
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS ASSIGNMENT No. 1226

ON-LINE SCHEDULING HEURISTICS IN
DISTRIBUTED ENVIRONMENTS

Vlaho Poluta

Zagreb, June 2016

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my master thesis mentor Prof.
Domagoj Jakobović, doc.dr.sc. for the continuous support of my research, for his
patience, motivation and immense knowledge. His guidance helped me in all the time
of research and writing of this thesis.
Also, I must express my very profound gratitude to my family and friends for providing
me with unfailing support and continuous encouragement throughout my years of
study and through the process of researching and writing this thesis. Special thanks
go to the person who has greatly helped me with proofreading this thesis. This
accomplishment would not have been possible without them.
Thank you.

Content

1.	 Introduction .. 1	

2.	 About the Assignment .. 2	
2.1	 Introduction to the Assignment ... 2	
2.2	 Simplification, Separation of Concerns ... 4	

3.	 Techniques Used ... 6	
3.1	 Hand Written Heuristics .. 7	
3.2	 Genetic Programming ... 9	
3.3	 Cooperative Coevolution ... 12	
3.4	 Artificial Neural Networks .. 13	
3.5	 Particle Swarm Optimization ... 14	

4.	 Application of Techniques .. 17	
4.1	 The Example Dataset ... 17	
4.2	 Machine Learning Techniques .. 18	
4.3	 The First Phase System .. 22	
4.4	 The First Phase Performance on Example Dataset 23	
4.5	 The Second Phase System .. 27	
4.6	 The Second Phase Performance on Example Dataset 37	
4.7	 The Third Phase System .. 41	
4.8	 The Third Phase Performance on Example Dataset 43	

5.	 Results ... 48	
5.1	 The First Phase ... 48	
5.2	 The Second Phase ... 51	
5.3	 The Third Phase ... 56	
5.4	 Top Results ... 64	

6.	 Conclusion ... 66	

7.	 References ... 67	

1

1. Introduction

Scheduling is a decision-making process that is used on a regular basis in many
manufacturing and service industries. It deals with the allocation of resources to
tasks over given time periods and its goal is to optimize one or more objectives. [1]
The resources and tasks can take many different forms. The resources may be
machines in a workshop, workers in a company, materials in factories, processing
units in a computing environment and so on. The tasks may be operations in a
production process, stages in projects, creating parts in factories, executions of
computer programs and so on. Each task can have a certain priority level, the
earliest possible start time and an expected finish time. The objectives can also take
many different forms. One objective may be the minimization of the completion time
of the last task and another may be the minimization of the number of tasks
completed after their respective due dates. [1]
There might be single or multiple machines in a scheduling system. The single
machine environment is simple and a special case of all environments. Single
machine environments often have properties that none of the multiple machine
environments have, such as the ability to be optimized with basic heuristics. Multiple
machines can work in series or in parallel. They often combine serial and parallel
execution of tasks.
In computing, scheduling is the method by which work specified by some means is
assigned to resources that complete the work. The work may be virtual computation
elements such as threads, processes or data flows, which are in turn scheduled onto
hardware resources such as processors, network links or expansion cards. [2]
Scheduling, as a decision-making process, plays an important role in most
manufacturing and production systems as well as in most information processing
environments. It is also important in transportation and distribution settings and in
other types of service industries. [1]
A scheduler is what carries out the scheduling activity. Schedulers are often
implemented so they keep all the computer resources busy (as in load balancing),
allow multiple users to share system resources effectively, or to achieve a target
quality of service. Scheduling is fundamental to computation itself, and an intrinsic
part of the execution model of a computer system. [2]
This thesis focuses on a specific case of multiple machines scheduling in distributed
systems. A distributed system is a software system in which components located on
networked computers communicate and coordinate their actions by passing
messages [3]. In the next chapter, the thesis will first present the specific problem
that it tries to solve. Then it will describe known methods that were used in trying to
solve this specific problem and afterwards the designed scheduling system will be
presented with its results.

2

2. About the Assignment

The specific scheduling problem that the thesis tries to optimize is presented in this
chapter. First, the concrete problem will be presented together with its properties and
it will be fitted into scheduling terminology. The second part of this chapter will focus
on presenting the abstract ideas of solving the problem. It deals with the three main
phases of the thesis as well as the exact part of the scheduling problem that it is
trying to solve in each of them. The simplifications that are used in solving their part
of the scheduling problem are also presented.

2.1 Introduction to the Assignment

The specific scheduling problem that was tackled in this thesis is rather an unusual
one. The problem deals with tasks being scheduled on executing nodes through
networks of scheduling servers. The issue is to schedule those tasks in a way to
optimize makespan. The makespan is the total length of the schedule (that is, the
moment when all the jobs have finished processing). The three major components
are tasks, executing nodes and scheduling servers. In this problem, the executing
nodes can be thought of as machines since tasks can only be executed on them.
Those machines have eligibility restrictions because they can only execute one task
at a time. Tasks have precedence constraints because they usually require other
tasks to be completed before they can start. Tasks are also machine constrained
because every task can be executed only at the exact executing node (machine).

Image 2-1 Distribution of scheduling servers

The description will begin with the most abstract elements; the scheduling servers.
Usually, there is a small number of scheduling servers (for example seven) that are
connected in a binary tree as seen in Image 2-1. They transfer tasks and information

3

about them (like their scheduled finish time) as messages through their connections
in the binary tree. Any of those scheduling servers can connect to any of the
executing nodes, but at any given time only one server can be connected to a
specific executing node. The scheduling server needs to be connected to the
executing node in order to execute a task on it. The server can have multiple parallel
connections.
There are a lot more executing nodes in the system than there are scheduling
servers (there is usually around 30,000 executing nodes). This presents a critical
limitation since the scheduling servers are bound by their memory capacity and
cannot have as many open connections to the executing nodes as they want to (the
maximum is usually 40). The scheduling servers have to constantly open and close
the connections in order to execute the tasks.
Some tasks have the outcomes of other tasks as preconditions. Such dependencies
essentially form a graph. The graphs range from one task with no dependencies to
thousands or hundreds of thousands of connected tasks (there are usually three
million tasks in the system). One other key insight here is that, if the task T1 is
executed on the server B and T2 requires T1 to finish, T2 must wait at root node (A
on image 1) for the confirmation that T1 is scheduled. Then the root server can
assign task T2 to itself or to some of its subtrees.
The main responsibility here goes to the scheduling servers and their ability to
schedule the assigned tasks. Scheduling is done in order to reduce the amount of
opening and closing the connections to the executing nodes and to increase
parallelism.
Another key feature of this system is that it gets new tasks every hour. This requires
the evaluation to be fast and the solution to be some heuristic that can schedule the
tasks effectively on-line.
The important system properties for this specific scheduling problem can be found in
Table 2-1.

Table 2-1 Important system properties

Property	name	 Description	 Default	value	

Alpha	 Time	 to	 open	 a	 connection	 to	 an	
executing	node	

1000	ms	

Beta	 Time	 to	 close	 a	 connection	 to	 an	
executing	node	

200	ms	

Gamma	 Time	to	execute	a	task	 50	ms	

Delta	 Time	to	send	a	task	one	 level	below	 in	
binary	tree	

10	ms	

Epsilon	 Time	 to	 send	 task	 results	 one	 level	
above.		

2	ms	

4

2.2 Simplification, Separation of Concerns

Since the initial problem is a big and unusual one, complete testing and
experimenting on that problem can be actually separated into three phases. In each
phase some assumptions have been made and some simplifications have been done
in order to preserve all of the problem’s hard constraints.

2.2.1 The First Phase

During the first and the initial phase of the testing, the idea was to create a system
that has only one scheduling server. This simplified things a lot since there was no
longer the need to send tasks through the server tree and wait for a response from
other servers. Now there were only tasks and executing nodes. The system can be
represented with Image 2-2.

Scheduling	server

Heuristics

TasksConnection	
cash

Executing	
node	1

Executing	
node	2

Executing	
node	3

Executing	
node	N

Opened	connection

Opened	connectionOpened	connection

Image 2-2 System with a single scheduling server

Such a simplified problem can then be divided into two subproblems. The first one
being to find a heuristic that can act as a comparator for the tasks to be able to
determine the best task currently possible to schedule for the execution. The second
subproblem is to determine which executing node to disconnect when we need to
open a new connection.
This worked fine and produced some results, however this approach was not able to
execute in real time, that is, in less than an hour for the load (around three million
tasks) that it should be able to process. With this approach it took approximately 70
hours to evaluate the given load. The biggest problem with this approach was that
the algorithm was comparing the remaining tasks (to find the best one) in each

5

iteration. The reason for this is because the priority of the tasks can change
dynamically depending on the system state, for example, if the required executing
node gets connected or disconnected.

2.2.2 The Second Phase

In the second phase, all the simplifications remained the same. The main idea of this
phase was to tackle with one hour limitation. Since there were a lot more tasks
(around three million) than executing nodes (around ten thousand), and even less
nodes could be connected at the same time (around forty), the idea was to schedule
the executing nodes first and then schedule the tasks. As with the tasks, the same
approach was needed for the executing nodes. The idea was to find the heuristic that
can act as a comparator for the executing nodes and determine the best executing
node that the scheduling server can connect to. This was not very effective since in
every iteration we had to find the best executing node and then find the best task in
it. Not performing much better leads to new approaches that would somewhat loosen
the flexibility of the schedule. The new idea was to keep the connections open as
long as there are tasks ready for execution. This approach was not that harmful since
opening and closing a connection usually lasts much longer than executing a task
(1000 ms to open a connection, 200 ms to close it and 50 ms to execute a task).
This approach was a lot faster than the one in the first phase. Using this approach,
the scheduler was able to evaluate the task load (around three million) in 20-40
minutes, depending on the implementation and the heuristics that was used. In this
phase, there are now two optimization points; comparing the executing nodes and
comparing the tasks.

