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1. Introduction 

Scheduling is a decision-making process that is used on a regular basis in many 
manufacturing and service industries. It deals with the allocation of resources to 
tasks over given time periods and its goal is to optimize one or more objectives. [1] 
The resources and tasks can take many different forms. The resources may be 
machines in a workshop, workers in a company, materials in factories, processing 
units in a computing environment and so on. The tasks may be operations in a 
production process, stages in projects, creating parts in factories, executions of 
computer programs and so on. Each task can have a certain priority level, the 
earliest possible start time and an expected finish time. The objectives can also take 
many different forms. One objective may be the minimization of the completion time 
of the last task and another may be the minimization of the number of tasks 
completed after their respective due dates. [1] 
There might be single or multiple machines in a scheduling system. The single 
machine environment is simple and a special case of all environments. Single 
machine environments often have properties that none of the multiple machine 
environments have, such as the ability to be optimized with basic heuristics. Multiple 
machines can work in series or in parallel. They often combine serial and parallel 
execution of tasks. 
In computing, scheduling is the method by which work specified by some means is 
assigned to resources that complete the work. The work may be virtual computation 
elements such as threads, processes or data flows, which are in turn scheduled onto 
hardware resources such as processors, network links or expansion cards. [2] 
Scheduling, as a decision-making process, plays an important role in most 
manufacturing and production systems as well as in most information processing 
environments. It is also important in transportation and distribution settings and in 
other types of service industries. [1] 
A scheduler is what carries out the scheduling activity. Schedulers are often 
implemented so they keep all the computer resources busy (as in load balancing), 
allow multiple users to share system resources effectively, or to achieve a target 
quality of service. Scheduling is fundamental to computation itself, and an intrinsic 
part of the execution model of a computer system. [2] 
This thesis focuses on a specific case of multiple machines scheduling in distributed 
systems. A distributed system is a software system in which components located on 
networked computers communicate and coordinate their actions by passing 
messages [3]. In the next chapter, the thesis will first present the specific problem 
that it tries to solve. Then it will describe known methods that were used in trying to 
solve this specific problem and afterwards the designed scheduling system will be 
presented with its results. 
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2. About the Assignment 

The specific scheduling problem that the thesis tries to optimize is presented in this 
chapter. First, the concrete problem will be presented together with its properties and 
it will be fitted into scheduling terminology. The second part of this chapter will focus 
on presenting the abstract ideas of solving the problem. It deals with the three main 
phases of the thesis as well as the exact part of the scheduling problem that it is 
trying to solve in each of them. The simplifications that are used in solving their part 
of the scheduling problem are also presented. 

2.1 Introduction to the Assignment 

The specific scheduling problem that was tackled in this thesis is rather an unusual 
one. The problem deals with tasks being scheduled on executing nodes through 
networks of scheduling servers. The issue is to schedule those tasks in a way to 
optimize makespan. The makespan is the total length of the schedule (that is, the 
moment when all the jobs have finished processing). The three major components 
are tasks, executing nodes and scheduling servers. In this problem, the executing 
nodes can be thought of as machines since tasks can only be executed on them. 
Those machines have eligibility restrictions because they can only execute one task 
at a time. Tasks have precedence constraints because they usually require other 
tasks to be completed before they can start. Tasks are also machine constrained 
because every task can be executed only at the exact executing node (machine). 
 

 

Image 2-1 Distribution of scheduling servers 
 
The description will begin with the most abstract elements; the scheduling servers. 
Usually, there is a small number of scheduling servers (for example seven) that are 
connected in a binary tree as seen in Image 2-1. They transfer tasks and information 
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about them (like their scheduled finish time) as messages through their connections 
in the binary tree. Any of those scheduling servers can connect to any of the 
executing nodes, but at any given time only one server can be connected to a 
specific executing node. The scheduling server needs to be connected to the 
executing node in order to execute a task on it. The server can have multiple parallel 
connections. 
There are a lot more executing nodes in the system than there are scheduling 
servers (there is usually around 30,000 executing nodes). This presents a critical 
limitation since the scheduling servers are bound by their memory capacity and 
cannot have as many open connections to the executing nodes as they want to (the 
maximum is usually 40). The scheduling servers have to constantly open and close 
the connections in order to execute the tasks. 
Some tasks have the outcomes of other tasks as preconditions. Such dependencies 
essentially form a graph. The graphs range from one task with no dependencies to 
thousands or hundreds of thousands of connected tasks (there are usually three 
million tasks in the system). One other key insight here is that, if the task T1 is 
executed on the server B and T2 requires T1 to finish, T2 must wait at root node (A 
on image 1) for the confirmation that T1 is scheduled. Then the root server can 
assign task T2 to itself or to some of its subtrees. 
The main responsibility here goes to the scheduling servers and their ability to 
schedule the assigned tasks. Scheduling is done in order to reduce the amount of 
opening and closing the connections to the executing nodes and to increase 
parallelism. 
Another key feature of this system is that it gets new tasks every hour. This requires 
the evaluation to be fast and the solution to be some heuristic that can schedule the 
tasks effectively on-line. 
The important system properties for this specific scheduling problem can be found in 
Table 2-1. 

Table 2-1 Important system properties 

Property	name	 Description	 Default	value	

Alpha	 Time	 to	 open	 a	 connection	 to	 an	
executing	node	

1000	ms	

Beta	 Time	 to	 close	 a	 connection	 to	 an	
executing	node	

200	ms	

Gamma	 Time	to	execute	a	task	 50	ms	

Delta	 Time	to	send	a	task	one	 level	below	 in	
binary	tree	

10	ms	

Epsilon	 Time	 to	 send	 task	 results	 one	 level	
above.		

2	ms	
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2.2 Simplification, Separation of Concerns 

Since the initial problem is a big and unusual one, complete testing and 
experimenting on that problem can be actually separated into three phases. In each 
phase some assumptions have been made and some simplifications have been done 
in order to preserve all of the problem’s hard constraints. 

2.2.1 The First Phase 

During the first and the initial phase of the testing, the idea was to create a system 
that has only one scheduling server. This simplified things a lot since there was no 
longer the need to send tasks through the server tree and wait for a response from 
other servers. Now there were only tasks and executing nodes. The system can be 
represented with Image 2-2. 
 

Scheduling	server

Heuristics

TasksConnection	
cash

Executing	
node	1

Executing	
node	2

Executing	
node	3

Executing	
node	N

Opened	connection

Opened	connectionOpened	connection

 

Image 2-2 System with a single scheduling server 
 
Such a simplified problem can then be divided into two subproblems. The first one 
being to find a heuristic that can act as a comparator for the tasks to be able to 
determine the best task currently possible to schedule for the execution. The second 
subproblem is to determine which executing node to disconnect when we need to 
open a new connection.  
This worked fine and produced some results, however this approach was not able to 
execute in real time, that is, in less than an hour for the load (around three million 
tasks) that it should be able to process. With this approach it took approximately 70 
hours to evaluate the given load. The biggest problem with this approach was that 
the algorithm was comparing the remaining tasks (to find the best one) in each 



 

5 

iteration. The reason for this is because the priority of the tasks can change 
dynamically depending on the system state, for example, if the required executing 
node gets connected or disconnected. 

2.2.2 The Second Phase 

In the second phase, all the simplifications remained the same. The main idea of this 
phase was to tackle with one hour limitation. Since there were a lot more tasks 
(around three million) than executing nodes (around ten thousand), and even less 
nodes could be connected at the same time (around forty), the idea was to schedule 
the executing nodes first and then schedule the tasks. As with the tasks, the same 
approach was needed for the executing nodes. The idea was to find the heuristic that 
can act as a comparator for the executing nodes and determine the best executing 
node that the scheduling server can connect to. This was not very effective since in 
every iteration we had to find the best executing node and then find the best task in 
it. Not performing much better leads to new approaches that would somewhat loosen 
the flexibility of the schedule. The new idea was to keep the connections open as 
long as there are tasks ready for execution. This approach was not that harmful since 
opening and closing a connection usually lasts much longer than executing a task 
(1000 ms to open a connection, 200 ms to close it and 50 ms to execute a task). 
This approach was a lot faster than the one in the first phase. Using this approach, 
the scheduler was able to evaluate the task load (around three million) in 20-40 
minutes, depending on the implementation and the heuristics that was used. In this 
phase, there are now two optimization points; comparing the executing nodes and 
comparing the tasks. 

2.2.3 The Third Phase 

One server simplification was removed in this phase. The main idea was to use the 
best heuristics (comparators) from the previous phase and to build on them. Now the 
focus turns to the scheduling servers and their communication. To be more exact, the 
main focus of this phase is to create a heuristic that the scheduling server can use in 
order to be able to assign tasks to itself or any of its subtrees. Since assigning a task 
by task can also take a lot of time, the objective was to assign a node by node and 
then group the tasks according to their executing nodes. Since the tasks that have 
prerequisite tasks cannot be moved from the root server until their prerequisites are 
done, sending new tasks could also represent a problem. 
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3. Techniques Used 

Since there are a lot of tasks and executing servers, the heuristic that would be able 
to find the best task or executing node must act as a comparator for tasks or 
executing nodes. For the initial tests, a lot of hand written heuristics were used for 
testing the evaluator and later on for testing the heuristics that are learned by some 
machine learning techniques. The machine learning techniques that were used are 
described in more detail further in this chapter. But before going into machine 
learning techniques or even those hand written heuristics, it is important to introduce 
some terminology.  
A task is considered ready if all of its prerequisites are finished with execution. This is 
the time when the task can start executing, assuming that its executing node is 
connected to the server and that that executing node is not currently executing some 
other task. If the task has no prerequisites, it is considered to be ready at the 
beginning of the evaluation (time equals to 0). 
A prepared task is a task that has all of its prerequisites scheduled. In contrast to 
unprepared tasks, if all the prerequisites start time are known, then all their finish 
times are known. In other words, the minimal start time of prepared tasks is the latest 
finish time of its prerequisites. Assuming, of course, that the information about the 
completion of the prerequisites has reached the root scheduling server. 
The executing node is considered to be ready at the moment when it is connected to 
the scheduling server and it is not executing any task. This is the moment when that 
scheduling server can choose to execute some task on it or choose to disconnect it 
in order to open a connection to some other executing node.  
The executing node is considered to be active if it is executing some task. At this 
point, the scheduling server has to be connected to it and cannot use this connection 
to do anything else.  
The term free connection is used when the scheduling server did not open as many 
connections as it could and there is still more unused memory to open new 
connections. 
The executing node’s connect and disconnect times are durations, more specifically, 
the amount of time that the scheduling server needs to open or close a connection to 
some executing node. When the scheduling server is connecting or disconnecting 
from a node, it cannot execute tasks on that particular node or use the memory 
needed to keep this connection for something else. 
A task execution rank is a number that represents task’s position in the execution 
tree Image 3-1. The execution tree is a tree build in such a way, that in the first rank 
of the tree, there are tasks with no prerequisite tasks. The second rank is constructed 
of tasks that have a prerequisite only in rank 1. Rank 3 tasks are tasks that have 
prerequisites only from rank 1 or 2. Other tree ranks are constructed in a similar way. 
A node standby time shows how long it will take for a specific executing node to be 
ready. For the connected nodes, it means the time that it will take to finish executing 
the current or scheduled tasks. If it is not executing any task, the time is zero. 
However, if the executing node is not connected to the scheduling server, then this 
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time is measured to the moment when it becomes connected to the scheduling 
server. If there are free connections, the time equals to that particular execution 
node's connection time. Otherwise, the time is a sum of disconnecting and 
connecting time. 
 

