome created by cut-

ting the Escherichia Coli[27] draft genome into contigs. The E. Coli genome used in

the test is of strain K-12 and substrain MG1655.

The EAGLER scaffolder provides utility scripts to cut gaps in a genome, either

deterministically or at random. The dataset used in this section was obtained by cre-

ating 3 random gaps of size between 1000 and 2000 base pair in the E. Coli reference

sequence.

The dataset can be reproduced by using the genome2contigs script over the E. Coli

reference sequence. This Python script is shipped with the scaffolder and can be run

as shown below. The first argument of the script points to the FASTA file containing

the reference. The second one points to the file where the created draft genome will

be stored, while each subsequent argument defines a gap in the genome. The script

will truncate the reference sequence at the given intervals where the reference is a

0-indexed array and the given intervals are inclusive.

python3 genome2contigs.py reference.fasta draft_1.fasta 304857-306035

1291637-1293139 2887649-2888922

python3 genome2contigs.py reference.fasta draft_2.fasta 516970-518104

1581180-1582840 2810892-2812204

python3 genome2contigs.py reference.fasta draft_3.fasta 200362-201591

2197812-2199227 3370974-3372487

The long reads used for this test are part of a publicly available dataset provided

by Pacific Biosciences on their Github page[28]. The dataset contains 75152 raw,

unfiltered reads and has a declared coverage of 19.96x. The N50 measure for the

dataset is 5900, while the longest read has a length of 19416 base pairs. Figure 6.1

shows the distribution of the lengths of the reads present in the dataset.
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Figure 6.1: Read length distribution for the PacBio test dataset[28].

Each draft genome is run through the scaffolding pipeline and independently an-

alyzed with the provided script extension_analysis. The scaffolder settings are the

default ones, except for the maximum extension length set to 2500 base pairs. The ma-

chine that has been used for this test is a server with 24 Intel Xeon E5645 processors

running at 2.40 GHz. Time and space consumption data is available in Table 6.1. The

measurements have been acquired by using standard UNIX command line tools time

and ps.

Table 6.1: Time and space consumption of the scaffolder during the PacBio test.

Draft genome 1 Draft genome 2 Draft genome 3 Average

User time 7m 31.921s 7m 4.599s 7m 56.279s 7m 30.930s

Used memory 2167 MB 2079 MB 2029 MB 2091.67 MB

The script outputs a table like format with various statistics computed using the

alignment of each extensions to the reference genome. The output is reproduced in

Table 6.3 through Table 6.5.

The first column of the table defines the extension that is being analyzed where

the name is obtained by suffixing the contig name with "L" or "R" for a left or right
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extension respectively. Total counts for matches, mismatches, insertion, deletions and

indels are given in columns MTCH, MISM, I, D and I+D respectively. The last column

presents the length of the extension in base pairs.

The second column, probably the most representative one for this analysis, shows

the percentage identity of the extension sequence. The ID is calculated as the number

of matches divided by the sum of matches, mismatches and deletions. The identity

value represents a measure of how closely the extension reproduces the bases from the

reference sequence.

Two additional statistics are provided for indel analysis: IND and |I-D|. The IND

column defines the percentage of an extension sequence that is an insertion or deletion,

while |I-D| is the net divergence in length that the extension has towards the reference

sequence.

One extension is missing from Table 6.5 because it was too short to produce a sig-

nificant alignment to the reference genome, which is crucial for the employed analysis

tool to work correctly. The missing extension is gi|545778205|gb|U00096.3|3|R with

a length of only 12 BP.

Table 6.2 presents the average value of each statistical measure calculated over all

the generated draft genomes.

Table 6.2: Average statistical values for the PacBio test.

Statistic Average Value

Identity 98.961%

Matches 1231.0 BP

Mismatches 7.0 BP

Insertions 16.174 BP

Deletions 6.217 BP

Total indels 22.391 BP

Length divergence 10.13 BP

Indels rate 1.987%

Sequence length 1258.043 BP
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Table 6.3: Extension analysis for draft genome 1.