2.2.3 The Third Phase

One server simplification was removed in this phase. The main idea was to use the
best heuristics (comparators) from the previous phase and to build on them. Now the
focus turns to the scheduling servers and their communication. To be more exact, the
main focus of this phase is to create a heuristic that the scheduling server can use in
order to be able to assign tasks to itself or any of its subtrees. Since assigning a task
by task can also take a lot of time, the objective was to assign a node by node and
then group the tasks according to their executing nodes. Since the tasks that have
prerequisite tasks cannot be moved from the root server until their prerequisites are
done, sending new tasks could also represent a problem.

6

3. Techniques Used

Since there are a lot of tasks and executing servers, the heuristic that would be able
to find the best task or executing node must act as a comparator for tasks or
executing nodes. For the initial tests, a lot of hand written heuristics were used for
testing the evaluator and later on for testing the heuristics that are learned by some
machine learning techniques. The machine learning techniques that were used are
described in more detail further in this chapter. But before going into machine
learning techniques or even those hand written heuristics, it is important to introduce
some terminology.
A task is considered ready if all of its prerequisites are finished with execution. This is
the time when the task can start executing, assuming that its executing node is
connected to the server and that that executing node is not currently executing some
other task. If the task has no prerequisites, it is considered to be ready at the
beginning of the evaluation (time equals to 0).
A prepared task is a task that has all of its prerequisites scheduled. In contrast to
unprepared tasks, if all the prerequisites start time are known, then all their finish
times are known. In other words, the minimal start time of prepared tasks is the latest
finish time of its prerequisites. Assuming, of course, that the information about the
completion of the prerequisites has reached the root scheduling server.
The executing node is considered to be ready at the moment when it is connected to
the scheduling server and it is not executing any task. This is the moment when that
scheduling server can choose to execute some task on it or choose to disconnect it
in order to open a connection to some other executing node.
The executing node is considered to be active if it is executing some task. At this
point, the scheduling server has to be connected to it and cannot use this connection
to do anything else.
The term free connection is used when the scheduling server did not open as many
connections as it could and there is still more unused memory to open new
connections.
The executing node’s connect and disconnect times are durations, more specifically,
the amount of time that the scheduling server needs to open or close a connection to
some executing node. When the scheduling server is connecting or disconnecting
from a node, it cannot execute tasks on that particular node or use the memory
needed to keep this connection for something else.
A task execution rank is a number that represents task’s position in the execution
tree Image 3-1. The execution tree is a tree build in such a way, that in the first rank
of the tree, there are tasks with no prerequisite tasks. The second rank is constructed
of tasks that have a prerequisite only in rank 1. Rank 3 tasks are tasks that have
prerequisites only from rank 1 or 2. Other tree ranks are constructed in a similar way.
A node standby time shows how long it will take for a specific executing node to be
ready. For the connected nodes, it means the time that it will take to finish executing
the current or scheduled tasks. If it is not executing any task, the time is zero.
However, if the executing node is not connected to the scheduling server, then this

7

time is measured to the moment when it becomes connected to the scheduling
server. If there are free connections, the time equals to that particular execution
node's connection time. Otherwise, the time is a sum of disconnecting and
connecting time.

Image 3-1 Task execution ranks

3.1 Hand Written Heuristics

Hand written heuristics were designed before trying to use machine learning
techniques to create them. They were created in order to test the evaluation system.
They were also used in order to detect more preferable features for machine
learning. Since a lot of tests were conducted using hand written heuristics, those
heuristics will be described in this section in order to provide a better understanding
of how they are used to compare tasks, executing nodes and scheduling servers.
Those heuristics are separated into three sections: task comparing heuristics,
executing node comparing heuristics and scheduling server comparing heuristics.

3.1.1 Task Scheduling Heuristics

In the first phase of the testing, the entire schedule did not depend on the executing
nodes, so a lot of task heuristics were created. The most notable ones are mentioned
in Table 3-1. The max successors comparison of the tasks depends on the number

8

of the immediate successors they have. The one with the most successors is the
better task. Earliest ready finds the task that will become ready first and then
schedules it. This one had a problem because many tasks had similar ready time.
The next heuristic, execution tree rank, was the one that would pick the one with the
smallest execution rank (explained in intro). There were also a few others but the
best one was comparing multiple things, a composite heuristic if you prefer. The best
heuristic checks whether the connection to the executing node is open, that is, if it is
for the first task and not for some other, then the first task will be preferred. Next it
would try to find the one with the earliest ready time. Finally, if two tasks were equal
for the first two conditions, then it would try to find the one with more immediate
successors. This heuristic is referred to as the 1. task hand heuristic.

Table 3-1 Task hand written heuristics

Name	 Description	

Max	successors	 Max	number	of	task's	immediate	successors	

Earliest	ready	 The	task	that	gets	ready	for	the	execution	first	

Exe	tree	rank	 Rank	in	the	execution	tree	hierarchy	

1.	task	hand		
Composite	heuristics:	 is	node	connected	to	server,		
earliest	ready	time,	max	successors	

3.1.2 Executing Node Heuristics

The second phase was all about comparing the executing nodes. There are more
things that can be compared in the executing nodes than in tasks. The most notable
heuristics can be found in Table 3-2. The heuristic that was mostly used here
(referred to as the 2. F heuristic or just F heuristic) is actually a combination of two
things. First, it compares the amount of prepared tasks that the executing nodes
have. If the number of the prepared tasks is the same, then it selects the one with the
most unfinished tasks. The second heuristic, referred to as the G heuristics, would
select the executing node that has the most tasks that are ready when the executing
node becomes ready. If those numbers are equal, then this heuristic falls back to 2. F
heuristic. The third executing node heuristic, referred to as the 2. H heuristic,
concerns itself with successor tasks. To be more specific, it finds its prepared tasks,
calculates the number of successor tasks for each one and then it sums all of them.
You can say that it is the sum of prepared successor tasks. The node with more
prepared successor tasks is assumed to be better. If two executing nodes have equal
sums, then this heuristic also falls back to 2. F heuristic.

9

Table 3-2 Executing node hand written heuristics

Name	 Description	

F	heuristic	 Composit:	 max	 prepared	 tasks,	 max	 unfinished	
tasks	

G	heuristic	 Composit:	max	ready	tasks	when	the	node	is	ready,	
F	heuristics	

H	heuristic	
Composit:	 sum	 of	 the	 nodes	 prepared	 successor	
tasks,	F	heuristics	

3.1.3 Scheduling Server Heuristics

In the third phase, the main goal was to distribute the tasks among the scheduling
servers. The tasks were grouped by their executing nodes so the scheduling servers
can decide only about assigning those nodes amongst each other. Here the heuristic
needs only to compare the parent scheduling server with its children subtrees. Since
there were a lot less targets to pick from, more emphasis was put on the machine
learned heuristics and then on the hand written one. There is only one hand written
heuristic for assigning the executing nodes to the scheduling servers and it is a pretty
simple one, since its function is to test whether the evaluation system is working. It
can be found in Table 3-3. This heuristic, referred to as the 3. scheduling servers
hand heuristic, only compares the number of the already assigned executing servers.
Every parent scheduling server in the binary tree knows the number of the executing
nodes that it assigned to itself and the number of nodes that it assigned to its
children. This heuristic would then simply assign a new executing node to the one of
those trees with the least assigned nodes. This heuristic is not that effective since it
treats its subtrees as single children nodes, which increases the number of the
assigned executing nodes to the servers and reduces the number of the assigned
nodes to the leaves. The only positive thing about this heuristic is that, by doing this
kind of assignment, it reduces the number of sent tasks and task finish information
through the binary tree.

Table 3-3 Scheduling serer hand written heuristic

Name	 Description	

1	scheduling	server	hand	 Num	of	already	assigned	executing	servers	

3.2 Genetic Programming

In artificial intelligence, the genetic programming (GP) is the evolutionary
metaheuristic which is inspired by the biological evolution. It is used to find computer

10

programs (algorithms) that can execute specific tasks. Essentially, GP is a set of
instructions and a fitness function. The fitness function is used to determine how well
or badly the program performed on a given task. It is a kind of genetic algorithm
where every unit has a genotype in form of a tree and machine learning technique
which is used to optimize tree population on fitness function which is determined by
the ability to perform on the given task. [4]
Genetic programming is considered to be a subtype of the genetic algorithm.
Therefore, the genetic algorithm can be steady state and generational. In practice,
the steady state is used more frequently because it is often more superior to the
generational one and it is easier to implement. In this thesis, the steady state type
was used. The initial population is constructed by using a ramped-half-and-half
method. More about the ramped-half-and-half method can be found in [5]. During a
crossover, if the creation of a child fails due to the constraints in max nodes or max
tree rank, one of its parents is copied with a small plagiarism penalty for the child
(1%). Image 1 from [6] is a flowchart of the genetic programming.

11

Image 3-2 Flowchart for genetic programming [6]

The tree representation in this thesis is a mix of a symbolic regression and a decision
tree.
There are 2 types of input variables: number values array and boolean values array.
Output is a single double value which represents a random key encoding of sought
heuristic. More about random key encoding can be found in [7].
Function nodes can be unary functions like sin, exp and binary functions like +, -, *, /.
Since this is partly a decision tree, there are also if-else nodes which are kind of
binary functions that take one random binary input value and depending on whether it
is true or false, either the left or the right part of the tree is executed and the other
part is discarded.

12

Leaf nodes can be random constants or values from the input number variables, in
which case the node knows the index of the associated input value.
Pseudocode of the used genetic programming algorithm can be seen in Algorithm
3-1.