 

Image 3-1 Task execution ranks 

3.1 Hand Written Heuristics 

Hand written heuristics were designed before trying to use machine learning 
techniques to create them. They were created in order to test the evaluation system. 
They were also used in order to detect more preferable features for machine 
learning. Since a lot of tests were conducted using hand written heuristics, those 
heuristics will be described in this section in order to provide a better understanding 
of how they are used to compare tasks, executing nodes and scheduling servers. 
Those heuristics are separated into three sections: task comparing heuristics, 
executing node comparing heuristics and scheduling server comparing heuristics. 

3.1.1 Task Scheduling Heuristics 

In the first phase of the testing, the entire schedule did not depend on the executing 
nodes, so a lot of task heuristics were created. The most notable ones are mentioned 
in Table 3-1. The max successors comparison of the tasks depends on the number 
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of the immediate successors they have. The one with the most successors is the 
better task. Earliest ready finds the task that will become ready first and then 
schedules it. This one had a problem because many tasks had similar ready time. 
The next heuristic, execution tree rank, was the one that would pick the one with the 
smallest execution rank (explained in intro). There were also a few others but the 
best one was comparing multiple things, a composite heuristic if you prefer. The best 
heuristic checks whether the connection to the executing node is open, that is, if it is 
for the first task and not for some other, then the first task will be preferred. Next it 
would try to find the one with the earliest ready time. Finally, if two tasks were equal 
for the first two conditions, then it would try to find the one with more immediate 
successors. This heuristic is referred to as the 1. task hand heuristic. 
 

Table 3-1 Task hand written heuristics 

Name	 Description	

Max	successors	 Max	number	of	task's	immediate	successors	

Earliest	ready	 The	task	that	gets	ready	for	the	execution	first	

Exe	tree	rank	 Rank	in	the	execution	tree	hierarchy	

1.	task	hand		
Composite	heuristics:	 is	node	connected	to	server,		
earliest	ready	time,	max	successors	

 

3.1.2 Executing Node Heuristics 

The second phase was all about comparing the executing nodes. There are more 
things that can be compared in the executing nodes than in tasks. The most notable 
heuristics can be found in Table 3-2. The heuristic that was mostly used here 
(referred to as the 2. F heuristic or just F heuristic) is actually a combination of two 
things. First, it compares the amount of prepared tasks that the executing nodes 
have. If the number of the prepared tasks is the same, then it selects the one with the 
most unfinished tasks. The second heuristic, referred to as the G heuristics, would 
select the executing node that has the most tasks that are ready when the executing 
node becomes ready. If those numbers are equal, then this heuristic falls back to 2. F 
heuristic. The third executing node heuristic, referred to as the 2. H heuristic, 
concerns itself with successor tasks. To be more specific, it finds its prepared tasks, 
calculates the number of successor tasks for each one and then it sums all of them. 
You can say that it is the sum of prepared successor tasks. The node with more 
prepared successor tasks is assumed to be better. If two executing nodes have equal 
sums, then this heuristic also falls back to 2. F heuristic. 
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Table 3-2 Executing node hand written heuristics 

Name	 Description	

F	heuristic	 Composit:	 max	 prepared	 tasks,	 max	 unfinished	
tasks	

G	heuristic	 Composit:	max	ready	tasks	when	the	node	is	ready,	
F	heuristics	

H	heuristic	
Composit:	 sum	 of	 the	 nodes	 prepared	 successor	
tasks,	F	heuristics	

 

3.1.3 Scheduling Server Heuristics 

In the third phase, the main goal was to distribute the tasks among the scheduling 
servers. The tasks were grouped by their executing nodes so the scheduling servers 
can decide only about assigning those nodes amongst each other. Here the heuristic 
needs only to compare the parent scheduling server with its children subtrees. Since 
there were a lot less targets to pick from, more emphasis was put on the machine 
learned heuristics and then on the hand written one. There is only one hand written 
heuristic for assigning the executing nodes to the scheduling servers and it is a pretty 
simple one, since its function is to test whether the evaluation system is working. It 
can be found in Table 3-3. This heuristic, referred to as the 3. scheduling servers 
hand heuristic, only compares the number of the already assigned executing servers. 
Every parent scheduling server in the binary tree knows the number of the executing 
nodes that it assigned to itself and the number of nodes that it assigned to its 
children. This heuristic would then simply assign a new executing node to the one of 
those trees with the least assigned nodes. This heuristic is not that effective since it 
treats its subtrees as single children nodes, which increases the number of the 
assigned executing nodes to the servers and reduces the number of the assigned 
nodes to the leaves. The only positive thing about this heuristic is that, by doing this 
kind of assignment, it reduces the number of sent tasks and task finish information 
through the binary tree. 
 

Table 3-3 Scheduling serer hand written heuristic 

Name	 Description	

1	scheduling	server	hand	 Num	of	already	assigned	executing	servers	

 

3.2 Genetic Programming 

In artificial intelligence, the genetic programming (GP) is the evolutionary 
metaheuristic which is inspired by the biological evolution. It is used to find computer 
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programs (algorithms) that can execute specific tasks. Essentially, GP is a set of 
instructions and a fitness function. The fitness function is used to determine how well 
or badly the program performed on a given task. It is a kind of genetic algorithm 
where every unit has a genotype in form of a tree and machine learning technique 
which is used to optimize tree population on fitness function which is determined by 
the ability to perform on the given task. [4] 
Genetic programming is considered to be a subtype of the genetic algorithm. 
Therefore, the genetic algorithm can be steady state and generational. In practice, 
the steady state is used more frequently because it is often more superior to the 
generational one and it is easier to implement. In this thesis, the steady state type 
was used. The initial population is constructed by using a ramped-half-and-half 
method. More about the ramped-half-and-half method can be found in [5]. During a 
crossover, if the creation of a child fails due to the constraints in max nodes or max 
tree rank, one of its parents is copied with a small plagiarism penalty for the child 
(1%). Image 1 from [6] is a flowchart of the genetic programming. 
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Image 3-2 Flowchart for genetic programming [6] 
 
The tree representation in this thesis is a mix of a symbolic regression and a decision 
tree. 
There are 2 types of input variables: number values array and boolean values array. 
Output is a single double value which represents a random key encoding of sought 
heuristic. More about random key encoding can be found in [7]. 
Function nodes can be unary functions like sin, exp and binary functions like +, -, *, /. 
Since this is partly a decision tree, there are also if-else nodes which are kind of 
binary functions that take one random binary input value and depending on whether it 
is true or false, either the left or the right part of the tree is executed and the other 
part is discarded.  
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Leaf nodes can be random constants or values from the input number variables, in 
which case the node knows the index of the associated input value.  
Pseudocode of the used genetic programming algorithm can be seen in Algorithm 
3-1. 
 

 
 

3.3 Cooperative Coevolution 

A coevolutionary algorithm is an evolutionary algorithm (or a collection of 
evolutionary algorithms) in which the fitness of an individual is subjective. It means 
that the individuals are evaluated based on their interactions with others. Based on 
the interaction between individuals, coevolutionary algorithms can be divided into two 
groups: Competitive Coevolutionary Algorithms and Cooperative Coevolutionary 
Algorithms. [8] 
Competitive coevolution is an algorithm where individuals from one population work 
against individuals from other populations. Those populations can have a same 
phenotype, for example populations trying to find the best chess player. In that case, 
each population is a population of chess players and the best individual from the 
population is the one who plays best against the best players from other populations. 
Populations can also have different phenotypes, for example a cat and a mouse; the 
best cat from the population of cats is the one which can catch most mice, and the 
best mouse is the one who can run away from most cats. 
Cooperative Coevolution (CC) is an evolutionary computation method that divides a 
larger problem into subproblems and solves them independently in order to solve the 
large problem. [9] 
Every one of those subproblems is being solved individually by its own population. 
Unlike competitive coevolution, here those populations are working together toward a 
common goal. Usually those populations are evaluated separately and the total best 

Population = random initial population 
Evaluate(Population) 
Best = getBest(Population) 
While not (stopping criterion) 
 Parent1 = tournament(Population) 
 Parent2 = tournament(Population) 
 Child = crossover(Parent1, Parent2) 
 Child = mutation(Child) 
 Evaluate(Child) 
 Replaced = mockTournament(Population) 
 RemoveFromPopulation(Replaced) 
 InsertInPopulation(Child) 
 If(isBetter(Child,Best)) Best = Child 
return Best 

 

Algorithm 3-1 Genetic programming 
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score for the initial problem can be determined by taking the best individual from 
each population and combining them.  
In this thesis, Cooperative Coevolution is a way to divide a bigger problem into two 
subproblems. A population was created for each of those two problems, where the 
individuals from one population represent heuristic for tasks and the individuals from 
the other population represent heuristic for the executing nodes. The main difference 
is that, unlike the usual Cooperative Coevolution approach, here those two 
populations cannot be evaluated separately. During the evaluation, a heuristic for 
tasks needs to be present as well as a heuristic for executing nodes. 
Pseudocode of the implemented Cooperative Coevolution can be seen in Algorithm 
3-2. 
 

 
 

3.4 Artificial Neural Networks 

In computer science, artificial neural networks (ANN) are computational models 
inspired by the brain's central nervous system. These models are being used in 
machine learning and pattern recognition. [11] 
Artificial neural networks are representatives of the connectivistic approach to 
artificial intelligence. The connectivistic approach is based on using lots of simple 
processing elements. Those process elements by themselves do not show any 
intelligent features, but when they are assembled together in large numbers, we get a 
system that presents very interesting features. [12] 
In this thesis only the basic form of artificial neural network was used (Image 3-3 from 
[13]) with sigmoid function [14] as an activation function [13]. 
More about artificial neural networks can be found in [11] and [12]. 
 

initialise a subpopulation PopTask(S) 
initialise a subpopulation PopNode(S)  
for i in 1 ..< S { 
  evaluate PopTask[i], PopNode[i]  
} 
find BestTask and BestNode 
while termination criteria not satisfied { 
  ChildTask = create child from PopTask 
  ChildNode = create child from PopNode 
  insert / repecate chlidren in populations 
  update BestTask and BestNode if needed 
} 
return BestTask and BestNode 

Algorithm 3-2 Cooperative Coevolution 
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Image 3-3 Artificial neural network [13] 
 
Here the artificial neural network is used for assigning the executing nodes to the 
scheduling servers. The scheduling servers are stacked as a binary tree, where each 
server can receive tasks through its parents, so that the root server has all tasks at 
the beginning of the evaluation. The executing nodes are assigned to the scheduling 
servers by the tasks that are given to them and the tasks are grouped by the 
executing nodes. The main decision for a parent here is to decide whether it wants to 
take a specific executing node for itself or give it to its left or right subtree. Inputs in 
this artificial neural network represent states of a parent and its children, while 
outputs are three double values between 0 and 1. The first one belongs to a parent 
and the other two to its children. The lower the value of the output, the more priority it 
is given to the scheduling server (parent or children) to get that executing node 
assigned to it. And of course, scheduling servers that are leaf nodes in binary tree 
cannot assign the given executing nodes to other servers. 
To evaluate a single artificial neural network's weight, a whole evaluation is required. 
In that single evaluation, the same weights are used every time the evaluation needs 
to decide to whom to assign a specific executing node. The evaluation result is then 
assigned as a fitness to those weights. Since we are not comparing outputs from the 
artificial neural network to target y but having a single performance-like feature, the 
usual algorithms that operate on a single set of weights like Backpropagation 
algorithm [15] cannot be used. This thesis used the evolutionary algorithm, 
specifically Particle swarm optimization (PSO) (the next chapter). 