Extension ID MTCH MISM I D I+D |I-D| IND LEN

gi|545778205|gb|U00096.3|0|L 100.00% 63 0 2 0 2 2 2.77% 72

gi|545778205|gb|U00096.3|0|R 99.04% 2169 13 23 8 31 15 1.40% 2205

gi|545778205|gb|U00096.3|1|L 97.67% 924 12 23 10 33 13 3.42% 964

gi|545778205|gb|U00096.3|1|R 99.60% 1001 4 10 0 10 10 0.98% 1015

gi|545778205|gb|U00096.3|2|L 97.48% 271 5 8 2 10 6 3.44% 290

gi|545778205|gb|U00096.3|2|R 98.99% 1778 13 14 5 19 9 1.05% 1805

gi|545778205|gb|U00096.3|3|L 98.92% 184 1 1 1 2 0 1.02% 195

gi|545778205|gb|U00096.3|3|R 99.53% 2346 6 28 5 33 23 1.38% 2380

Table 6.4: Extension analysis for draft genome 2.

Extension ID MTCH MISM I D I+D |I-D| IND LEN

gi|545778205|gb|U00096.3|0|L 100.00% 63 0 2 0 2 2 2.77% 72

gi|545778205|gb|U00096.3|0|R 99.55% 1119 1 2 4 6 2 0.53% 1129

gi|545778205|gb|U00096.3|1|L 98.40% 925 8 9 7 16 2 1.68% 949

gi|545778205|gb|U00096.3|1|R 98.90% 2158 15 22 9 31 13 1.41% 2195

gi|545778205|gb|U00096.3|2|L 98.98% 1663 7 27 10 37 17 2.17% 1700

gi|545778205|gb|U00096.3|2|R 99.29% 1120 3 6 5 11 1 0.97% 1131

gi|545778205|gb|U00096.3|3|L 97.53% 1345 5 43 29 72 14 5.14% 1399

gi|545778205|gb|U00096.3|3|R 99.53% 2346 6 28 5 33 23 1.38% 2380

Table 6.5: Extension analysis for draft genome 3.

Extension ID MTCH MISM I D I+D |I-D| IND LEN

gi|545778205|gb|U00096.3|0|L 100.00% 63 0 2 0 2 2 2.77% 72

gi|545778205|gb|U00096.3|0|R 99.35% 1544 8 21 2 23 19 1.45% 1586

gi|545778205|gb|U00096.3|1|L 99.46% 372 2 6 0 6 6 1.53% 390

gi|545778205|gb|U00096.3|1|R 98.35% 2453 23 36 18 54 18 2.14% 2512

gi|545778205|gb|U00096.3|2|L 97.28% 895 13 16 12 28 4 3.03% 924

gi|545778205|gb|U00096.3|2|R 98.64% 1165 10 15 6 21 9 1.76% 1190

gi|545778205|gb|U00096.3|3|R 99.53% 2346 6 28 5 33 23 1.38% 2380
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The standard output of the command used to scaffold the first dataset is reproduced

in the following listing.

./release/eagler -t 8 -s 2500 rand_test/draft_1.fasta pacbio_reads.fasta rand_test/

rand_1

[INPUT] Reading draft genome: rand_test/draft_1.fasta

[INPUT] Reading long reads: pacbio_reads.fasta

[ALIGNER] Initializing bwa aligner...

[ALIGNER] Creating index...

[ALIGNER] Aligning reads to draft genome using 8 threads...

[ALIGNER] Creating alignments map...

[EXTENDER] Contig extension algorithm: Local/Global Realign

[EXTENDER] Starting extension procedure for contig [1/4]: gi|545778205|gb|U00096

.3|0|

Left extension: 72 BP

Right extension: 2205 BP

Extended contig length: 307134 BP

[EXTENDER] Starting extension procedure for contig [2/4]: gi|545778205|gb|U00096

.3|1|

Left extension: 964 BP

Right extension: 1015 BP

Extended contig length: 987580 BP

[EXTENDER] Starting extension procedure for contig [3/4]: gi|545778205|gb|U00096

.3|2|

Left extension: 290 BP

Right extension: 1805 BP

Extended contig length: 1596604 BP

[EXTENDER] Starting extension procedure for contig [4/4]: gi|545778205|gb|U00096

.3|3|

Left extension: 195 BP

Right extension: 2380 BP

Extended contig length: 1755304 BP

[CONNECTOR] Attempting to connect extended contigs...

Writing contig anchors to file...

Created scaffold with base contig: gi|545778205|gb|U00096.3|3|

Remaining free contigs: 3

Connecting contig: gi|545778205|gb|U00096.3|0|

Connecting contig: gi|545778205|gb|U00096.3|1|

Created scaffold with base contig: gi|545778205|gb|U00096.3|2|

Remaining free contigs: 0

Connecting contig: gi|545778205|gb|U00096.3|3|

Correcting circular genome scaffolds...