3.3 Cooperative Coevolution

A coevolutionary algorithm is an evolutionary algorithm (or a collection of
evolutionary algorithms) in which the fitness of an individual is subjective. It means
that the individuals are evaluated based on their interactions with others. Based on
the interaction between individuals, coevolutionary algorithms can be divided into two
groups: Competitive Coevolutionary Algorithms and Cooperative Coevolutionary
Algorithms. [8]
Competitive coevolution is an algorithm where individuals from one population work
against individuals from other populations. Those populations can have a same
phenotype, for example populations trying to find the best chess player. In that case,
each population is a population of chess players and the best individual from the
population is the one who plays best against the best players from other populations.
Populations can also have different phenotypes, for example a cat and a mouse; the
best cat from the population of cats is the one which can catch most mice, and the
best mouse is the one who can run away from most cats.
Cooperative Coevolution (CC) is an evolutionary computation method that divides a
larger problem into subproblems and solves them independently in order to solve the
large problem. [9]
Every one of those subproblems is being solved individually by its own population.
Unlike competitive coevolution, here those populations are working together toward a
common goal. Usually those populations are evaluated separately and the total best

Population = random initial population
Evaluate(Population)
Best = getBest(Population)
While not (stopping criterion)
 Parent1 = tournament(Population)
 Parent2 = tournament(Population)
 Child = crossover(Parent1, Parent2)
 Child = mutation(Child)
 Evaluate(Child)
 Replaced = mockTournament(Population)
 RemoveFromPopulation(Replaced)
 InsertInPopulation(Child)
 If(isBetter(Child,Best)) Best = Child
return Best

Algorithm 3-1 Genetic programming

13

score for the initial problem can be determined by taking the best individual from
each population and combining them.
In this thesis, Cooperative Coevolution is a way to divide a bigger problem into two
subproblems. A population was created for each of those two problems, where the
individuals from one population represent heuristic for tasks and the individuals from
the other population represent heuristic for the executing nodes. The main difference
is that, unlike the usual Cooperative Coevolution approach, here those two
populations cannot be evaluated separately. During the evaluation, a heuristic for
tasks needs to be present as well as a heuristic for executing nodes.
Pseudocode of the implemented Cooperative Coevolution can be seen in Algorithm
3-2.

3.4 Artificial Neural Networks

In computer science, artificial neural networks (ANN) are computational models
inspired by the brain's central nervous system. These models are being used in
machine learning and pattern recognition. [11]
Artificial neural networks are representatives of the connectivistic approach to
artificial intelligence. The connectivistic approach is based on using lots of simple
processing elements. Those process elements by themselves do not show any
intelligent features, but when they are assembled together in large numbers, we get a
system that presents very interesting features. [12]
In this thesis only the basic form of artificial neural network was used (Image 3-3 from
[13]) with sigmoid function [14] as an activation function [13].
More about artificial neural networks can be found in [11] and [12].

initialise a subpopulation PopTask(S)
initialise a subpopulation PopNode(S)
for i in 1 ..< S {
 evaluate PopTask[i], PopNode[i]
}
find BestTask and BestNode
while termination criteria not satisfied {
 ChildTask = create child from PopTask
 ChildNode = create child from PopNode
 insert / repecate chlidren in populations
 update BestTask and BestNode if needed
}
return BestTask and BestNode

Algorithm 3-2 Cooperative Coevolution

14

Image 3-3 Artificial neural network [13]

Here the artificial neural network is used for assigning the executing nodes to the
scheduling servers. The scheduling servers are stacked as a binary tree, where each
server can receive tasks through its parents, so that the root server has all tasks at
the beginning of the evaluation. The executing nodes are assigned to the scheduling
servers by the tasks that are given to them and the tasks are grouped by the
executing nodes. The main decision for a parent here is to decide whether it wants to
take a specific executing node for itself or give it to its left or right subtree. Inputs in
this artificial neural network represent states of a parent and its children, while
outputs are three double values between 0 and 1. The first one belongs to a parent
and the other two to its children. The lower the value of the output, the more priority it
is given to the scheduling server (parent or children) to get that executing node
assigned to it. And of course, scheduling servers that are leaf nodes in binary tree
cannot assign the given executing nodes to other servers.
To evaluate a single artificial neural network's weight, a whole evaluation is required.
In that single evaluation, the same weights are used every time the evaluation needs
to decide to whom to assign a specific executing node. The evaluation result is then
assigned as a fitness to those weights. Since we are not comparing outputs from the
artificial neural network to target y but having a single performance-like feature, the
usual algorithms that operate on a single set of weights like Backpropagation
algorithm [15] cannot be used. This thesis used the evolutionary algorithm,
specifically Particle swarm optimization (PSO) (the next chapter).

3.5 Particle Swarm Optimization

Particle swarm optimization (PSO) in the computer science is a computational
method which optimizes a problem by iteratively trying to improve the individuals
based on their fitness. Individuals are candidates for a solution. Their fitness is
measured based on their ability to perform well on a given problem. They are moved

15

around in search space according to simple mathematical formulas using its position,
velocity, personal best and global best. This is expected to move the swarm toward
the best solutions. [16]
Particle swarm optimization is a nature inspired metaheuristic. It uses a population of
particles (individuals) which are moving through the n-dimension search space. They
are improving their position by using their own and their neighbors’ experience. While
determining their movement direction, each individual is using its personal best
solution and its local best (social factor) to a certain extent. Individuals' movements
are greatly determined by those components' influences. So, having a higher
personal score factor leads to diversification and having a higher social factor leads
to intensification. This is how this algorithm can combine local search with random
search. [12]
Every individual works with and updates its current position X, its velocity V, its
personal best Pbest, and local / global best Lbest / Gbest.
Image 3-4 from [17] represents how individuals (particles) are moved during the
execution on the algorithm.

Image 3-4 Movement of individuals [17]

Pseudocode of PSO used in the thesis can be seen in Algorithm 3-3.

16

In this thesis, PSO is used to train artificial neural networks. Every individual's current
position (X) represents one set of ANN's weights, so every individual is potentially
one ANN solution.

initialize POP of particles with X and V
set initals X as Pbests
evaluate POP
find Lbest and Gbest

while termination criteria not satisfied {

 for particle in POP {

particle.V = particle.V + c1 * rand() * Pbest + c2
 * rand() * LBest

 constraint particle.V to Vmax and Vmin
 particle.X = particle.X + particle.V
 }
 evaluate POP
 update Pbest
 update Lbest and Gbest
}
return Gbest

Algorithm 3-3 Particle swarm optimization

17

4. Application of Techniques

All three phases of the testing are covered in this section. In the first phase the
scheduling was done on tasks and the executing nodes were regarded just as
machines. The system for this phase had only one scheduling server to simplify the
initial problem at the beginning. The second phase tackles with the same things as
the first one. The difference here is that a new approach had to be taken. The reason
for this is that the first phase algorithm was too slow for the real world use. The
second phase was also done on a single scheduling server. In the third phase this
simplification has been removed and the third phase deals with assigning tasks to the
scheduling servers. These scheduling servers are connected in a binary tree.
In each of those phases all their aspects are discussed. Each of those phases had
some goals to achieve and there were some problems with the real time application
as well. There were more approaches for solving those problems while achieving the
main goals of the phase. The most important approaches are explored more in-depth
in each phase.
Before exploring all the algorithms created in each phase and their properties, this
section talks about how machine learning techniques described in the previous
sections are used. They are used to learn heuristics which are actually comparators
for tasks, executing nodes and scheduling servers. The heuristics for executing
nodes and tasks are more similar than the ones for scheduling servers. All of those
heuristics are used in an attempt to optimize (minimize) the makespan. This section
also covers the input parameters for the learned models and explains how output
parameters are used to schedule tasks.
An example task dataset was created for testing the designed systems in this
chapter. The example dataset is very small but efficient for exploring the created
algorithms. This chapter will also present results of running the designed systems on
this example dataset. Since this dataset is very small, the scheduling server’s
memory was reduced so whenever something is evaluated on the example dataset,
the scheduling server will not be able to have more than two connections open to the
executing nodes.

4.1 The Example Dataset

The example dataset consists of 11 tasks which need to be executed on four
different executing nodes. The executing nodes are A, B, C and D. The tasks that
needed to be executed on the executing node A are 0, 2 and 9. On node B tasks are
4, 5, 8, 11 and on node C tasks are 1, 7 and 10. The tasks needed to be executed on
the executing node D are 3 and 6. The execution tree for those tasks can be seen in
Image 4-1. Here it means, for example, that task 0 and 3 are prerequisites to task 7,
and that task 2 has two successors (task 4 and 5).

18

Image 4-1 Example dataset

4.2 Machine Learning Techniques

Machine learning techniques used in this thesis were described in the previous
chapter. Since the first phase of the testing was performing very slowly, none of the
techniques were used in it. The thing is, to evaluate a single heuristic, one would
need to run the entire evaluation system. Since the used metaheuristics are evolution
based algorithms, all of them needed to be run a few times in order to get more
useful results. And each one of those execution usually means at least few hundred
evaluations. So even with faster algorithms like the one in the second phase, where
one evaluation would last around 40 minutes with all the input parameters, running
evaluation algorithms would take too long. This is the reason why a smaller set of
tasks was used for learning heuristics. That smaller set of tasks counts around 10
thousand tasks, which is a lot less than the initial 3 million tasks. For this set of tasks,
the evaluation time with the algorithms from the second phase is less than 20
seconds. But if one would try to run this smaller set of tasks with the first section
algorithm, it would take around 10 minutes. That is a lot less than 40 minutes but it
would still take a few weeks to run a single machine learning technique.

19

The heuristics that were trying to be learned can be divided into three groups. The
first group are the ones that are responsible for selecting the best task out of the list
of the tasks assigned to a single executing node. The second group of heuristics are
the ones that are used for selecting the best executing node to which the scheduling
server will open a connection to. And the third heuristic is used when the scheduling
server needs to decide whether it wants to assign a specific executing node to itself
or assign it to some of its children subtrees.
Tasks heuristics are created as genetic programs, more exactly as trees that use the
task input data and that output a single double value. What types of genetic
programming trees were used can be found in the previous chapter. The same tree
would be executed for each task and each task would get its key value (the double
output value). That key value would then represent inverse priority of a task. The
smaller the key value, the higher the task priority is. In other words, the smaller the
key value the better the task is. Inputs to the genetic programming tree are number
and boolean values. They can be found in Table 4-1. Only one boolean value that is
used is: is the task ready. The number input parameters include the number of
prerequisites that the task had and the number of its successors. Another input is
execution tree rank. The rank was discussed in the previous chapter together with
hand created heuristics.