3.5 Particle Swarm Optimization 

Particle swarm optimization (PSO) in the computer science is a computational 
method which optimizes a problem by iteratively trying to improve the individuals 
based on their fitness. Individuals are candidates for a solution. Their fitness is 
measured based on their ability to perform well on a given problem. They are moved 
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around in search space according to simple mathematical formulas using its position, 
velocity, personal best and global best. This is expected to move the swarm toward 
the best solutions. [16] 
Particle swarm optimization is a nature inspired metaheuristic. It uses a population of 
particles (individuals) which are moving through the n-dimension search space. They 
are improving their position by using their own and their neighbors’ experience. While 
determining their movement direction, each individual is using its personal best 
solution and its local best (social factor) to a certain extent. Individuals' movements 
are greatly determined by those components' influences. So, having a higher 
personal score factor leads to diversification and having a higher social factor leads 
to intensification. This is how this algorithm can combine local search with random 
search. [12] 
Every individual works with and updates its current position X, its velocity V, its 
personal best Pbest, and local / global best Lbest / Gbest. 
Image 3-4 from [17] represents how individuals (particles) are moved during the 
execution on the algorithm.  
 

 

Image 3-4 Movement of individuals [17] 

 
Pseudocode of PSO used in the thesis can be seen in Algorithm 3-3. 
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In this thesis, PSO is used to train artificial neural networks. Every individual's current 
position (X) represents one set of ANN's weights, so every individual is potentially 
one ANN solution. 

initialize POP of particles with X and V 
set initals X as Pbests 
evaluate POP 
find Lbest and Gbest 
 
while termination criteria not satisfied {  
   
 for particle in POP { 

particle.V = particle.V + c1 * rand() * Pbest + c2 
   * rand() * LBest 

  constraint particle.V to Vmax and Vmin 
  particle.X = particle.X + particle.V 
 } 
 evaluate POP 
 update Pbest 
 update Lbest and Gbest 
} 
return Gbest 

Algorithm 3-3 Particle swarm optimization 
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4. Application of Techniques 

All three phases of the testing are covered in this section. In the first phase the 
scheduling was done on tasks and the executing nodes were regarded just as 
machines. The system for this phase had only one scheduling server to simplify the 
initial problem at the beginning. The second phase tackles with the same things as 
the first one. The difference here is that a new approach had to be taken. The reason 
for this is that the first phase algorithm was too slow for the real world use. The 
second phase was also done on a single scheduling server. In the third phase this 
simplification has been removed and the third phase deals with assigning tasks to the 
scheduling servers. These scheduling servers are connected in a binary tree.  
In each of those phases all their aspects are discussed. Each of those phases had 
some goals to achieve and there were some problems with the real time application 
as well. There were more approaches for solving those problems while achieving the 
main goals of the phase. The most important approaches are explored more in-depth 
in each phase.  
Before exploring all the algorithms created in each phase and their properties, this 
section talks about how machine learning techniques described in the previous 
sections are used. They are used to learn heuristics which are actually comparators 
for tasks, executing nodes and scheduling servers. The heuristics for executing 
nodes and tasks are more similar than the ones for scheduling servers. All of those 
heuristics are used in an attempt to optimize (minimize) the makespan. This section 
also covers the input parameters for the learned models and explains how output 
parameters are used to schedule tasks.  
An example task dataset was created for testing the designed systems in this 
chapter. The example dataset is very small but efficient for exploring the created 
algorithms. This chapter will also present results of running the designed systems on 
this example dataset. Since this dataset is very small, the scheduling server’s 
memory was reduced so whenever something is evaluated on the example dataset, 
the scheduling server will not be able to have more than two connections open to the 
executing nodes. 

4.1 The Example Dataset 

The example dataset consists of 11 tasks which need to be executed on four 
different executing nodes. The executing nodes are A, B, C and D. The tasks that 
needed to be executed on the executing node A are 0, 2 and 9. On node B tasks are 
4, 5, 8, 11 and on node C tasks are 1, 7 and 10. The tasks needed to be executed on 
the executing node D are 3 and 6. The execution tree for those tasks can be seen in 
Image 4-1. Here it means, for example, that task 0 and 3 are prerequisites to task 7, 
and that task 2 has two successors (task 4 and 5). 
 



 

18 

 

Image 4-1 Example dataset 

4.2 Machine Learning Techniques 

Machine learning techniques used in this thesis were described in the previous 
chapter. Since the first phase of the testing was performing very slowly, none of the 
techniques were used in it. The thing is, to evaluate a single heuristic, one would 
need to run the entire evaluation system. Since the used metaheuristics are evolution 
based algorithms, all of them needed to be run a few times in order to get more 
useful results. And each one of those execution usually means at least few hundred 
evaluations. So even with faster algorithms like the one in the second phase, where 
one evaluation would last around 40 minutes with all the input parameters, running 
evaluation algorithms would take too long. This is the reason why a smaller set of 
tasks was used for learning heuristics. That smaller set of tasks counts around 10 
thousand tasks, which is a lot less than the initial 3 million tasks. For this set of tasks, 
the evaluation time with the algorithms from the second phase is less than 20 
seconds. But if one would try to run this smaller set of tasks with the first section 
algorithm, it would take around 10 minutes. That is a lot less than 40 minutes but it 
would still take a few weeks to run a single machine learning technique.  
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The heuristics that were trying to be learned can be divided into three groups. The 
first group are the ones that are responsible for selecting the best task out of the list 
of the tasks assigned to a single executing node. The second group of heuristics are 
the ones that are used for selecting the best executing node to which the scheduling 
server will open a connection to. And the third heuristic is used when the scheduling 
server needs to decide whether it wants to assign a specific executing node to itself 
or assign it to some of its children subtrees.  
Tasks heuristics are created as genetic programs, more exactly as trees that use the 
task input data and that output a single double value. What types of genetic 
programming trees were used can be found in the previous chapter. The same tree 
would be executed for each task and each task would get its key value (the double 
output value). That key value would then represent inverse priority of a task. The 
smaller the key value, the higher the task priority is. In other words, the smaller the 
key value the better the task is. Inputs to the genetic programming tree are number 
and boolean values. They can be found in Table 4-1. Only one boolean value that is 
used is: is the task ready. The number input parameters include the number of 
prerequisites that the task had and the number of its successors. Another input is 
execution tree rank. The rank was discussed in the previous chapter together with 
hand created heuristics. 
 

Table 4-1 Inputs for training task heuristics 

Name	 Description	

Functions	

Ready	 Boolean	 function,	 if	 the	 task	 is	 ready	 for	 execution,	 select	 left	 or	
right	subtree	

+,	-,	*,	/,	sin,	cos,	exp	 Arithmetic	operators	

Terminals	

Prerequisites		 Number,	number	of	task's	immediate	prerequisites		

Successors	 Number,	number	of	task's	immediate	successors	

Exe	tree	rank	 Number,	rank	in	execution	tree	hierarchy	

 
The executing node heuristics are also created as genetic programs. The same tree 
structures that are used for tasks are used for executing nodes as well. There are 
real value inputs and boolean inputs. They can be found in Table 4-2. Output is also 
a single double value that is used in the same way as for tasks; to be the key 
(inverse priority value) which the scheduling server uses to find the best executing 
node to open the connection to. There is also only one boolean value used, which is 
just a coincidence. The boolean value here provides the information whether the 
executing node is currently connected to the scheduling server. The number of 
values used as executing node parameters consist of the total number of remaining 
tasks (that are not scheduled or executed) and the number of prepared tasks. There 
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is also the number of tasks that are or will be ready before this executing node can 
disconnect and the number of tasks that are or will be ready before this executing 
node can disconnect and some other node can connect at its place. The sum of that 
executing node’s prepared tasks’ successors is also being used (more about this 
sum is described in hand heuristics in the previous chapter). The last parameter used 
here is the executing nodes’ local clock (remembers the completion time of the last 
action performed with the node). 
 

Table 4-2 Inputs for training executing nodes heuristics 

Name	 Description	

Functions	

Connected	 Boolean	 function,	 if	 the	 node	 is	 connected	 to	 the	 scheduling	
server,	select	left	or	right	subtree	

+,	-,	*,	/,	sin,	cos,	exp	 Arithmetic	operators	

Terminals	

Connected	 Boolean,	if	the	node	is	connected	to	the	scheduling	server	

Remaining	tasks	 Number,	total	number	of	remaining	tasks	

Prepared	tasks	 Number,	total	number	of	currently	prepared	tasks	

Local	clock	 Number,	time	of	the	last	action	performed	with	this	node	

Successors	sum	 Number,	sum	of	this	nodes	prepared	tasks'	successors	

Before	disconnect	tasks	 Number,	the	number	of	tasks	that	are	or	will	be	ready	before	this	
node	can	disconnect	

Before	reconnect	tasks	
Number,	the	number	of	tasks	that	are	or	will	be	ready	before	this	
	node	 can	 disconnect	 and	 some	 other	 node	 can	 connect	 at	 its	
place	