Examining scaffold [1/1]... UNTOUCHED

[OUTPUT] Writing extended contigs to file: rand_test/rand_1.contigs.fasta

[OUTPUT] Writing extensions to file: rand_test/rand_1.extensions.fasta

[OUTPUT] Writing scaffolds to file: rand_test/rand_1.scaffolds.fasta

Preparing scaffold 0 with length: 4641494
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6.2. Nanopore Reads

The test for the Oxford Nanopore reads is conducted over the same strain of Es-

cherichia Coli as the test for PacBio reads. In this case however, the draft genome

is obtained by assembling Illumina reads rather than simulating assembly gaps.

The draft genome is obtained by running the SPAdes[3] assembler, version 3.6.1,

over an Illumina dataset[29] with coverage of 51.6x. The resulting contigs are passed

to the EAGLER scaffolder along with a Nanopore dataset. The scaffolder uses the

default configuration with the maximum extension length set to 2500 base pairs.

The Nanopore dataset used in this test is based on Nick Loman’s E. Coli dataset[30].

The reads used as input consist of only two dimensional reads from the pass folder of

the MAP006-1 run and have an approximated 40x coverage and an N50 of 8836. In

total, there are 29635 Nanopore reads with a maximum length of 48834 base pairs.
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Figure 6.2: Read length distribution for the Nanopore test dataset[30].

The scaffolding process lasted 21.6 minutes and used at most 1589 MB of memory.

Once the scaffolds have been constructed, the results are analyzed using the command

line tool QUAST[31]. QUAST is a tool for the assessment of the quality of genome

assemblies at contig or scaffold level. For the purpose of this test, QUAST is run over

the SPAdes assembled draft genome as well as over the scaffolds created by EAGLER.
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Table 6.6: QUAST results for SPAdes contigs and EAGLER Scaffolds.

SPAdes Conitgs EAGLER Scaffolds

Contigs (>= 0 bp) 121 11

Contigs (>= 1000 bp) 35 11

Total length (>= 0 bp) 4620199 4601091

Total length (>= 1000 bp) 4603244 4601091

Largest contig 667854 1814628

Total length 4606074 4601091

Reference length 4641652 4641652

GC Content 50.77% 50.80%

N50 216199 1107163

Misassemblies 4 4

Local misassemblies 14 21

Mismatches 326 358

Indels 41 206

Short indels 37 198

Long indels 4 8

Indels Length 122 524

From the results shown in Table 6.6 it is clear that EAGLER drastically reduced

the number of contigs from 121 to 11. The longest contig after the scaffolding is 1.81

MBP long, compared to a maximum length of 667 KBP in the assembly.

As expected, the N50 is also significantly higher. To clarify, the N50 is a statistical

measure defined as the length for which the set of all contigs of that length or longer

contains at least half of the total lengths of all contigs. It can be also pictured as the

center of mass of the distribution of contig lengths.

SPAdes introduced some error in the contigs it outputted in the form of 4 reloca-

tions. This errors obviously propagate to the output of the scaffolder since it assumes

the input draft genome to be correct. The errors can however be amplified when contigs

misassembled by SPAdes are merged with other contigs to form a scaffold.

These error amplification is very pronounced in the number of long indels and the

average indel length. The number of mismatches has seen a 9.81% increase from the

assembly to the scaffolds, which is in line with the mismatch rate seen in the pre-

vious section. Short indels are however caused by errors in the extension consensus

sequence. These errors are usually single-base ones and are a consequence of the high

41



error rate in the long reads used for the extension process.

The rate of errors introduced in the final product of the scaffolder is however sig-

nificantly lower than the error rate of a single read. This has been proven in the PacBio

test case from the previous section where a single sequence has an average error rate

of 15%, while the outputted consensus sequences averaged an identity of almost 99%

and an indel rate of less than 2%.
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Figure 6.3: Cumulative length of the scaffolds created by the EAGLER scaffolder.
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7. Conclusion

NGS assemblers condense short, low error rate reads into contigs but often fail to

reconstruct the entire genome. EAGLER is a post assembly tool with the goal to close

gaps left open by modern sequence assemblers.

The scaffolding algorithm proposed in Chapter 4 uses a modified implementation

of the Majority Vote Algorithm in combination with local single-base error correction

and global long read realignment.

Chapter 6 has demonstrated that the proposed tool can create high quality assem-

blies using PacBio long reads. An average identity of almost 99% has been achieved

with a modest 20x coverage of the input dataset. The scaffolder has shown a small

bias in the indel type distribution, preferring insertions to deletions. However, the net

divergence in length of the extensions compared to the reference is almost negligible.