Table 4-1 Inputs for training task heuristics

Name	 Description	

Functions	

Ready	 Boolean	 function,	 if	 the	 task	 is	 ready	 for	 execution,	 select	 left	 or	
right	subtree	

+,	-,	*,	/,	sin,	cos,	exp	 Arithmetic	operators	

Terminals	

Prerequisites		 Number,	number	of	task's	immediate	prerequisites		

Successors	 Number,	number	of	task's	immediate	successors	

Exe	tree	rank	 Number,	rank	in	execution	tree	hierarchy	

The executing node heuristics are also created as genetic programs. The same tree
structures that are used for tasks are used for executing nodes as well. There are
real value inputs and boolean inputs. They can be found in Table 4-2. Output is also
a single double value that is used in the same way as for tasks; to be the key
(inverse priority value) which the scheduling server uses to find the best executing
node to open the connection to. There is also only one boolean value used, which is
just a coincidence. The boolean value here provides the information whether the
executing node is currently connected to the scheduling server. The number of
values used as executing node parameters consist of the total number of remaining
tasks (that are not scheduled or executed) and the number of prepared tasks. There

20

is also the number of tasks that are or will be ready before this executing node can
disconnect and the number of tasks that are or will be ready before this executing
node can disconnect and some other node can connect at its place. The sum of that
executing node’s prepared tasks’ successors is also being used (more about this
sum is described in hand heuristics in the previous chapter). The last parameter used
here is the executing nodes’ local clock (remembers the completion time of the last
action performed with the node).

Table 4-2 Inputs for training executing nodes heuristics

Name	 Description	

Functions	

Connected	 Boolean	 function,	 if	 the	 node	 is	 connected	 to	 the	 scheduling	
server,	select	left	or	right	subtree	

+,	-,	*,	/,	sin,	cos,	exp	 Arithmetic	operators	

Terminals	

Connected	 Boolean,	if	the	node	is	connected	to	the	scheduling	server	

Remaining	tasks	 Number,	total	number	of	remaining	tasks	

Prepared	tasks	 Number,	total	number	of	currently	prepared	tasks	

Local	clock	 Number,	time	of	the	last	action	performed	with	this	node	

Successors	sum	 Number,	sum	of	this	nodes	prepared	tasks'	successors	

Before	disconnect	tasks	 Number,	the	number	of	tasks	that	are	or	will	be	ready	before	this	
node	can	disconnect	

Before	reconnect	tasks	
Number,	the	number	of	tasks	that	are	or	will	be	ready	before	this	
	node	 can	 disconnect	 and	 some	 other	 node	 can	 connect	 at	 its	
place	

All the algorithms from the second phase needed both the task and the executing
node heuristic to be able to schedule the run of the evaluation. The first tests were
done using a fix heuristic for tasks and they tried to learn heuristics for executing
nodes. There were also tests that used fixed heuristic for the executing nodes, which
tried to learn the heuristic for tasks. But it seemed that the task and the executing
node heuristic are not independent. In other words, one task heuristic that is better
than the other task heuristic while using one executing node heuristic is not
necessarily better than the other task heuristic while using some other executing
node heuristic. Cooperative coevolution was used as a response to this. More about
the cooperative coevolution was said in the previous chapter. Here CC was used to
learn both the task as well as the executing node heuristic at the same time. The idea
behind is to let the algorithm try to exploit the dependencies in the task and the
executing node heuristic in order to optimize the result.

21

The third heuristic is somewhat different from the first two. This heuristic is
responsible for assigning the executing nodes to the scheduling servers. In the
previous heuristics there was a lot of tasks and executing nodes to pick from and the
number of the executing nodes and tasks could change dynamically (for example,
the executed tasks could be removed). Therefore, in the previous heuristics it would
be very hard to make heuristic inputs from all tasks or all executing nodes
parameters combined. Here the heuristic has only three scheduling servers to pick
from, the parent and its children since the scheduling servers are set up as a binary
tree. Now the inputs can be fixed and the heuristic can pick which scheduling server
the current executing node can be assigned to. The third heuristic was designed as
an artificial neural network which was trained by using the particle swarm
optimization algorithm. More about the neural network and the particle swarm
optimization was said in the previous chapter. The inputs for this neural network are
combinations of the parent and its children parameters. Input parameters for one
server can be found in Table 4-3. There are three output nodes, each returning a
value of 0 to 1. One for the parent and two for its children. The smaller the output
value is, the higher the priority of that scheduling server is to get the executing node
assigned to. Each scheduling server’s properties consist of the number of the child
scheduling servers that it has (it can be 0, 1 or 2). The number of the assigned
executing nodes and similarities between the executing nodes that is being assigned
with executing nodes that are already assigned to that scheduling server. The
number of the assigned executing nodes for the parent refers to the exact amount of
the executing nodes it has assigned. For the children it represents all the executing
nodes that are assigned to the subtree that starts with that child, since the parent can
only see its children and not the entire subtrees. This also applies to the calculating
similarities between the executing nodes. One executing node is similar to another if
its tasks have a lot of prerequisite tasks in that other executing node. The maximum
similarity value from one node to another is 1 and the minimum is 0. Similarities are
calculated by using all the tasks at the preprocessing before the evaluations. To
calculate the similarities of the executing node and the scheduling server, the
similarities from all of the already assigned nodes to a new node are taken and
averaged.

Table 4-3 Inputs for training scheduling server heuristics

Name	 Description	

Children	 Number,	number	of	child	servers	in	tree	

Assigned	nodes	 Number,	number	of	already	assigned	executing	nodes	

Similarities		
Number,	 similarities	 between	 executing	 node	 that	 is	 being	
assigned	 and	 executing	 nodes	 that	 are	 already	 assigned	 to	 this	
server	

22

4.3 The First Phase System

Here the idea was to create a system that can effectively schedule tasks on the
executing nodes. Some assumptions and some simplifications were made in this
phase. The most important simplification here is that multiple scheduling servers
were not considered, instead everything was tested as if there was only one
scheduling server. The main assumption is that there will be at least one ready task
at the beginning of the evaluation and that all the tasks can be executed eventually.
This is safe to assume since without it, the makespan would be infinite.
Other characteristic of the designed algorithm is that the scheduling server can
simultaneously open connections, close connections and execute tasks on the
executing nodes. So when the scheduling server is connecting or disconnecting
some executing node, it does not affect other executing nodes. They could be
executing tasks, connecting or disconnecting from the scheduling server in a parallel
manner.
Since everything is being executed on a single scheduling server, there is no need to
send tasks to other servers or to receive messages from other servers. Therefore,
the only time that is spent is spent on opening the connections to the executing
nodes, closing those connections and executing tasks. Alpha, beta and gamma
parameters giving these durations can be found in the main problem description (the
second chapter).
In the first phase there were no heuristics for the executing nodes, since the
connections to them only depended on the scheduled tasks, but there was a
requirement for closing the connections and that did not depend on the scheduled
tasks. To simplify things, some well-known methods were used to determine which
executing node would be closed. The first method is first in first out (FIFO), which
means that when connections had to be closed, the earliest open connection would
be closed. The second method is the least recently used (LRU). This method
measures how often the tasks are being scheduled to the executing nodes and
closes the one to which the tasks were assigned the least recently. The third method
closed the least frequently used executing node (LFU). This method knows the time
that the tasks were scheduled to the executing nodes and knows which connected
executing node will be the one that will be finished first. This method closes the
connection to that executing node in order to hopefully minimize the makespan.
Pseudocode of algorithm used in this phase can be seen in Algorithm 4-1.

23

4.4 The First Phase Performance on Example Dataset

This section presents how the methods applied in the first phase evaluate against the
example dataset. Since there are only few tasks in the example dataset, some of the
results are similar. All the heuristics used in the first phase are presented in Table
4-4. Those heuristics are described in the third chapter. The methods for determining
which executing node to disconnect in order to open the connection to a new
executing node are combined with those heuristics.

while (has tasks) {

 select prepared tasks from all remaining tasks
 select best task from prepared tasks
 find executing node for best tasks

 if (executing node is connected to scheduling server) {
 schedule best task on executing node
 continue
 }

 if (there are free connections available on scheduling server) {
 start connecting executing node to scheduling server
 schedule best task on executing node
 continue
 }

 find executing node to disconnect
 schedule disconnection of that executing node
 schedule connection of best task's executing node after
 this node had been disconnected
 schedule best task on its executing node
}

time = moment when last task was finished with execution

return time

Algorithm 4-1 First phase, Algorithm 1

24

Table 4-4 The first phase approaches on the example dataset

Phase	1	 FIFO	 LRU	 LFU	

Max	successors	 6100	 6050	 6050	

Earliest	ready	 4950	 6150	 4900	

Executing	tree	rank	 4950	 6150	 4900	

1.	task	hand	 3750	 3750	 3750	

It is obvious from this table that 1. task hand heuristic is usually superior to the other
heuristics regardless of the methods used for selecting the executing nodes to close.
It is also easy to notice that the earliest ready task and the smallest executing tree
rank heuristics are somewhat similar. For this small dataset they provide the same
schedules.
Next shown are some images showing Gantt charts explaining how this single
scheduling server schedules the tasks from the example dataset using the
approaches from the first phase.