 
All the algorithms from the second phase needed both the task and the executing 
node heuristic to be able to schedule the run of the evaluation. The first tests were 
done using a fix heuristic for tasks and they tried to learn heuristics for executing 
nodes. There were also tests that used fixed heuristic for the executing nodes, which 
tried to learn the heuristic for tasks. But it seemed that the task and the executing 
node heuristic are not independent. In other words, one task heuristic that is better 
than the other task heuristic while using one executing node heuristic is not 
necessarily better than the other task heuristic while using some other executing 
node heuristic. Cooperative coevolution was used as a response to this. More about 
the cooperative coevolution was said in the previous chapter. Here CC was used to 
learn both the task as well as the executing node heuristic at the same time. The idea 
behind is to let the algorithm try to exploit the dependencies in the task and the 
executing node heuristic in order to optimize the result. 
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The third heuristic is somewhat different from the first two. This heuristic is 
responsible for assigning the executing nodes to the scheduling servers. In the 
previous heuristics there was a lot of tasks and executing nodes to pick from and the 
number of the executing nodes and tasks could change dynamically (for example, 
the executed tasks could be removed). Therefore, in the previous heuristics it would 
be very hard to make heuristic inputs from all tasks or all executing nodes 
parameters combined. Here the heuristic has only three scheduling servers to pick 
from, the parent and its children since the scheduling servers are set up as a binary 
tree. Now the inputs can be fixed and the heuristic can pick which scheduling server 
the current executing node can be assigned to. The third heuristic was designed as 
an artificial neural network which was trained by using the particle swarm 
optimization algorithm. More about the neural network and the particle swarm 
optimization was said in the previous chapter. The inputs for this neural network are 
combinations of the parent and its children parameters. Input parameters for one 
server can be found in Table 4-3. There are three output nodes, each returning a 
value of 0 to 1. One for the parent and two for its children. The smaller the output 
value is, the higher the priority of that scheduling server is to get the executing node 
assigned to. Each scheduling server’s properties consist of the number of the child 
scheduling servers that it has (it can be 0, 1 or 2). The number of the assigned 
executing nodes and similarities between the executing nodes that is being assigned 
with executing nodes that are already assigned to that scheduling server. The 
number of the assigned executing nodes for the parent refers to the exact amount of 
the executing nodes it has assigned. For the children it represents all the executing 
nodes that are assigned to the subtree that starts with that child, since the parent can 
only see its children and not the entire subtrees. This also applies to the calculating 
similarities between the executing nodes. One executing node is similar to another if 
its tasks have a lot of prerequisite tasks in that other executing node. The maximum 
similarity value from one node to another is 1 and the minimum is 0. Similarities are 
calculated by using all the tasks at the preprocessing before the evaluations. To 
calculate the similarities of the executing node and the scheduling server, the 
similarities from all of the already assigned nodes to a new node are taken and 
averaged. 
 

Table 4-3 Inputs for training scheduling server heuristics 

Name	 Description	

Children	 Number,	number	of	child	servers	in	tree	

Assigned	nodes	 Number,	number	of	already	assigned	executing	nodes	

Similarities		
Number,	 similarities	 between	 executing	 node	 that	 is	 being	
assigned	 and	 executing	 nodes	 that	 are	 already	 assigned	 to	 this	
server	
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4.3 The First Phase System 

Here the idea was to create a system that can effectively schedule tasks on the 
executing nodes. Some assumptions and some simplifications were made in this 
phase. The most important simplification here is that multiple scheduling servers 
were not considered, instead everything was tested as if there was only one 
scheduling server. The main assumption is that there will be at least one ready task 
at the beginning of the evaluation and that all the tasks can be executed eventually. 
This is safe to assume since without it, the makespan would be infinite.  
Other characteristic of the designed algorithm is that the scheduling server can 
simultaneously open connections, close connections and execute tasks on the 
executing nodes. So when the scheduling server is connecting or disconnecting 
some executing node, it does not affect other executing nodes. They could be 
executing tasks, connecting or disconnecting from the scheduling server in a parallel 
manner. 
Since everything is being executed on a single scheduling server, there is no need to 
send tasks to other servers or to receive messages from other servers. Therefore, 
the only time that is spent is spent on opening the connections to the executing 
nodes, closing those connections and executing tasks. Alpha, beta and gamma 
parameters giving these durations can be found in the main problem description (the 
second chapter). 
In the first phase there were no heuristics for the executing nodes, since the 
connections to them only depended on the scheduled tasks, but there was a 
requirement for closing the connections and that did not depend on the scheduled 
tasks. To simplify things, some well-known methods were used to determine which 
executing node would be closed. The first method is first in first out (FIFO), which 
means that when connections had to be closed, the earliest open connection would 
be closed. The second method is the least recently used (LRU). This method 
measures how often the tasks are being scheduled to the executing nodes and 
closes the one to which the tasks were assigned the least recently. The third method 
closed the least frequently used executing node (LFU). This method knows the time 
that the tasks were scheduled to the executing nodes and knows which connected 
executing node will be the one that will be finished first. This method closes the 
connection to that executing node in order to hopefully minimize the makespan. 
Pseudocode of algorithm used in this phase can be seen in Algorithm 4-1. 
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4.4 The First Phase Performance on Example Dataset 

This section presents how the methods applied in the first phase evaluate against the 
example dataset. Since there are only few tasks in the example dataset, some of the 
results are similar. All the heuristics used in the first phase are presented in Table 
4-4. Those heuristics are described in the third chapter. The methods for determining 
which executing node to disconnect in order to open the connection to a new 
executing node are combined with those heuristics. 
 

while (has tasks) { 
 
 select prepared tasks from all remaining tasks 
 select best task from prepared tasks 
 find executing node for best tasks 
 
 if (executing node is connected to scheduling server) { 
  schedule best task on executing node 
  continue 
 } 
 
 if (there are free connections available on scheduling server) { 
  start connecting executing node to scheduling server 
  schedule best task on executing node 
  continue 
 } 
 
 find executing node to disconnect  
 schedule disconnection of that executing node 
 schedule connection of best task's executing node after  
  this node had been disconnected 
 schedule best task on its executing node 
} 
 
time = moment when last task was finished with execution 
 
return time 

Algorithm 4-1 First phase, Algorithm 1 
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Table 4-4 The first phase approaches on the example dataset 

Phase	1	 FIFO	 LRU	 LFU	

Max	successors	 6100	 6050	 6050	

Earliest	ready	 4950	 6150	 4900	

Executing	tree	rank	 4950	 6150	 4900	

1.	task	hand	 3750	 3750	 3750	

 
It is obvious from this table that 1. task hand heuristic is usually superior to the other 
heuristics regardless of the methods used for selecting the executing nodes to close. 
It is also easy to notice that the earliest ready task and the smallest executing tree 
rank heuristics are somewhat similar. For this small dataset they provide the same 
schedules. 
Next shown are some images showing Gantt charts explaining how this single 
scheduling server schedules the tasks from the example dataset using the 
approaches from the first phase. 
 

 

Image 4-2 Max successors heuristic, FIFO method 
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Image 4-3 Max successors heuristic, LRU and LFU methods 

 

Image 4-4 First ready task and executing tree rank heuristic, FIFO method 
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Image 4-5 First ready task and executing tree rank heuristic, LRU method 

 

Image 4-6 First ready task and executing tree rank heuristic, LFU method 
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Image 4-7 1. Task hand heuristic, FIFO, LRU and LFU methods 

 

4.5 The Second Phase System 

Since the first phase had a big problem of not being able to evaluate all the tasks in a 
realistic setting in less than an hour, there was a need for a faster evaluation. A new 
evaluation algorithm needed to be devised. The main problem includes a lot more 
tasks (around 3 million) than executing servers (around 30 thousand). The idea for 
the second phase approaches comes from reversing the priority order. The first one 
would need to find the best executing node, open the connection to it and then 
proceed in trying to find the best task for this executing node. 
As in the first phase, we are still using only one scheduling server, so again there is 
no need for sending the tasks or the task finish information through the scheduling 
server tree. Also, that scheduling server should be able to open and close the 
connections to the nodes and execute tasks on them in parallel.  
The first attempt to create this system had the most general algorithm which would 
allow the executing nodes to be switched (disconnected) as soon as they became 
ready. It used two comparator heuristics. The first one was used for selecting the 
best executing node and the second one for selecting the best executing task. That 
executing task was selected from all the tasks that were assigned to the chosen 
executing node. The idea here was to filter the tasks on the executing nodes and 
when searching for the best task, you would have to look only through around 100 
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tasks (3 million tasks in total / 30 thousand executing nodes), which is a lot less than 
3 million tasks.  
So now instead of searching through 3 million tasks, the algorithm was searching 
through 30 thousand executing nodes and then through 100 tasks on average in 
each iteration. Of course, in every iteration we would remove one task, but it still 
needed to go through a lot of elements. One disadvantage to real work evaluation 
duration is that the executing nodes had more parameters than the tasks and it takes 
more computation power to compare two executing nodes than to compare two 
tasks. This was not going to be modified since those parameters are used to find 
better executing nodes.  
In the first phase there was a need for a method that would be responsible for 
deciding which executing node should be disconnected from the scheduling server. 
In this phase there is no need for that method since the executing node heuristic acts 
as a comparator. To determine which node to disconnect when there is a need to 
open a new connection to some other executing node, the algorithm can use the 
provided executing node comparator to find the worst executing node. Of course, first 
it needs to filter only the executing nodes that are connected to the scheduling 
server.  
The algorithm in the first attempt was faster than the original algorithm from the first 
phase that was only comparing the tasks. This algorithm was a move towards the 
right direction but it was still too slow to evaluate all 3 million tasks in less than an 
hour. Its biggest problem is that in each iteration it was searching through all the 
executing nodes and then through all the tasks in that executing node in order to find 
one task that was going to be scheduled.  
Pseudocode of the first attempt algorithm (later referred to as algorithm 2) can be 
seen in Algorithm 4-2. 
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Since the first attempt of creating a faster algorithm was not that successful because 
it was not able to evaluate a larger number of tasks in the expected time, some 
modifications had to be made. Since opening and closing the executing nodes is a lot 
more expensive than executing tasks, the idea was to check for new executing nodes 
less often. It means that comparing the executing nodes had to be done less often 
and scheduling more tasks on a node more often. In this approach, once connected 
executing node will remain connected to the scheduling server as long as there are 
ready tasks present for that node or tasks that will be ready (their prerequisites will 
finish executing) before that executing node could be disconnected. This leads to the 
second attempt. In the second attempt the scheduling server’s free connections were 
filled only with ready executing nodes. If there were not enough ready executing 

func schedule best task for node { 
 select best task for node (heuristic for tasks) 

 start / schedule best task at earliest moment when node is ready 
  (update node ready time and times for task's successors) 

} 
 
main_time = 0; 
while(has tasks){ 
    select set of ready nodes that have ready tasks 
    add nodes: 
 - nodes that have tasks that are ready before node can disconnect 
  AND (are not active OR in closing) 
 
    if (set is empty) { 
 main_time = earliest moment when (any task is ready AND (can 
  open new connection OR that task's node is also ready)) 
 continue; 
    } 
 
    select best node from set (heuristic for nodes) 
  
    if (selected node is ready) {   
 schedule best task for node 
 continue; 
    } 
 
    if can open new connection { 
 start connecting best node 
 schedule best task for node after the connection is opened 
    } 
    else { 
     select ready node to disconnect (heuristic for nodes) 
 start disconnecting node 

 start connection of best node after previous node has been 
     disconnected 

 schedule best task for node after best node is connected 
    } 
return moment when last task was finished with execution 
 

Algorithm 4-2 Second phase, Algorithm 2 
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nodes to be put in the free connections, those connections would not be filled with 
the next best (provided by heuristic) executing nodes. 
 
Pseudocode of the second attempt algorithm (later referred to as algorithm 3) can be 
found in Algorithm 4-3. 
 