On the average, it has been observed that 8.12 base pairs are in excess for each 1000

outputted consensus bases.

The tool has also proven to be useful when given Oxford Nanopore long reads.

Nanopore 2D reads have a higher, but comparable, error rate to PacBio reads but tend

to have an error profile that is much more troublesome. Errors in the PacBio reads are

almost uniformly dispersed throughout the sequence, while Nanopore reads have very

concentrated errors that often span through 3-6 adjacent bases. In the presented test

case, the scaffolder has been able to reduce the number of contigs from the 121 created

by SPAdes to 11 contigs with the average length of 418281 BP.

The future development of the EAGLER scaffolder will move towards 3 goals: an

iterative variant of the scaffolder, a parallel implementation of the extension phase and

the support for external tools for the contig connection process.

An iterative variant of the scaffolding model proposed in this thesis may prove

useful in closing especially long gaps. Since a full pairwise alignment between the

reads and contigs is performed only once at the begging of the pipeline, the scaffolder

may eventually run out of genomic material to extend the contigs with. While multiple

all-to-all alignments are not a feasible solution in terms of performance, running the
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whole pipeline multiple times scales linearly with the number of iterations and should

produce comparable results.

A this point in time, the EAGLER scaffolder uses multiple threads only for the

alignment process, which is the computationally most intense part of the pipeline. Full

multithread support is certainly an objective for future releases but it prospects multiple

challenges. The contig extension algorithm is natively parallel because the extension

procedure for each specific contig is independent. The challenge however is posed by

the side effects of the aligner calls issued by the extension process of each contig.

All modern aligners use temporary files created in the current directory or in the

directory of the reference FASTA file. These files are used to store indexes, logs or

partial results of the alignments. While parallelizing a single alignment job is usually

as simple as setting the appropriate option flag, running multiple jobs is not as straight-

forward because of the multitude of temporary files that could clash with each other.

The only way to support multiple concurrent jobs would be to sandbox each one in its

unique temporary folder so that concurrent jobs share no temporary files.

Connecting extended contigs may seem like a simple task, but in reality it is not

far from the complexity of a Overlap-Layout-Consensus sequence assembler with a

minimal Layout phase. For this reason, the EAGLER scaffolder will probably migrate

to an abstraction for the contig connection phase with the goal to support multiple 3rd

party solutions in a similar fashion as it has been done with the aligner abstraction.
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EAGLER - Eliminating Assembly Gaps by Long Extending Reads

Abstract

Next Generation Sequencing (NGS) is rapidly becoming a cornerstone of clini-

cal medicine. The limiting factor of NGS technologies is the inability to reconstruct

genomic regions with high repeat rates since a single read can span only up to 300

base pairs. The EAGLER scaffolder is a post-assembly tool aimed at closing gaps in

the draft assemblies created by NGS assemblers such as SGA, ABySS and SPAdes.

The scaffolder takes as input a draft genome and a set of long reads, either PacBio or

Nanopore, and outputs a set of scaffolds. It has shown very promising results on the

Escherichia Coli K12 MG1655 genome achieving an average identity of 98.96% using

PacBio long reads with a 20x coverage.

Keywords: Scaffolding, NGS, Long Reads, PacBio, Oxford Nanopore

EAGLER - Popravljanje već sastavljenih genoma koristeći duga očitanja

Sažetak

Metode sekvenciranja druge generacije (NGS) ubrzanim tempom postaju svakod-

nevica kliničke medicine. Glavni nedostatak NGS tehnologija je nemogućnost rekon-

strukcije dugačkih ponavljajućih regija genoma s obzirom na to da je svako pojedino

očitanje dugo najviše 300 baza. EAGLER je alat namijenjen zatvaranju rupa u već sas-

tavljenim genomima. Takvi genomi su rezultat modernih asemblera kao što su SGA,

ABySS i SPAdes. Alat prima na ulaz sastavljeni genom i skup dugačkih očitanja,

PacBio ili Nanopore, te kao rezultat vraća skup scaffolda. Rezultati testova na genomu

Escherichia Coli K12 MG1655 pokazali su se vrlo obećavajućima. Koristeći PacBio

očitanja pokrivenosti 20x postigao se prosječni identitet sekvence od 98.96%.

Ključne riječi: Sastavljanje genoma, Metode sekvenciranje druge generacije, Dugačka

očitanja, PacBio, Oxford Nanopore
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