Image 4-2 Max successors heuristic, FIFO method

25

Image 4-3 Max successors heuristic, LRU and LFU methods

Image 4-4 First ready task and executing tree rank heuristic, FIFO method

26

Image 4-5 First ready task and executing tree rank heuristic, LRU method

Image 4-6 First ready task and executing tree rank heuristic, LFU method

27

Image 4-7 1. Task hand heuristic, FIFO, LRU and LFU methods

4.5 The Second Phase System

Since the first phase had a big problem of not being able to evaluate all the tasks in a
realistic setting in less than an hour, there was a need for a faster evaluation. A new
evaluation algorithm needed to be devised. The main problem includes a lot more
tasks (around 3 million) than executing servers (around 30 thousand). The idea for
the second phase approaches comes from reversing the priority order. The first one
would need to find the best executing node, open the connection to it and then
proceed in trying to find the best task for this executing node.
As in the first phase, we are still using only one scheduling server, so again there is
no need for sending the tasks or the task finish information through the scheduling
server tree. Also, that scheduling server should be able to open and close the
connections to the nodes and execute tasks on them in parallel.
The first attempt to create this system had the most general algorithm which would
allow the executing nodes to be switched (disconnected) as soon as they became
ready. It used two comparator heuristics. The first one was used for selecting the
best executing node and the second one for selecting the best executing task. That
executing task was selected from all the tasks that were assigned to the chosen
executing node. The idea here was to filter the tasks on the executing nodes and
when searching for the best task, you would have to look only through around 100

28

tasks (3 million tasks in total / 30 thousand executing nodes), which is a lot less than
3 million tasks.
So now instead of searching through 3 million tasks, the algorithm was searching
through 30 thousand executing nodes and then through 100 tasks on average in
each iteration. Of course, in every iteration we would remove one task, but it still
needed to go through a lot of elements. One disadvantage to real work evaluation
duration is that the executing nodes had more parameters than the tasks and it takes
more computation power to compare two executing nodes than to compare two
tasks. This was not going to be modified since those parameters are used to find
better executing nodes.
In the first phase there was a need for a method that would be responsible for
deciding which executing node should be disconnected from the scheduling server.
In this phase there is no need for that method since the executing node heuristic acts
as a comparator. To determine which node to disconnect when there is a need to
open a new connection to some other executing node, the algorithm can use the
provided executing node comparator to find the worst executing node. Of course, first
it needs to filter only the executing nodes that are connected to the scheduling
server.
The algorithm in the first attempt was faster than the original algorithm from the first
phase that was only comparing the tasks. This algorithm was a move towards the
right direction but it was still too slow to evaluate all 3 million tasks in less than an
hour. Its biggest problem is that in each iteration it was searching through all the
executing nodes and then through all the tasks in that executing node in order to find
one task that was going to be scheduled.
Pseudocode of the first attempt algorithm (later referred to as algorithm 2) can be
seen in Algorithm 4-2.

29

Since the first attempt of creating a faster algorithm was not that successful because
it was not able to evaluate a larger number of tasks in the expected time, some
modifications had to be made. Since opening and closing the executing nodes is a lot
more expensive than executing tasks, the idea was to check for new executing nodes
less often. It means that comparing the executing nodes had to be done less often
and scheduling more tasks on a node more often. In this approach, once connected
executing node will remain connected to the scheduling server as long as there are
ready tasks present for that node or tasks that will be ready (their prerequisites will
finish executing) before that executing node could be disconnected. This leads to the
second attempt. In the second attempt the scheduling server’s free connections were
filled only with ready executing nodes. If there were not enough ready executing

func schedule best task for node {
 select best task for node (heuristic for tasks)

 start / schedule best task at earliest moment when node is ready
 (update node ready time and times for task's successors)

}

main_time = 0;
while(has tasks){
 select set of ready nodes that have ready tasks
 add nodes:
 - nodes that have tasks that are ready before node can disconnect
 AND (are not active OR in closing)

 if (set is empty) {
 main_time = earliest moment when (any task is ready AND (can
 open new connection OR that task's node is also ready))
 continue;
 }

 select best node from set (heuristic for nodes)

 if (selected node is ready) {
 schedule best task for node
 continue;
 }

 if can open new connection {
 start connecting best node
 schedule best task for node after the connection is opened
 }
 else {
 select ready node to disconnect (heuristic for nodes)
 start disconnecting node

 start connection of best node after previous node has been
 disconnected

 schedule best task for node after best node is connected
 }
return moment when last task was finished with execution

Algorithm 4-2 Second phase, Algorithm 2

30

nodes to be put in the free connections, those connections would not be filled with
the next best (provided by heuristic) executing nodes.

Pseudocode of the second attempt algorithm (later referred to as algorithm 3) can be
found in Algorithm 4-3.

This algorithm actually had everything that was needed for this phase. It can evaluate
3 million tasks in less than an hour. It handles parallel connections to the scheduling
server and does not need to use any heuristic or sophisticated method to determine
which connection to close. There is no need for that since it keeps the unused
connections always closed.

main_time = 0;
while(has tasks) {

 can_perform = select a set of open / ready nodes with any task that
 will be ready before node can disconnect

 for node in can_perform {

 select best task for node (heuristic for tasks)

 run / schedule best task for that node (update node ready time
 and times for task's successors);

 }
 to_close = select a set of other open / ready nodes with no ready

 tasks before node can disconnect

 for node in to_close {
 start disconnecting node
 }

 while (new connection can be opened) {
 can_open = select a set of closed nodes with any task that will
 be ready before node can re-connect
 if (can_open.isEmpty) {
 break
 }
 select best node from can_open
 start connecting best node
 update ready time of best node
 }

 main_time = earliest moment when (any task is ready AND (new
 connection can be opened OR that task's node is also ready))
}

return moment when last task was finished with execution

Algorithm 4-3 Second phase, Algorithm 3

31

But this is not the only way in which such an algorithm can be made. For this thesis,
four more scheduling server algorithms have been created in order to see which
approach produces better results. Of those four other approaches, three are similar
to this algorithm 3 in many ways. The fourth one is somewhat different but it is based
on similar approaches to compare the execution nodes before comparing the tasks
and to keep the connection to the specific executing node alive until there are no
more ready tasks on that node.
The next is algorithm 4 and it looks a lot like algorithm 3. The main difference
between algorithm 3 and 4 is that algorithm 4 tries to have no free connections.
Therefore, it opens the best nodes based on the heuristic even if they will not have
ready tasks when they are connected to the server. It can also prevent the
scheduling server to close the executing node when that node finds itself in to_close
set if the priority of that node is high enough. The reasoning behind this approach lies
in the idea that if the heuristic is good enough, then it can somehow try to predict
which executing node will be used soon. If it is successful, it can save time by
preparing the executing nodes before they are actually needed.
Pseudocode of algorithm 4 can be found in Algorithm 4-4.

32

The fifth algorithm functions on similar principles as the previous two but is
essentially much different. Similar to the previous approaches, it starts by opening as
many connections from the scheduling server to the executing node as it can. The
previous approaches would then try to find the best executing node in each iteration
from the open nodes and schedule the execution of its best task. However, this
approach schedules all ready tasks for that executing node depending on its local
clock.
Executing node’s local clock represents the finish times of the last actions scheduled
on that node. An action can be opening a connection to the node, executing a task

main_time = 0;
while(has tasks) {

 can_perform = select a set of open / ready nodes with any task that
 will be ready before node can disconnect

 for node in can_perform {

 select best task for node (heuristic for tasks)

 run / schedule best task for that node (update node ready time
 and times for task's successors);

 }
 to_close = select a set of other open / ready nodes with no ready

 tasks before node can disconnect

 for node in to_close {
 start disconnecting node
 }

 while (new connection can be opened) {
 can_open = select a set of closed nodes with any task that will
 be ready before node can re-connect
 if (can_open.isEmpty) {
 break
 }
 select best node from can_open
 start connecting best node
 update ready time of best node
 }

 if (can connect more node) {
 select best node from closed nodes
 start connecting best node
 update ready time of best node
 }

 main_time = earliest moment when (any task is ready AND (new
 connection can be opened OR that task's node is also ready))
}

return moment when last task was finished with execution

Algorithm 4-4 Second phase, Algorithm 4

33

on it and closing a connection to that node. The scheduling server keeps its open
nodes in a list sorted on node's local clocks. Since in the previous versions
everything was synchronized around the main_time which was kind of a global clock,
in this version everything is synchronized amongst multiple local clocks. Here there is
a list of sorted integers that represents free connections (sorted_clocks). When all
the connections to the nodes are closed, this list holds as many integers as there can
be open connections but when all the connections are open, it is an empty list. So in
the beginning of the evaluation this is a list of zeroes. When the scheduling server
wants to open a connection to the executing node, it takes the first (earliest) time
from the list, sums it with executing node's connection time and sets the node's local
clock to that time. While closing a connection to the executing node, the algorithm
takes closing node’s local time, sums it with disconnect time and inserts it into
sorted_clocks list. Of course, one executing node cannot start connecting using a
connection if it is disconnecting on another.
This approach also has its open executing nodes in the sorted list. This list is sorted
on their local clocks. In each iteration, this algorithm takes the first executing node
(one with the smallest local clock) and schedules all ready tasks that are assigned to
it. Then it updates the node’s local clock and inserts it back to the open node list. The
only exception from the returning to the open list is when all the tasks for that
executing node have been scheduled. In that case we can schedule its
disconnection, because when it finishes with the scheduled tasks, it will be useful to
automatically replace it with the executing node that still has tasks to execute.
Pseudocode of algorithm 5 can be found in Algorithm 4-5.