 
 
This algorithm actually had everything that was needed for this phase. It can evaluate 
3 million tasks in less than an hour. It handles parallel connections to the scheduling 
server and does not need to use any heuristic or sophisticated method to determine 
which connection to close. There is no need for that since it keeps the unused 
connections always closed. 

main_time = 0; 
while(has tasks) { 
 
    can_perform = select a set of open / ready nodes with any task that 
 will be ready before node can disconnect 
     
    for node in can_perform { 
  
     select best task for node (heuristic for tasks) 

 run / schedule best task for that node (update node ready time 
  and times for task's successors); 

    }  
    to_close = select a set of other open / ready nodes with no ready 

  tasks before node can disconnect 
  
    for node in to_close { 
 start disconnecting node 
    } 
 
    while (new connection can be opened) { 
 can_open = select a set of closed nodes with any task that will 
     be ready before node can re-connect 
 if (can_open.isEmpty) { 
     break 
 } 
 select best node from can_open 
 start connecting best node 
 update ready time of best node 
    } 
 
    main_time = earliest moment when (any task is ready AND (new 
 connection can be opened OR that task's node is also ready)) 
} 
 
return moment when last task was finished with execution 

Algorithm 4-3 Second phase, Algorithm 3 
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But this is not the only way in which such an algorithm can be made. For this thesis, 
four more scheduling server algorithms have been created in order to see which 
approach produces better results. Of those four other approaches, three are similar 
to this algorithm 3 in many ways. The fourth one is somewhat different but it is based 
on similar approaches to compare the execution nodes before comparing the tasks 
and to keep the connection to the specific executing node alive until there are no 
more ready tasks on that node. 
The next is algorithm 4 and it looks a lot like algorithm 3. The main difference 
between algorithm 3 and 4 is that algorithm 4 tries to have no free connections. 
Therefore, it opens the best nodes based on the heuristic even if they will not have 
ready tasks when they are connected to the server. It can also prevent the 
scheduling server to close the executing node when that node finds itself in to_close 
set if the priority of that node is high enough. The reasoning behind this approach lies 
in the idea that if the heuristic is good enough, then it can somehow try to predict 
which executing node will be used soon. If it is successful, it can save time by 
preparing the executing nodes before they are actually needed. 
Pseudocode of algorithm 4 can be found in Algorithm 4-4. 
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The fifth algorithm functions on similar principles as the previous two but is 
essentially much different. Similar to the previous approaches, it starts by opening as 
many connections from the scheduling server to the executing node as it can. The 
previous approaches would then try to find the best executing node in each iteration 
from the open nodes and schedule the execution of its best task. However, this 
approach schedules all ready tasks for that executing node depending on its local 
clock. 
Executing node’s local clock represents the finish times of the last actions scheduled 
on that node. An action can be opening a connection to the node, executing a task 

main_time = 0; 
while(has tasks) { 
 
    can_perform = select a set of open / ready nodes with any task that 
 will be ready before node can disconnect 
     
    for node in can_perform { 
  
     select best task for node (heuristic for tasks) 

 run / schedule best task for that node (update node ready time 
  and times for task's successors); 

    }  
    to_close = select a set of other open / ready nodes with no ready 

  tasks before node can disconnect 
  
    for node in to_close { 
 start disconnecting node 
    } 
 
    while (new connection can be opened) { 
 can_open = select a set of closed nodes with any task that will 
     be ready before node can re-connect 
 if (can_open.isEmpty) { 
     break 
 } 
 select best node from can_open 
 start connecting best node 
 update ready time of best node 
    } 
 
    if (can connect more node) { 
 select best node from closed nodes 
 start connecting best node 
 update ready time of best node 
    } 
 
    main_time = earliest moment when (any task is ready AND (new 
 connection can be opened OR that task's node is also ready)) 
} 
 
return moment when last task was finished with execution 

Algorithm 4-4 Second phase, Algorithm 4 
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on it and closing a connection to that node. The scheduling server keeps its open 
nodes in a list sorted on node's local clocks. Since in the previous versions 
everything was synchronized around the main_time which was kind of a global clock, 
in this version everything is synchronized amongst multiple local clocks. Here there is 
a list of sorted integers that represents free connections (sorted_clocks). When all 
the connections to the nodes are closed, this list holds as many integers as there can 
be open connections but when all the connections are open, it is an empty list. So in 
the beginning of the evaluation this is a list of zeroes. When the scheduling server 
wants to open a connection to the executing node, it takes the first (earliest) time 
from the list, sums it with executing node's connection time and sets the node's local 
clock to that time. While closing a connection to the executing node, the algorithm 
takes closing node’s local time, sums it with disconnect time and inserts it into 
sorted_clocks list. Of course, one executing node cannot start connecting using a 
connection if it is disconnecting on another. 
This approach also has its open executing nodes in the sorted list. This list is sorted 
on their local clocks. In each iteration, this algorithm takes the first executing node 
(one with the smallest local clock) and schedules all ready tasks that are assigned to 
it. Then it updates the node’s local clock and inserts it back to the open node list. The 
only exception from the returning to the open list is when all the tasks for that 
executing node have been scheduled. In that case we can schedule its 
disconnection, because when it finishes with the scheduled tasks, it will be useful to 
automatically replace it with the executing node that still has tasks to execute. 
Pseudocode of algorithm 5 can be found in Algorithm 4-5. 
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func substitute_node(node_to_close,  
       andOpenNewNodeFrom: all_executing_nodes, 
       putNewNodeIn: executing_node_list 
       sortedClocks: sorted_clocks) { 
 
  close_connection(node_to_close) 
  update sorted_clocks with connection closed time 
  new_node = all_executing_nodes.remove_best_node()// heuristic for 
       nodes 
  schedule_open_connection(new_node) using sorted_clocks.pop() 
 
  executing_node_list.insert_in_list_sorted_on_min_ready_time(new_node) 
 // sorted on min ready time 
  all_executing_nodes.add(node_to_close) 
} 
 
sorted_clocks = SortedIntegerList()  
// when it is possible to open connection, max size of 
// max_num_of_connections 
executing_node_list = best_n_from_comparator(all_executing_nodes, 
 max_num_of_connections)  
// sorted on min ready time, then on heuristic 
all_executing_nodes.remove(executing_node_list) 
open all nodes in executing_node_list; 
 
while(task_list.size > 0) { 
 
  executing_node = executing_node_list.pop_first() 
  // if node has no prepared tasks 
  if (executing_node.num_of_prepared_tasks() <= 0) { 
 substitute_node(executing_node, 
   andOpenNewNodeFrom: all_executing_nodes, 
   putNewNodeIn: executing_node_list 
   sortedClocks: sorted_clocks) 
     continue 
  } 
 
  execute_tasks_for_node(executing_node) 
  // heuristic for tasks; scheduling all tasks that are ready; 
  // update local clock (node ready time) 
 
  // total number of remaining (unfinished) tasks is equal to 0 happens 
  // only near the end 
  if (executing_node.num_of_tasks == 0) {  
 substitute_node(executing_node, 
   andOpenNewNodeFrom: all_executing_nodes, 
   putNewNodeIn: executing_node_list 
   sortedClocks: sorted_clocks) 
     continue 
  } 
 
  executing_node_list. 
 insert_in_list_sorted_on_min_local_clock(executing_node) 
  // sorted on min ready time 
} 
return moment when last task was finished with execution 

Algorithm 4-5 Second phase, Algorithm 5 
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The next algorithm is very similar to the first two. The difference is in can_perform 
executing node set or to be more specific, in its creation. In the third algorithm this 
set consists of open executing nodes with tasks that are or will be ready before that 
node can disconnect. In this algorithm, it consists of open nodes with tasks that are 
or will be ready before the node can disconnect and another node can connect in its 
place. The reasoning behind this approach is kind of obvious. If we decide to replace 
the executing node that is connected to the scheduling server, the earliest time that 
any task could be executed on that connection is when the newly connected node 
finishes with connecting. So it might be useful to wait for the currently open node to 
execute as many tasks as it can before disconnecting it. 
Pseudocode of algorithm 6 can be found in Algorithm 4-6. 
 

 
 

main_time = 0; 
while(has tasks) { 
 
    can_perform = select a set of open / ready nodes with any task that 
 will be ready before re-connect time 
     
    for node in can_perform { 
  
     select best task for node (heuristic for tasks) 

 run / schedule best task for that node (update node ready time 
  and times for task's successors); 

    }  
    to_close = select a set of other open / ready nodes with no ready 

  tasks before re-connect time 
  
    for node in to_close { 
 start disconnecting node 
    } 
 
    while (new connection can be opened) { 
 can_open = select a set of closed nodes with any task that will 
     be ready before node can re-connect 
 if (can_open.isEmpty) { 
     break 
 } 
 select best node from can_open 
 start connecting best node 
 update ready time of best node 
    } 
 
    main_time = earliest moment when (any task is ready AND (new 
 connection can be opened OR that task's node is also ready)) 
} 
 
return moment when last task was finished with execution 

Algorithm 4-6 Second phase, Algorithm 6 
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The final algorithm that was used is only a combination of modifications that 
algorithm 4 and 6 did on algorithm 3. So this algorithm 7 tries not to have free 
connections but as much connected nodes in parallel as possible. It also creates its 
can_perform executing node set as a set that consists of executing nodes that have 
tasks that are ready or will be ready before this executing node can disconnect and 
the scheduling server can connect to some other node in its place. Both of those 
things are used here in an attempt to minimize the makespan by reducing the 
disconnecting and connecting of the executing tasks to the scheduling servers in 
favor of waiting for the tasks to become ready and pre-connecting the executing 
nodes even if they might not be the best choice. 
 
Pseudocode of algorithm 7 can be found in Algorithm 4-7. 
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4.6 The Second Phase Performance on Example Dataset 

In this section it is explained how well the algorithms designed in the second phase 
are performing on the example dataset. Some heuristics created for this phase are 
also presented here. The designed algorithms are described in the fourth section and 
hand created heuristics are presented in the third section. In Table 4-5 some 
machine learned heuristics are also presented. 
 

main_time = 0; 
while(has tasks) { 
 
    can_perform = select a set of open / ready nodes with any task that 
 will be ready before re-connect time 
     
    for node in can_perform { 
  
     select best task for node (heuristic for tasks) 

 run / schedule best task for that node (update node ready time 
  and times for task's successors); 

    }  
    to_close = select a set of other open / ready nodes with no ready 

  tasks before re-connect time 
  
    for node in to_close { 
 start disconnecting node 
    } 
 
    while (new connection can be opened) { 
 can_open = select a set of closed nodes with any task that will 
     be ready before node can re-connect 
 if (can_open.isEmpty) { 
     break 
 } 
 select best node from can_open 
 start connecting best node 
 update ready time of best node 
    } 
 
    if (can connect more node) { 
 select best node from closed nodes 
 start connecting best node 
 update ready time of best node 
    } 
 
    main_time = earliest moment when (any task is ready AND (new 
 connection can be opened OR that task's node is also ready)) 
} 
 
return moment when last task was finished with execution 

Algorithm 4-7 Second phase, Algorithm 7 
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Table 4-5 The second phase approaches on the example dataset 

Phase	2	 alg	2	 alg	3	 alg	4	 alg	5	 alg	6	 alg	7	

F	node,	1	hand	task	 4950	 4950	 6100	 6050	 4950	 6100	

G	node,	1	hand	task	 5000	 4900	 4900	 4900	 4950	 6100	

H	node,	1	hand	task	 6200	 3750	 4900	 3750	 3750	 4900	

Cooperative	coevolution	 ---	 3750	 6100	 3750	 3750	 4900	

 
Each algorithm is one column and one combination of the heuristics is presented in 
rows in this table. Each row is a combination of one node heuristic and one task 
heuristic. Only one task heuristic has been used (1. hand task heuristic) for all hand 
designed executing node heuristics. The row that states cooperative coevolution 
presents a mix of two heuristics (the executing node and task heuristic) that were 
learned together. Those learned heuristics were not learned using this example 
dataset, but using a smaller version of the normal dataset (around 10 thousand 
tasks). In each column, cooperative coevolution represents the heuristics that were 
learned while evaluating by using the column algorithm. For example, cooperative 
coevolution and algorithm 3 column represent the executing node and task heuristics 
that were learned on the smaller version on the normal dataset, while evaluating that 
dataset using algorithm 3. Algorithm 2 was not used for learning heuristics because it 
takes too long to execute.	
One can see here that the machine learned heuristics are just as good as the best 
combinations of hand written heuristics for five of the six designed algorithms. The 
main reason why this is positive is that those heuristics were not learned using this 
dataset. This can mean that the learned heuristics are able to generalize to some 
extent. 
Now some images of Gantt charts follow showing how this single scheduling server 
schedules the tasks from the example dataset using the approaches from the second 
phase. 
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Image 4-8 Algorithm 2, F executing node heuristic, 1. hand task heuristic 

 

Image 4-9 Algorithm 3, 5 and 6, H node, 1. hand task heuristic and also Algorithm 3, 
5 and 6 cooperative coevolution 
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Image 4-10 Algorithm 4, F node, 1. hand task heuristic and also Algorithm 4 
cooperative coevolution 

 

Image 4-11 Algorithm 4, H executing node heuristic, 1. hand task heuristic 
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Image 4-12 Algorithm 7, F node, 1. hand task heuristic and also Algorithm 7 
cooperative coevolution 

 

4.7 The Third Phase System 

The third phase was all about removing the single scheduling server simplification, 
since everything that was done on a single server was tackled with in the first and the 
second phase. In this phase, multiple scheduling servers are allowed. They 
communicate via messages. Those messages can be sending the task to children or 
sending the information about the task finish time to the parent. When the scheduling 
server is sending tasks to its children, it groups them in batches in order to send 
multiple tasks faster, rather than sending a task by task. The time required to send 
one task one level down the binary tree takes 10 ms (delta properties from the 
second chapter), but when sending multiple tasks in a batch, two tasks can be sent 
one after another in a time span of 0.2 ms. 
In this system, it is important for all the tasks that have prerequisites to wait on the 
root scheduling server until they become prepared, that is, until all of their 
prerequisites are scheduled. Only when the tasks are prepared, the root scheduling 
server can assign those tasks to itself or one of its children scheduling servers. 
Those children scheduling servers can then assign it to themselves or pass those 
tasks to their children. Only leaf scheduling servers cannot pass tasks to somebody 
else, they must assign those tasks to themselves. 
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Since real time evaluation is required (must be shorter than an hour) the scheduling 
server groups tasks by their executing nodes. This also helps to schedule the tasks 
on the executing nodes, since the scheduling server schedules the assigned tasks to 
the executing nodes using the algorithms from the second phase. Those algorithms 
then schedule the executing nodes first and then the tasks. So when the scheduling 
servers group the tasks by the executing node, it gets easier and faster to manipulate 
them. Of course, before doing anything with those tasks, the third phase algorithm 
must make sure that only the prepared tasks are being manipulated at the time. 
When the tasks are grouped by the executing nodes, the tasks can be assigned to 
the scheduling servers by assigning the executing nodes to them. So when the 
scheduling servers are sending tasks to their children, they are actually sending the 
executing nodes for them to handle. This is done because connecting and 
disconnecting from the executing nodes is more expensive than executing the tasks 
on them in an attempt to minimize the number of connecting and disconnecting. In 
this way, by assigning the executing nodes to the scheduling servers, the scheduling 
servers have more parameters for assigning the executing nodes to each other and 
they have a lot less work. In other words, the servers need to assign only the 
executing nodes and not all the tasks one by one. 
There is also one additional problem that needs to be addressed in this approach. 
Only the tasks that are prepared can be assigned to the scheduling servers and they 
have to wait on the root scheduler for that moment. So when a task is prepared, it 
can be sent to another scheduling server or be assigned to the current one. The 
question is when to send the new tasks to the scheduling servers. It can be done at 
the moment they become prepared or a bit later in a batch. If the prepared tasks are 
sent as soon as possible, they will be available to the scheduling servers to schedule 
them sooner. However, if they are available later, it will not be as expensive to send 
them more than to send single tasks. The even bigger problem is that, if the tasks 
were sent one by one, the evaluation would not be able to finish in real time (it would 
take a lot longer than one hour). For this reason, a new variable percentage (later 
just p) has been used. When each scheduling server finishes scheduling p percent of 
its assigned tasks, then it signals to get more tasks. 
Pseudocode of the algorithm used in this phase can be found in Algorithm 4-8. 
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4.8 The Third Phase Performance on Example Dataset 

Since the third phase is the phase where everything kind of comes together, there 
are bound to be more tests than in the first two phases. More about those tests will 
be mentioned in the next chapter. Some combinations that were created during the 
third phase of the testing are presented in this section. The main new algorithm for 
this phase is described in the previous section. All the other second phase algorithms 
that were used in this phase are also described in this chapter. Table 4-6 presents 
how those combinations that are selected for display evaluate against the example 
dataset. Those exact results are chosen to demonstrate the effectiveness of the hand 

// root scheduling server only 
main (tasks) { 
 while (have tasks) { 
  prepared_tasks = get_prepared_tasks(tasks) 
  schedule(prepared_taks) 
 } 
 finish_receiving_tasks() 
 
 time = moment when last task was finished with execution 
 
 return time 
} 
 
 
// all remaining servers 
main() { 
 tasks = receive tasks from parent 
 while(1)  
  IN PARALLEL { 
   schedule(tasks) 
   send results to parent 
   tasks = receive tasks from parent 
  } 
} 
 
 
schedule(tasks) { 
 grouped_tasks = group tasks by executing nodes; 
 
 for child in children { 
  child_tasks = select tasks for nodes that are assigned to 
    that child // heuristic 
  send child tasks to child to schedule p tasks 
 } 
  
 local_tasks = tasks for nodes that are assigned to self 
  
 schedule p tasks // algorithm from second phase 
} 

Algorithm 4-8 Third phase, Algorithm 8 
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and the machine learned heuristics (from the second and third phase) on different 
second phase algorithms. 
 

Table 4-6 The third phase approaches on the example dataset 

Phase	3	
3.	Hand	heur,	

Alg	3	
3.	Hand,	Alg	

5	
ANN,	Alg		

3	
ANN,	Alg	

5	

F	node,	1	hand	task	heur,	3	servers	 2460	 3660	 2450	 3700	

F	node,	1	hand	task	heur,	7	servers	 1270	 3670	 3650	 3670	

CC	task	&	node	heur,	3	servers	 2460	 3660	 2450	 3650	

CC	task	&	node	heur,	7	servers	 1270	 3670	 2470	 3700	

 
In this table, one column represents a combination of the third phase heuristic with 
the second phase single scheduling server algorithm. Each row is a combination of 
the executing node heuristic, the task heuristic and the number of the scheduling 
servers in the current system. The third phase heuristic (3. hand heuristic) is 
described in the third chapter. Those ANN heuristics are machine learned artificial 
neural networks. Different weights are used for each of those table elements. Those 
weights were learned using the second phase algorithm that stands next to them in 
the table column. They were learned by using the element’s row as well. More 
precisely, those node and task heuristics and the number of the servers that are in 
that row. Those cooperative coevolution (CC) task and node heuristics are heuristics 
that were learned together in the second phase. They were learned using the second 
phase algorithms 3 and 5. The elements in the table are created by using those 
learned heuristics and algorithms accordingly. 
Since this dataset is pretty small for 3. hand heuristic, it seems it does not matter 
which task and executing node heuristics are used. This is probably because every 
scheduling server can now open two connections and there are only four executing 
nodes. Here it seems that the learned heuristics are not that successful at scaling to 
the example dataset. But it still seems that they are producing the best results for 3 
scheduling servers (CC, ANN, algorithms 3 and 5). 
Some images showing Gantt charts how this multi-server scheduling system 
schedules the tasks from the example dataset using the approaches from the third 
phase are below.  
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Image 4-13 Algorithm 3, 3. hand server heuristic, 3 scheduling servers, F node, 1. 
hand task heuristic and CC node, task heuristic 

 

Image 4-14 Algorithm 3, 3. hand server heuristic, 7 scheduling servers, F node, 1. 
hand task heuristic and CC node, task heuristic 
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Image 4-15 Algorithm 5, 3. hand server heuristic, 3 scheduling servers, F node, 1. 
hand task heuristic and CC node, task heuristic 

 

Image 4-16 Algorithm 5, 3. hand server heuristic, 7 scheduling servers, F node, 1. 
hand task heuristic and CC node, task heuristic 
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Image 4-17 Algorithm 3, ANN, 3 scheduling servers, CC node and task heuristic 

 

Image 4-18 Algorithm 3, ANN, 3 scheduling servers, CC node and task heuristic 
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5. Results 

This chapter presents some results that were created while evaluating and testing 
the designed systems. Those results are composed on the smaller version data load 
of tasks (around 10 thousand tasks) and on the full load (around 3 million tasks). 
Some results are from executing evaluation with the smaller version and some are 
from the full load of tasks. All machine learning heuristics were trained using only the 
smaller version since it would take a few weeks to do it with the full load. 
This chapter is also divided according to the testing phases. In each section there are 
presented some of the hand written heuristics and machine learned heuristics in 
combination with that section’s approaches. Here one can see how effective hand 
written and machine learned heuristics really are. 
All results presented in this chapter are from running on notebook computer that uses 
AMD A10-575 M (quad core, 2.5 GHz) and 12 GB DDR3L SDRAM. All algorithms, 
including heuristics, were coded in Java and run using JRE 8. 