34

func substitute_node(node_to_close,
 andOpenNewNodeFrom: all_executing_nodes,
 putNewNodeIn: executing_node_list
 sortedClocks: sorted_clocks) {

 close_connection(node_to_close)
 update sorted_clocks with connection closed time
 new_node = all_executing_nodes.remove_best_node()// heuristic for
 nodes
 schedule_open_connection(new_node) using sorted_clocks.pop()

 executing_node_list.insert_in_list_sorted_on_min_ready_time(new_node)
 // sorted on min ready time
 all_executing_nodes.add(node_to_close)
}

sorted_clocks = SortedIntegerList()
// when it is possible to open connection, max size of
// max_num_of_connections
executing_node_list = best_n_from_comparator(all_executing_nodes,
 max_num_of_connections)
// sorted on min ready time, then on heuristic
all_executing_nodes.remove(executing_node_list)
open all nodes in executing_node_list;

while(task_list.size > 0) {

 executing_node = executing_node_list.pop_first()
 // if node has no prepared tasks
 if (executing_node.num_of_prepared_tasks() <= 0) {
 substitute_node(executing_node,
 andOpenNewNodeFrom: all_executing_nodes,
 putNewNodeIn: executing_node_list
 sortedClocks: sorted_clocks)
 continue
 }

 execute_tasks_for_node(executing_node)
 // heuristic for tasks; scheduling all tasks that are ready;
 // update local clock (node ready time)

 // total number of remaining (unfinished) tasks is equal to 0 happens
 // only near the end
 if (executing_node.num_of_tasks == 0) {
 substitute_node(executing_node,
 andOpenNewNodeFrom: all_executing_nodes,
 putNewNodeIn: executing_node_list
 sortedClocks: sorted_clocks)
 continue
 }

 executing_node_list.
 insert_in_list_sorted_on_min_local_clock(executing_node)
 // sorted on min ready time
}
return moment when last task was finished with execution

Algorithm 4-5 Second phase, Algorithm 5

35

The next algorithm is very similar to the first two. The difference is in can_perform
executing node set or to be more specific, in its creation. In the third algorithm this
set consists of open executing nodes with tasks that are or will be ready before that
node can disconnect. In this algorithm, it consists of open nodes with tasks that are
or will be ready before the node can disconnect and another node can connect in its
place. The reasoning behind this approach is kind of obvious. If we decide to replace
the executing node that is connected to the scheduling server, the earliest time that
any task could be executed on that connection is when the newly connected node
finishes with connecting. So it might be useful to wait for the currently open node to
execute as many tasks as it can before disconnecting it.
Pseudocode of algorithm 6 can be found in Algorithm 4-6.

main_time = 0;
while(has tasks) {

 can_perform = select a set of open / ready nodes with any task that
 will be ready before re-connect time

 for node in can_perform {

 select best task for node (heuristic for tasks)

 run / schedule best task for that node (update node ready time
 and times for task's successors);

 }
 to_close = select a set of other open / ready nodes with no ready

 tasks before re-connect time

 for node in to_close {
 start disconnecting node
 }

 while (new connection can be opened) {
 can_open = select a set of closed nodes with any task that will
 be ready before node can re-connect
 if (can_open.isEmpty) {
 break
 }
 select best node from can_open
 start connecting best node
 update ready time of best node
 }

 main_time = earliest moment when (any task is ready AND (new
 connection can be opened OR that task's node is also ready))
}

return moment when last task was finished with execution

Algorithm 4-6 Second phase, Algorithm 6

36

The final algorithm that was used is only a combination of modifications that
algorithm 4 and 6 did on algorithm 3. So this algorithm 7 tries not to have free
connections but as much connected nodes in parallel as possible. It also creates its
can_perform executing node set as a set that consists of executing nodes that have
tasks that are ready or will be ready before this executing node can disconnect and
the scheduling server can connect to some other node in its place. Both of those
things are used here in an attempt to minimize the makespan by reducing the
disconnecting and connecting of the executing tasks to the scheduling servers in
favor of waiting for the tasks to become ready and pre-connecting the executing
nodes even if they might not be the best choice.

Pseudocode of algorithm 7 can be found in Algorithm 4-7.

37

4.6 The Second Phase Performance on Example Dataset

In this section it is explained how well the algorithms designed in the second phase
are performing on the example dataset. Some heuristics created for this phase are
also presented here. The designed algorithms are described in the fourth section and
hand created heuristics are presented in the third section. In Table 4-5 some
machine learned heuristics are also presented.

main_time = 0;
while(has tasks) {

 can_perform = select a set of open / ready nodes with any task that
 will be ready before re-connect time

 for node in can_perform {

 select best task for node (heuristic for tasks)

 run / schedule best task for that node (update node ready time
 and times for task's successors);

 }
 to_close = select a set of other open / ready nodes with no ready

 tasks before re-connect time

 for node in to_close {
 start disconnecting node
 }

 while (new connection can be opened) {
 can_open = select a set of closed nodes with any task that will
 be ready before node can re-connect
 if (can_open.isEmpty) {
 break
 }
 select best node from can_open
 start connecting best node
 update ready time of best node
 }

 if (can connect more node) {
 select best node from closed nodes
 start connecting best node
 update ready time of best node
 }

 main_time = earliest moment when (any task is ready AND (new
 connection can be opened OR that task's node is also ready))
}

return moment when last task was finished with execution

Algorithm 4-7 Second phase, Algorithm 7

38

Table 4-5 The second phase approaches on the example dataset

Phase	2	 alg	2	 alg	3	 alg	4	 alg	5	 alg	6	 alg	7	

F	node,	1	hand	task	 4950	 4950	 6100	 6050	 4950	 6100	

G	node,	1	hand	task	 5000	 4900	 4900	 4900	 4950	 6100	

H	node,	1	hand	task	 6200	 3750	 4900	 3750	 3750	 4900	

Cooperative	coevolution	 ---	 3750	 6100	 3750	 3750	 4900	

Each algorithm is one column and one combination of the heuristics is presented in
rows in this table. Each row is a combination of one node heuristic and one task
heuristic. Only one task heuristic has been used (1. hand task heuristic) for all hand
designed executing node heuristics. The row that states cooperative coevolution
presents a mix of two heuristics (the executing node and task heuristic) that were
learned together. Those learned heuristics were not learned using this example
dataset, but using a smaller version of the normal dataset (around 10 thousand
tasks). In each column, cooperative coevolution represents the heuristics that were
learned while evaluating by using the column algorithm. For example, cooperative
coevolution and algorithm 3 column represent the executing node and task heuristics
that were learned on the smaller version on the normal dataset, while evaluating that
dataset using algorithm 3. Algorithm 2 was not used for learning heuristics because it
takes too long to execute.	
One can see here that the machine learned heuristics are just as good as the best
combinations of hand written heuristics for five of the six designed algorithms. The
main reason why this is positive is that those heuristics were not learned using this
dataset. This can mean that the learned heuristics are able to generalize to some
extent.
Now some images of Gantt charts follow showing how this single scheduling server
schedules the tasks from the example dataset using the approaches from the second
phase.

39

Image 4-8 Algorithm 2, F executing node heuristic, 1. hand task heuristic

Image 4-9 Algorithm 3, 5 and 6, H node, 1. hand task heuristic and also Algorithm 3,
5 and 6 cooperative coevolution

40

Image 4-10 Algorithm 4, F node, 1. hand task heuristic and also Algorithm 4
cooperative coevolution

Image 4-11 Algorithm 4, H executing node heuristic, 1. hand task heuristic

41

Image 4-12 Algorithm 7, F node, 1. hand task heuristic and also Algorithm 7
cooperative coevolution

4.7 The Third Phase System

The third phase was all about removing the single scheduling server simplification,
since everything that was done on a single server was tackled with in the first and the
second phase. In this phase, multiple scheduling servers are allowed. They
communicate via messages. Those messages can be sending the task to children or
sending the information about the task finish time to the parent. When the scheduling
server is sending tasks to its children, it groups them in batches in order to send
multiple tasks faster, rather than sending a task by task. The time required to send
one task one level down the binary tree takes 10 ms (delta properties from the
second chapter), but when sending multiple tasks in a batch, two tasks can be sent
one after another in a time span of 0.2 ms.
In this system, it is important for all the tasks that have prerequisites to wait on the
root scheduling server until they become prepared, that is, until all of their
prerequisites are scheduled. Only when the tasks are prepared, the root scheduling
server can assign those tasks to itself or one of its children scheduling servers.
Those children scheduling servers can then assign it to themselves or pass those
tasks to their children. Only leaf scheduling servers cannot pass tasks to somebody
else, they must assign those tasks to themselves.

42

Since real time evaluation is required (must be shorter than an hour) the scheduling
server groups tasks by their executing nodes. This also helps to schedule the tasks
on the executing nodes, since the scheduling server schedules the assigned tasks to
the executing nodes using the algorithms from the second phase. Those algorithms
then schedule the executing nodes first and then the tasks. So when the scheduling
servers group the tasks by the executing node, it gets easier and faster to manipulate
them. Of course, before doing anything with those tasks, the third phase algorithm
must make sure that only the prepared tasks are being manipulated at the time.
When the tasks are grouped by the executing nodes, the tasks can be assigned to
the scheduling servers by assigning the executing nodes to them. So when the
scheduling servers are sending tasks to their children, they are actually sending the
executing nodes for them to handle. This is done because connecting and
disconnecting from the executing nodes is more expensive than executing the tasks
on them in an attempt to minimize the number of connecting and disconnecting. In
this way, by assigning the executing nodes to the scheduling servers, the scheduling
servers have more parameters for assigning the executing nodes to each other and
they have a lot less work. In other words, the servers need to assign only the
executing nodes and not all the tasks one by one.
There is also one additional problem that needs to be addressed in this approach.
Only the tasks that are prepared can be assigned to the scheduling servers and they
have to wait on the root scheduler for that moment. So when a task is prepared, it
can be sent to another scheduling server or be assigned to the current one. The
question is when to send the new tasks to the scheduling servers. It can be done at
the moment they become prepared or a bit later in a batch. If the prepared tasks are
sent as soon as possible, they will be available to the scheduling servers to schedule
them sooner. However, if they are available later, it will not be as expensive to send
them more than to send single tasks. The even bigger problem is that, if the tasks
were sent one by one, the evaluation would not be able to finish in real time (it would
take a lot longer than one hour). For this reason, a new variable percentage (later
just p) has been used. When each scheduling server finishes scheduling p percent of
its assigned tasks, then it signals to get more tasks.
Pseudocode of the algorithm used in this phase can be found in Algorithm 4-8.