5.1 The First Phase 

In this section the results from executing the evaluations with the approaches from 
the first phase are shown. Since it would take around two to three days to execute 
the full load with the approach from the first phase, all the results from this phase are 
only presented in the smaller version task load (around 10 thousand tasks). In Table 
5-1 one can see how each task heuristic from the first phase and the method for 
selecting the nodes to disconnect (both described in the third and fourth chapter) 
perform on those tasks. For those combinations one can also see how long it takes 
to execute one evaluation. 
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Table 5-1 First phase approaches on smaller version dataset 

Heuristics	 Node	closing	method	 Results	 Evaluation	time	(s)	

Max	successors	 FIFO	 367050	 461,10	

Max	successors	 LRU	 364650	 599,59	

Max	successors	 LFU	 326500	 513,42	

Earliest	ready	 FIFO	 1855450	 208,45	

Earliest	ready	 LRU	 1269850	 371,02	

Earliest	ready	 LFU	 328500	 354,68	

Execution	tree	rank	 FIFO	 1849750	 438,87	

Execution	tree	rank	 LRU	 1273050	 392,94	

Execution	tree	rank	 LFU	 289450	 361,70	

1.	Task	Hand	 FIFO	 285600	 358,98	

1.	Task	Hand	 LRU	 290900	 358,06	

1.	Task	Hand	 LFU	 246950	 358,24	

 
In the graph in Image 5-1, it can be seen how the heuristics and methods for 
selecting the nodes to disconnect performed in contrast to each other. Since the 
earliest ready and executing tree rank are kind of similar, their performance is very 
similar as well. Except using LRU, it seems that the executing tree rank is somewhat 
better than the earliest ready heuristic.  
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Image 5-1 Comparison of the first phase approaches' results on the smaller version 
dataset 

 
As announced in the previous chapters, now it can be seen that the 1. task hand 
heuristic outperforms all the other first phase heuristics. And it outperforms them 
using every method for selecting the nodes to disconnect. From the graph it may 
seem that the max successors is close to it, but from the Table 5-1 they are far away. 
Those two are also behaving kind of similarly. This is probably because the 1. task 
hand heuristic contains max successors heuristic (more in the third chapter). 
Image 5-2 shows the comparison of the evaluation times of those combinations of 
the heuristics and methods for selecting the nodes to disconnect. They all perform 
somewhat similarly due to all of them using the same algorithm. The fastest time 
being 208 sec (3.46 min) and the slowest time being 600 sec (10 min), the 1. task 
hand heuristic that will be used in the next phases overall performs with 358 sec 
(5.97 min). 
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Image 5-2 Comparison of the first phase approaches evaluation times on the smaller 
version dataset  

 

5.2 The Second Phase 

In this section it is presented how well the approaches designed in the second phase 
perform on the full dataset (around 3 million tasks) and smaller version dataset 
(around 10 thousand tasks). All the heuristics that were hand created for scheduling 
the executing nodes are also presented here. With those hand heuristics for 
scheduling, only 1. hand task heuristic was used for scheduling the tasks. Designed 
algorithms are described in the fourth section and hand created heuristics are 
presented in the third section. The task and executing node heuristics that are 
machine learned using this smaller version dataset are also presented here. All of 
those are presented in Table 5-2. 
In this table, wherever CC appears, it denotes cooperative coevolution and 
represents one exact pair of the executing node and task heuristic that were learned 
using that row’s algorithm. This means that the learned heuristics for algorithm 3 and 
4 are not the same heuristics but different ones, where heuristics paired with 
algorithm 3 was learned using algorithm 3 and the pair with algorithm 4 is the one 
that was learned using algorithm 4. 
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Table 5-2 Second phase approaches on the small version and full (big) dataset 

Algorithm	 Heur	nodes	 Heur	tasks	 Result	small	 Evaluation	small	(s)	 Result	big	 Evaluation	big	(s)	

2	 F	 1.	hand	 2405000	 532,480	 	---		 ---	

2	 G	 1.	hand	 1921950	 967,427	 	---		 ---	

2	 H	 1.	hand	 19387650	 1153,649	 	---		 ---	

3	 F	 1.	hand	 1300850	 4,826	 4456700	 126,305	

3	 G	 1.	hand	 1378150	 0,797	 4774900	 1927,113	

3	 H	 1.	hand	 336500	 0,878	 4499500	 2605,064	

3	 CC	 CC	 249900	 42,754	 4196650	 3071,647	

4	 F	 1.	hand	 1312250	 4,019	 4457700	 160,598	

4	 G	 1.	hand	 1388350	 0,838	 4774950	 1577,458	

4	 H	 1.	hand	 336500	 0,908	 4500500	 1860,851	

4	 CC	 CC	 258950	 39,823	 4325950	 2991,878	

5	 F	 1.	hand	 334850	 0,760	 4185700	 104,653	

5	 G	 1.	hand	 334750	 56,663	 4185750	 2760,148	

5	 H	 1.	hand	 242750	 18,493	 4187300	 2344,396	

5	 CC	 CC	 242000	 46,953	 4180900	 2482,136	

6	 F	 1.	hand	 1240600	 3,930	 4514650	 191,902	

6	 G	 1.	hand	 1105200	 21,076	 4593050	 1581,792	

6	 H	 1.	hand	 266900	 9,814	 4431350	 1565,404	

6	 CC	 CC	 252050	 46,088	 4725050	 2599,719	

7	 F	 1.	hand	 1248650	 4,063	 4514650	 180,669	

7	 G	 1.	hand	 1112050	 23,241	 4593050	 1746,873	

7	 H	 1.	hand	 268000	 10,066	 4432350	 1851,070	

7	 CC	 CC	 258500	 43,937	 5291300	 2730,876	

 
In this table one can see combinations of all the designed algorithms from the second 
phase with the executing node heuristics. Algorithm 2 does not have the results of 
the evaluation on the full dataset because it would take too long to execute. This can 
be seen from the evaluation times of the smaller version dataset. Algorithm 2 takes 
much longer to evaluate that set than other algorithms. The other algorithms seem to 
be evaluating similarly to one another. Their main difference in evaluation times is 
that some heuristics require parameters that take more time to calculate. And since 
the machine learned heuristics use all the parameters, it often takes the longest to 
calculate them. 
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From graph in Image 5-3 one can see the results of the listed algorithm heuristics 
pairs as they perform on the smaller version dataset. Since the machine learned 
heuristics were learned by using this dataset, it is expected that they outperform all 
the other hand written heuristics. They do so for every algorithm individually and 
through that they hold the best solution so far on this small dataset. From the hand 
written heuristics it seems that the heuristic H outperforms all other hand written 
heuristics. 
 

 

Image 5-3 Comparison of the second phase approaches' results on the smaller 
version dataset 

 
Graph in Image 5-4 presents the comparison of the evaluation times of the presented 
algorithm heuristic approaches. As mentioned earlier, the machine learned heuristics 
use all the available parameters, so it is expected to last longer to evaluate them than 
other heuristics. This is not so only for algorithm 5, but since this is a real time, not a 
thread time, this difference might not be so big. Overall, the fastest executing 
heuristic could be F but it presents the worst results.  
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Image 5-4 Comparison of the second phase approaches evaluation times on the 
smaller version dataset 

 
Image 5-5 represents the results of the same heuristics only when applied to the full 
dataset. It might seem that for all the algorithms and heuristics the results are more 
similar, but that is mostly because the scale is a lot bigger. The biggest question here 
is how the machine learned heuristics performed on this new larger dataset they 
were not learned on. For three out of five algorithms they produced the best results 
but for the other two they produced the worst. They hold the best overall results with 
algorithm 5 (4180900). 
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Image 5-5 Comparison of the second phase approaches' results on the full dataset 

 
Image 5-6 is the graph of the evaluation times that it took for combinations of the 
algorithms and heuristics to perform on the full dataset. As expected, similar to the 
evaluations on the smaller version dataset, the machine learned heuristics took the 
longest to evaluate. On the other side, F heuristic took the least amount of the time to 
evaluate due to the time needed to calculate all the parameters needed for each 
heuristic. 
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Image 5-6 Comparison of the second phase approaches evaluation times on the full 
dataset 

5.3 The Third Phase 

The third phase is the phase that removes one scheduling server simplification. By 
doing this, it adds more parameters to the system. The number of the scheduling 
servers and heuristics to assign the executing nodes (by assigning tasks) to the 
scheduling servers is most important. Since this is the final phase, a lot of tests were 
done in it. Most of it can be found in the CD attached to this thesis. 
The heuristics learned in this phase were also learned by using the smaller version 
dataset. The main idea here was to test and to compare the effectiveness of different 
heuristics combinations. A lot of hand and learned heuristics were combined and 
tested on both the smaller and the full version dataset. Those results were then 
compared in a way to see whether they scale. In other words, the goal is to see 
whether one combination is better than some other on the smaller dataset and 
whether it remains better on the full dataset. All of those comparison results can be 
found in the attached CD and will be discussed in the next chapter. 
The results presented here are used to demonstrate the effectiveness of the system 
under different second phase algorithms, second phase and third phase heuristics. 
Only 1. hand task heuristic is used from the first phase. There are multiple hand 
written and machine learned heuristics from the second phase. There are also 
multiple single scheduler algorithms that were created in the second phase and used 
here. The machine learned heuristics for tasks and executing nodes were learned 
during the second phase and used only during the third phase. There is only one 
hand heuristic from the third phase, which is described in the fourth chapter. The 
results from this phase are separated into two main categories. In one category the 
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system has 3 and in the other the system has 7 scheduling servers. The results from 
the system that has 3 scheduling servers are presented in Table 5-3, while the 
results from the system with 7 scheduling servers are presented in Table 5-4. 
The task and executing node heuristics with cooperative coevolution (CC) are the 
same as those from the previous section (the second phase). They represent two 
heuristics that were learned together using their row’s algorithm during the second 
phase. Machine learned scheduling server heuristics, those artificial neural networks 
(ANN) are learned using the system that corresponds to the parameters in its row. 
For example, weights for ANN in the third row of Table 5-3 are learned by using the 
system with three scheduling servers, algorithm 3 for single scheduling server, 
heuristic F for executing nodes and 1. hand task heuristic for tasks. 
 