43

4.8 The Third Phase Performance on Example Dataset

Since the third phase is the phase where everything kind of comes together, there
are bound to be more tests than in the first two phases. More about those tests will
be mentioned in the next chapter. Some combinations that were created during the
third phase of the testing are presented in this section. The main new algorithm for
this phase is described in the previous section. All the other second phase algorithms
that were used in this phase are also described in this chapter. Table 4-6 presents
how those combinations that are selected for display evaluate against the example
dataset. Those exact results are chosen to demonstrate the effectiveness of the hand

// root scheduling server only
main (tasks) {
 while (have tasks) {
 prepared_tasks = get_prepared_tasks(tasks)
 schedule(prepared_taks)
 }
 finish_receiving_tasks()

 time = moment when last task was finished with execution

 return time
}

// all remaining servers
main() {
 tasks = receive tasks from parent
 while(1)
 IN PARALLEL {
 schedule(tasks)
 send results to parent
 tasks = receive tasks from parent
 }
}

schedule(tasks) {
 grouped_tasks = group tasks by executing nodes;

 for child in children {
 child_tasks = select tasks for nodes that are assigned to
 that child // heuristic
 send child tasks to child to schedule p tasks
 }

 local_tasks = tasks for nodes that are assigned to self

 schedule p tasks // algorithm from second phase
}

Algorithm 4-8 Third phase, Algorithm 8

44

and the machine learned heuristics (from the second and third phase) on different
second phase algorithms.

Table 4-6 The third phase approaches on the example dataset

Phase	3	
3.	Hand	heur,	

Alg	3	
3.	Hand,	Alg	

5	
ANN,	Alg		

3	
ANN,	Alg	

5	

F	node,	1	hand	task	heur,	3	servers	 2460	 3660	 2450	 3700	

F	node,	1	hand	task	heur,	7	servers	 1270	 3670	 3650	 3670	

CC	task	&	node	heur,	3	servers	 2460	 3660	 2450	 3650	

CC	task	&	node	heur,	7	servers	 1270	 3670	 2470	 3700	

In this table, one column represents a combination of the third phase heuristic with
the second phase single scheduling server algorithm. Each row is a combination of
the executing node heuristic, the task heuristic and the number of the scheduling
servers in the current system. The third phase heuristic (3. hand heuristic) is
described in the third chapter. Those ANN heuristics are machine learned artificial
neural networks. Different weights are used for each of those table elements. Those
weights were learned using the second phase algorithm that stands next to them in
the table column. They were learned by using the element’s row as well. More
precisely, those node and task heuristics and the number of the servers that are in
that row. Those cooperative coevolution (CC) task and node heuristics are heuristics
that were learned together in the second phase. They were learned using the second
phase algorithms 3 and 5. The elements in the table are created by using those
learned heuristics and algorithms accordingly.
Since this dataset is pretty small for 3. hand heuristic, it seems it does not matter
which task and executing node heuristics are used. This is probably because every
scheduling server can now open two connections and there are only four executing
nodes. Here it seems that the learned heuristics are not that successful at scaling to
the example dataset. But it still seems that they are producing the best results for 3
scheduling servers (CC, ANN, algorithms 3 and 5).
Some images showing Gantt charts how this multi-server scheduling system
schedules the tasks from the example dataset using the approaches from the third
phase are below.

45

Image 4-13 Algorithm 3, 3. hand server heuristic, 3 scheduling servers, F node, 1.
hand task heuristic and CC node, task heuristic

Image 4-14 Algorithm 3, 3. hand server heuristic, 7 scheduling servers, F node, 1.
hand task heuristic and CC node, task heuristic

46

Image 4-15 Algorithm 5, 3. hand server heuristic, 3 scheduling servers, F node, 1.
hand task heuristic and CC node, task heuristic

Image 4-16 Algorithm 5, 3. hand server heuristic, 7 scheduling servers, F node, 1.
hand task heuristic and CC node, task heuristic

47

Image 4-17 Algorithm 3, ANN, 3 scheduling servers, CC node and task heuristic

Image 4-18 Algorithm 3, ANN, 3 scheduling servers, CC node and task heuristic

48

5. Results

This chapter presents some results that were created while evaluating and testing
the designed systems. Those results are composed on the smaller version data load
of tasks (around 10 thousand tasks) and on the full load (around 3 million tasks).
Some results are from executing evaluation with the smaller version and some are
from the full load of tasks. All machine learning heuristics were trained using only the
smaller version since it would take a few weeks to do it with the full load.
This chapter is also divided according to the testing phases. In each section there are
presented some of the hand written heuristics and machine learned heuristics in
combination with that section’s approaches. Here one can see how effective hand
written and machine learned heuristics really are.
All results presented in this chapter are from running on notebook computer that uses
AMD A10-575 M (quad core, 2.5 GHz) and 12 GB DDR3L SDRAM. All algorithms,
including heuristics, were coded in Java and run using JRE 8.

5.1 The First Phase

In this section the results from executing the evaluations with the approaches from
the first phase are shown. Since it would take around two to three days to execute
the full load with the approach from the first phase, all the results from this phase are
only presented in the smaller version task load (around 10 thousand tasks). In Table
5-1 one can see how each task heuristic from the first phase and the method for
selecting the nodes to disconnect (both described in the third and fourth chapter)
perform on those tasks. For those combinations one can also see how long it takes
to execute one evaluation.

49

Table 5-1 First phase approaches on smaller version dataset

Heuristics	 Node	closing	method	 Results	 Evaluation	time	(s)	

Max	successors	 FIFO	 367050	 461,10	

Max	successors	 LRU	 364650	 599,59	

Max	successors	 LFU	 326500	 513,42	

Earliest	ready	 FIFO	 1855450	 208,45	

Earliest	ready	 LRU	 1269850	 371,02	

Earliest	ready	 LFU	 328500	 354,68	

Execution	tree	rank	 FIFO	 1849750	 438,87	

Execution	tree	rank	 LRU	 1273050	 392,94	

Execution	tree	rank	 LFU	 289450	 361,70	

1.	Task	Hand	 FIFO	 285600	 358,98	

1.	Task	Hand	 LRU	 290900	 358,06	

1.	Task	Hand	 LFU	 246950	 358,24	

In the graph in Image 5-1, it can be seen how the heuristics and methods for
selecting the nodes to disconnect performed in contrast to each other. Since the
earliest ready and executing tree rank are kind of similar, their performance is very
similar as well. Except using LRU, it seems that the executing tree rank is somewhat
better than the earliest ready heuristic.

50

Image 5-1 Comparison of the first phase approaches' results on the smaller version
dataset

As announced in the previous chapters, now it can be seen that the 1. task hand
heuristic outperforms all the other first phase heuristics. And it outperforms them
using every method for selecting the nodes to disconnect. From the graph it may
seem that the max successors is close to it, but from the Table 5-1 they are far away.
Those two are also behaving kind of similarly. This is probably because the 1. task
hand heuristic contains max successors heuristic (more in the third chapter).
Image 5-2 shows the comparison of the evaluation times of those combinations of
the heuristics and methods for selecting the nodes to disconnect. They all perform
somewhat similarly due to all of them using the same algorithm. The fastest time
being 208 sec (3.46 min) and the slowest time being 600 sec (10 min), the 1. task
hand heuristic that will be used in the next phases overall performs with 358 sec
(5.97 min).

51

Image 5-2 Comparison of the first phase approaches evaluation times on the smaller
version dataset

5.2 The Second Phase

In this section it is presented how well the approaches designed in the second phase
perform on the full dataset (around 3 million tasks) and smaller version dataset
(around 10 thousand tasks). All the heuristics that were hand created for scheduling
the executing nodes are also presented here. With those hand heuristics for
scheduling, only 1. hand task heuristic was used for scheduling the tasks. Designed
algorithms are described in the fourth section and hand created heuristics are
presented in the third section. The task and executing node heuristics that are
machine learned using this smaller version dataset are also presented here. All of
those are presented in Table 5-2.
In this table, wherever CC appears, it denotes cooperative coevolution and
represents one exact pair of the executing node and task heuristic that were learned
using that row’s algorithm. This means that the learned heuristics for algorithm 3 and
4 are not the same heuristics but different ones, where heuristics paired with
algorithm 3 was learned using algorithm 3 and the pair with algorithm 4 is the one
that was learned using algorithm 4.

52

Table 5-2 Second phase approaches on the small version and full (big) dataset

Algorithm	 Heur	nodes	 Heur	tasks	 Result	small	 Evaluation	small	(s)	 Result	big	 Evaluation	big	(s)	

2	 F	 1.	hand	 2405000	 532,480	 	---		 ---	

2	 G	 1.	hand	 1921950	 967,427	 	---		 ---	

2	 H	 1.	hand	 19387650	 1153,649	 	---		 ---	

3	 F	 1.	hand	 1300850	 4,826	 4456700	 126,305	

3	 G	 1.	hand	 1378150	 0,797	 4774900	 1927,113	

3	 H	 1.	hand	 336500	 0,878	 4499500	 2605,064	

3	 CC	 CC	 249900	 42,754	 4196650	 3071,647	

4	 F	 1.	hand	 1312250	 4,019	 4457700	 160,598	

4	 G	 1.	hand	 1388350	 0,838	 4774950	 1577,458	

4	 H	 1.	hand	 336500	 0,908	 4500500	 1860,851	

4	 CC	 CC	 258950	 39,823	 4325950	 2991,878	

5	 F	 1.	hand	 334850	 0,760	 4185700	 104,653	

5	 G	 1.	hand	 334750	 56,663	 4185750	 2760,148	

5	 H	 1.	hand	 242750	 18,493	 4187300	 2344,396	

5	 CC	 CC	 242000	 46,953	 4180900	 2482,136	

6	 F	 1.	hand	 1240600	 3,930	 4514650	 191,902	

6	 G	 1.	hand	 1105200	 21,076	 4593050	 1581,792	

6	 H	 1.	hand	 266900	 9,814	 4431350	 1565,404	

6	 CC	 CC	 252050	 46,088	 4725050	 2599,719	

7	 F	 1.	hand	 1248650	 4,063	 4514650	 180,669	

7	 G	 1.	hand	 1112050	 23,241	 4593050	 1746,873	

7	 H	 1.	hand	 268000	 10,066	 4432350	 1851,070	

7	 CC	 CC	 258500	 43,937	 5291300	 2730,876	

In this table one can see combinations of all the designed algorithms from the second
phase with the executing node heuristics. Algorithm 2 does not have the results of
the evaluation on the full dataset because it would take too long to execute. This can
be seen from the evaluation times of the smaller version dataset. Algorithm 2 takes
much longer to evaluate that set than other algorithms. The other algorithms seem to
be evaluating similarly to one another. Their main difference in evaluation times is
that some heuristics require parameters that take more time to calculate. And since
the machine learned heuristics use all the parameters, it often takes the longest to
calculate them.