Table 5-3 The third phase approaches on the small version and the full (big) dataset 
using 3 scheduling servers 

Algorithm	
Node	
heur	

Task	
heur	

Server	
heur	

Results	
small	

Evaluation	
small	(s)	 Results	big	

Evaluation	
big	(s)	

3	 F	 1.	hand	 3.	hand	 229100	 2,777	 2721550	 127,393	

5	 F	 1.	hand	 3.	hand	 94184	 1,855	 1504600	 83,755	

3	 F	 1.	hand	 ANN	 154300	 1,749	 2373980	 80,049	

5	 F	 1.	hand	 ANN	 93534	 1,784	 1545050	 82,964	

3	 CC	 CC	 3.	hand	 196434	 3,741	 4410611	 890,897	

5	 CC	 CC	 3.	hand	 93550	 7,723	 1504600	 1570,035	

3	 CC	 CC	 ANN	 155181	 12,324	 1924200	 2930,515	

5	 CC	 CC	 ANN	 93234	 12,944	 1543450	 2644,124	

 



 

58 

Table 5-4 The third phase approaches on the small version and the full (big) dataset 
using 7 scheduling servers 

Algorithm	
Node	
heur	

Task	
heur	

Server	
heur	

Results	
small	

Evaluation	
small	(s)	

Results			
big	

Evaluation	
big	(s)	

3	 F	 1.	hand	 3.	hand	 378634	 2,241	 2625950	 113,642	

5	 F	 1.	hand	 3.	hand	 93450	 1,572	 1504650	 66,632	

3	 F	 1.	hand	 ANN	 118483	 1,849	 3020995	 91,932	

5	 F	 1.	hand	 ANN	 49718	 1,722	 1308650	 75,379	

3	 CC	 CC	 3.	hand	 346234	 4,842	 1764850	 1244,750	

5	 CC	 CC	 3.	hand	 94550	 9,834	 1504600	 1653,355	

3	 CC	 CC	 ANN	 160804	 13,248	 2557107	 2637,239	

5	 CC	 CC	 ANN	 48820	 13,151	 959250	 2342,740	

 
In this table one can see some combinations of the designed algorithms from the 
second phase with multiple different heuristics. Only the second phase algorithms 3 
and 5 were used here for learning scheduling server heuristics. The reason for that is 
that those two algorithms showed most consistency with machine learned heuristics 
in the second phase. To be more exact, since all the learned second phase heuristics 
(CC for tasks and executing nodes) were learned on the smaller version dataset, only 
the heuristics for those two algorithms outperformed other heuristics on the smaller 
dataset. More importantly, they also outperformed other heuristics on both the 
example and the full dataset. 
The graphs in Image 5-7 and Image 5-8 present the results of the evaluation against 
the smaller version dataset using 3 and 7 scheduling servers, respectively. Those 
results are composed of the second phase algorithms, second and third phase 
heuristics. Since the third phase learned heuristics were learned adjacent to the 
second phase algorithms and heuristics on this dataset, it is expected they 
outperform their hand written counterparts. 
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Image 5-7 Comparison of the third phase approaches results on the smaller version 
dataset using 3 scheduling servers 

 

 

Image 5-8 Comparison of third phase approaches results on smaller version dataset 
using 7 scheduling servers 

 
Image 5-9 and Image 5-10 present the comparison of the evaluation times of the 
presented third phase approaches on the systems with 3 and 7 scheduling servers, 
respectively. As mentioned in the previous section, since machine learned heuristics 
use all available parameters, it is expected for them to need more real time to finish 
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the evaluation than the other heuristics. It seems like this is true for the third phase 
heuristic that was learned using CC, but not the ones that were learned using F node 
heuristic and 1. hand task heuristic. Here it seems that best results are produced by 
learned third phase heuristic using algorithm 5. 
 

 

Image 5-9 Comparison of the third phase approaches evaluation times on the smaller 
version dataset using 3 scheduling servers 
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Image 5-10 Comparison of the third phase approaches evaluation times on the 
smaller version dataset using 7 scheduling servers 

 
Graphs in Image 5-11 and Image 5-12 present the results of the evaluation against 
the full dataset using 3 and 7 scheduling servers, respectively. Here it seems that the 
learned heuristics outperform hand heuristics using algorithm 3 with 3 scheduling 
servers and algorithm 5 with 7 scheduling servers. Those two combinations seem to 
scale great from the smaller version dataset. But it seems that algorithm 5 with 3 
scheduling servers as well as algorithm 3 with 7 scheduling servers outperform the 
learned heuristics while using the hand written one. Overall, the best score here is 
produced by using the third phase learned heuristic with algorithm 5 and the learned 
executing node and tasks heuristics from the second phase on 7 scheduling servers. 
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Image 5-11 Comparison of the third phase approaches results on the full dataset 
using 3 scheduling servers 

 

 

Image 5-12 Comparison of third phase approaches results on the full dataset using 7 
scheduling servers 

 
Image 5-13 and Image 5-14 present the comparison of the evaluation times of the 
presented third phase approaches on systems with 3 and 7 scheduling servers, 
respectively. Evaluation times presented here are durations needed to evaluate on 
the full dataset. From those graphs it seems that the learned second phase heuristics 
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are the main ones responsible for slowing the evaluation. It also seems that the 
learned heuristics from the third phase do not have that much effect on the 
evaluation time.   
As mentioned in the previous section, since the machine learned heuristics use all 
the available parameters, it is expected of them to need more real time to finish the 
evaluation than the other heuristics. It seems like this is true for the third phase 
heuristic that was learned using CC, but not the ones that were learned using F node 
heuristic and the 1. hand task heuristic. Here it seems that the best results are 
produced by the third phase learned heuristic using algorithm 5. For the hand written 
node and task heuristics it seems to be faster using the learned scheduling server 
heuristic but for the learned node and task heuristics it is faster to use the hand 
written one.  
 

 

Image 5-13 Comparison of third phase approaches evaluation times on the full 
dataset using 3 scheduling servers 
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Image 5-14 Comparison of third phase approaches evaluation times on the full 
dataset using 7 scheduling servers 

 

5.4 Top Results 

As mentioned in the previous chapters, there are a lot of combinations of the possible 
task, executing node and scheduling server heuristics. There are also several 
algorithms developed for scheduling that use those heuristics. To put it more in 
perspective, every scheduling server heuristic that was learned using some 
combination of a task and node heuristic can be evaluated using some other 
combination of a task and node heuristic. The problem with this is that the 
combinations do not always scale in performance from the smaller version dataset to 
the full dataset. In other words, if combination A is outperforming combination B on 
the smaller version dataset, combination B can still outperform combination A on the 
full dataset. 
The number of overall possible combinations that are presented is measured in 
thousands. It would take too long to test them all on the big dataset. And also the 
idea here is to find a combination with an overall great performance, not the one that 
just fits the full dataset, so it could be used in real systems.  
To find a good combination, a lot of combinations were first tested on the smaller 
version dataset (around 4,500 combinations). Then the best 200 combinations were 
chosen for the second round. For the second round, the full dataset was split into 
multiple pieces in size of the smaller version (around 300 pieces). Those 200 best 
combinations were then evaluated on 20 pieces from the full dataset. Every 
combination (Ci) was then averaged using Equation (5.1) where Partj is one of those 
20 pieces and an RCi (Partj) is an evaluation result of combination i against part j.  
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(5.1) 

 
From those 200 averaged results, 50 best combinations were chosen to evaluate 
against the full dataset. They were ranked based on their performance (that is, the 
better combination has a higher rank). Primarily, they are based on those averages 
and secondly on their results against the full dataset. Those ranks were then 
compared and combination’s ranked position changes have been calculated. In other 
words, if one combination was at rank 3 on the averages and rank 5 on the full 
dataset, the ranked position change would be of -2. 
In Table 5-5 the best five results for averages are presented. Those are results for 7 
servers only since 7 servers outperform 3 servers. With node and task heuristics 
where it says CC 5, it means they were trained as cooperative coevolution with 
algorithm 5. Similarly learned server heuristics are represented as NN <algorithm> 
<executing node heuristic> <task heuristic> <number of servers>. Along with those 
heuristics, their average results and the results on the full dataset are also presented. 
With those values, their rank position changes are also presented.  

Table 5-5 Best five from averages 

Algorithm	 Node	heur	 Task	heur	 Server	heur	 Results	avg	
Results	
big	 Rank	change	

5	 CC	5	 CC	5	 NN	5	CC	CC	7	 30082	 959250	 0	

5	 CC	5	 CC	5	 NN	5	F	1.hand	7		 30094	 1297500	 0	

5	 G		 CC	3	 NN	5	F	1.hand	7		 30151	 1301650	 -24	

5	 F	 1.	hand	 NN	5	F	1.hand	7		 30370	 1301850	 -26	

5	 G		 1.	hand	 NN	5	F	1.hand	7		 30863	 1301800	 -24	
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6. Conclusion 

A special case of makespan optimization in scheduling is tackled in this thesis. The 
problem consists of multiple different elements that need to be scheduled. The thesis 
presents the system model that fits the given problem. That system model was 
designed in three phases. The hardest constraint for the model to work was to run 
the evaluation with the full dataset in less than an hour.  
The complete models consist of two main algorithms and three types of heuristics. 
The first algorithm is responsible for distributing tasks between scheduling servers. 
The second one is responsible for executing tasks on executing nodes from one 
scheduling server by connecting and disconnecting the executing nodes to that 
server. The heuristics can be divided in task heuristics, executing node heuristics and 
scheduling server heuristics. Scheduling server heuristics are responsible for 
assigning the executing nodes to the scheduling servers. Executing node heuristics 
are responsible for selecting which nodes to connect to and which nodes to 
disconnect from the scheduling server. Finally, task heuristics are responsible for 
selecting which tasks to execute next. 
The thesis presents some of the possible greedy hand written heuristics which cover 
those functionalities. The thesis also presents some machine learning techniques 
that were used to improve the hand written heuristics. Those techniques include 
using genetic programming with symbolic regressing trees that also have some 
decision tree components in cooperative coevolution. Those were used to learn the 
executing node and task heuristics. Artificial neural networks trained by particle 
swarm optimization were used for scheduling server heuristics. 
The results indicate that using machine learning techniques can greatly improve the 
system’s efficiency. This presents a segment that can be further explored in order to 
produce even better system results than the ones that are presented in this thesis. 
The thing to note here is that by adding more parameters to the learning models, the 
models may produce better results but may take more time to produce those 
parameters. The hardest constraint states that the evaluation must be completed in 
less than an hour.  
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On-line Scheduling Heuristics in Distributed Environments 

Abstract 

This thesis tackles a specific type of multiple machine scheduling problem. It deals 
with scheduling tasks on executing nodes through a network of scheduling servers, 
where the goal is to optimize the makespan. In this problem executing nodes 
represent the machines with eligibility restrictions. Tasks are machine bound 
because every task can only be executed at a specific machine and they can also be 
precedence constrained to other tasks. The thesis describes the tackling of the 
problem in three phases. Each of those phases presents a part of the system and 
some hand written heuristics that were used in order to solve the problem. The thesis 
also presents some machine learning techniques, like genetic programming and 
neural networks, which were used in order to produce the best possible heuristics. 
 

Key words 

Scheduling, multiple machines, scheduling heuristics, on-line execution, distributed 
environment, resource constrained, machine eligibility restrictions, machine learning 
techniques, genetic programming, artificial neural networks 
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Heurističko raspoređivanje na zahtjev u raspodjeljenoj 
okolini 

Sažetak 
Rad se bavi specifičnim tipom raspoređivanja na paralelnim strojevima. Bavi se 
raspoređivanjem poslova na izvršne čvorove kroz mrežu servera za raspoređivanje. 
Pri tome je cilj optimizacija vremena trajanja. U ovom problemu izvršni čvorovi 
predstavljaju strojeve sa ograničenjima pridruživanja poslova. Svaki posao je 
ograničen na samo jedan stroj, a početak izvođenja mu može ovisiti o nekom drugom 
zadatku. Rad opisuje tri faze rješavanja problema. U svakoj od faza je predstavljen 
dio sustava i neke rukom pisane heuristike koje su korištene u rješavanju problema. 
Rad isto predstavlja neke tehnike strojnog učenja poput genetskog programiranja i 
neuronskih mreža koje su korištene da bi se proizvele što bolje heuristike. 
 

Ključne riječi 
Raspoređivanje, paralelni strojevi, heuristike raspoređivanja, izvođenje u realnom 
vremenu, raspodjeljena okolina, ograničenja u resursima, ograničenja pridruživanja 
poslova, tehnike strojnog učenja, genetsko programiranje, suradnička koevolucija, 
umjetne neuronske mreže 