53

From graph in Image 5-3 one can see the results of the listed algorithm heuristics
pairs as they perform on the smaller version dataset. Since the machine learned
heuristics were learned by using this dataset, it is expected that they outperform all
the other hand written heuristics. They do so for every algorithm individually and
through that they hold the best solution so far on this small dataset. From the hand
written heuristics it seems that the heuristic H outperforms all other hand written
heuristics.

Image 5-3 Comparison of the second phase approaches' results on the smaller
version dataset

Graph in Image 5-4 presents the comparison of the evaluation times of the presented
algorithm heuristic approaches. As mentioned earlier, the machine learned heuristics
use all the available parameters, so it is expected to last longer to evaluate them than
other heuristics. This is not so only for algorithm 5, but since this is a real time, not a
thread time, this difference might not be so big. Overall, the fastest executing
heuristic could be F but it presents the worst results.

54

Image 5-4 Comparison of the second phase approaches evaluation times on the
smaller version dataset

Image 5-5 represents the results of the same heuristics only when applied to the full
dataset. It might seem that for all the algorithms and heuristics the results are more
similar, but that is mostly because the scale is a lot bigger. The biggest question here
is how the machine learned heuristics performed on this new larger dataset they
were not learned on. For three out of five algorithms they produced the best results
but for the other two they produced the worst. They hold the best overall results with
algorithm 5 (4180900).

55

Image 5-5 Comparison of the second phase approaches' results on the full dataset

Image 5-6 is the graph of the evaluation times that it took for combinations of the
algorithms and heuristics to perform on the full dataset. As expected, similar to the
evaluations on the smaller version dataset, the machine learned heuristics took the
longest to evaluate. On the other side, F heuristic took the least amount of the time to
evaluate due to the time needed to calculate all the parameters needed for each
heuristic.

56

Image 5-6 Comparison of the second phase approaches evaluation times on the full
dataset

5.3 The Third Phase

The third phase is the phase that removes one scheduling server simplification. By
doing this, it adds more parameters to the system. The number of the scheduling
servers and heuristics to assign the executing nodes (by assigning tasks) to the
scheduling servers is most important. Since this is the final phase, a lot of tests were
done in it. Most of it can be found in the CD attached to this thesis.
The heuristics learned in this phase were also learned by using the smaller version
dataset. The main idea here was to test and to compare the effectiveness of different
heuristics combinations. A lot of hand and learned heuristics were combined and
tested on both the smaller and the full version dataset. Those results were then
compared in a way to see whether they scale. In other words, the goal is to see
whether one combination is better than some other on the smaller dataset and
whether it remains better on the full dataset. All of those comparison results can be
found in the attached CD and will be discussed in the next chapter.
The results presented here are used to demonstrate the effectiveness of the system
under different second phase algorithms, second phase and third phase heuristics.
Only 1. hand task heuristic is used from the first phase. There are multiple hand
written and machine learned heuristics from the second phase. There are also
multiple single scheduler algorithms that were created in the second phase and used
here. The machine learned heuristics for tasks and executing nodes were learned
during the second phase and used only during the third phase. There is only one
hand heuristic from the third phase, which is described in the fourth chapter. The
results from this phase are separated into two main categories. In one category the

57

system has 3 and in the other the system has 7 scheduling servers. The results from
the system that has 3 scheduling servers are presented in Table 5-3, while the
results from the system with 7 scheduling servers are presented in Table 5-4.
The task and executing node heuristics with cooperative coevolution (CC) are the
same as those from the previous section (the second phase). They represent two
heuristics that were learned together using their row’s algorithm during the second
phase. Machine learned scheduling server heuristics, those artificial neural networks
(ANN) are learned using the system that corresponds to the parameters in its row.
For example, weights for ANN in the third row of Table 5-3 are learned by using the
system with three scheduling servers, algorithm 3 for single scheduling server,
heuristic F for executing nodes and 1. hand task heuristic for tasks.

Table 5-3 The third phase approaches on the small version and the full (big) dataset
using 3 scheduling servers

Algorithm	
Node	
heur	

Task	
heur	

Server	
heur	

Results	
small	

Evaluation	
small	(s)	 Results	big	

Evaluation	
big	(s)	

3	 F	 1.	hand	 3.	hand	 229100	 2,777	 2721550	 127,393	

5	 F	 1.	hand	 3.	hand	 94184	 1,855	 1504600	 83,755	

3	 F	 1.	hand	 ANN	 154300	 1,749	 2373980	 80,049	

5	 F	 1.	hand	 ANN	 93534	 1,784	 1545050	 82,964	

3	 CC	 CC	 3.	hand	 196434	 3,741	 4410611	 890,897	

5	 CC	 CC	 3.	hand	 93550	 7,723	 1504600	 1570,035	

3	 CC	 CC	 ANN	 155181	 12,324	 1924200	 2930,515	

5	 CC	 CC	 ANN	 93234	 12,944	 1543450	 2644,124	

58

Table 5-4 The third phase approaches on the small version and the full (big) dataset
using 7 scheduling servers

Algorithm	
Node	
heur	

Task	
heur	

Server	
heur	

Results	
small	

Evaluation	
small	(s)	

Results			
big	

Evaluation	
big	(s)	

3	 F	 1.	hand	 3.	hand	 378634	 2,241	 2625950	 113,642	

5	 F	 1.	hand	 3.	hand	 93450	 1,572	 1504650	 66,632	

3	 F	 1.	hand	 ANN	 118483	 1,849	 3020995	 91,932	

5	 F	 1.	hand	 ANN	 49718	 1,722	 1308650	 75,379	

3	 CC	 CC	 3.	hand	 346234	 4,842	 1764850	 1244,750	

5	 CC	 CC	 3.	hand	 94550	 9,834	 1504600	 1653,355	

3	 CC	 CC	 ANN	 160804	 13,248	 2557107	 2637,239	

5	 CC	 CC	 ANN	 48820	 13,151	 959250	 2342,740	

In this table one can see some combinations of the designed algorithms from the
second phase with multiple different heuristics. Only the second phase algorithms 3
and 5 were used here for learning scheduling server heuristics. The reason for that is
that those two algorithms showed most consistency with machine learned heuristics
in the second phase. To be more exact, since all the learned second phase heuristics
(CC for tasks and executing nodes) were learned on the smaller version dataset, only
the heuristics for those two algorithms outperformed other heuristics on the smaller
dataset. More importantly, they also outperformed other heuristics on both the
example and the full dataset.
The graphs in Image 5-7 and Image 5-8 present the results of the evaluation against
the smaller version dataset using 3 and 7 scheduling servers, respectively. Those
results are composed of the second phase algorithms, second and third phase
heuristics. Since the third phase learned heuristics were learned adjacent to the
second phase algorithms and heuristics on this dataset, it is expected they
outperform their hand written counterparts.

59

Image 5-7 Comparison of the third phase approaches results on the smaller version
dataset using 3 scheduling servers

Image 5-8 Comparison of third phase approaches results on smaller version dataset
using 7 scheduling servers

Image 5-9 and Image 5-10 present the comparison of the evaluation times of the
presented third phase approaches on the systems with 3 and 7 scheduling servers,
respectively. As mentioned in the previous section, since machine learned heuristics
use all available parameters, it is expected for them to need more real time to finish

60

the evaluation than the other heuristics. It seems like this is true for the third phase
heuristic that was learned using CC, but not the ones that were learned using F node
heuristic and 1. hand task heuristic. Here it seems that best results are produced by
learned third phase heuristic using algorithm 5.

Image 5-9 Comparison of the third phase approaches evaluation times on the smaller
version dataset using 3 scheduling servers

61

Image 5-10 Comparison of the third phase approaches evaluation times on the
smaller version dataset using 7 scheduling servers

Graphs in Image 5-11 and Image 5-12 present the results of the evaluation against
the full dataset using 3 and 7 scheduling servers, respectively. Here it seems that the
learned heuristics outperform hand heuristics using algorithm 3 with 3 scheduling
servers and algorithm 5 with 7 scheduling servers. Those two combinations seem to
scale great from the smaller version dataset. But it seems that algorithm 5 with 3
scheduling servers as well as algorithm 3 with 7 scheduling servers outperform the
learned heuristics while using the hand written one. Overall, the best score here is
produced by using the third phase learned heuristic with algorithm 5 and the learned
executing node and tasks heuristics from the second phase on 7 scheduling servers.

62

Image 5-11 Comparison of the third phase approaches results on the full dataset
using 3 scheduling servers

Image 5-12 Comparison of third phase approaches results on the full dataset using 7
scheduling servers

Image 5-13 and Image 5-14 present the comparison of the evaluation times of the
presented third phase approaches on systems with 3 and 7 scheduling servers,
respectively. Evaluation times presented here are durations needed to evaluate on
the full dataset. From those graphs it seems that the learned second phase heuristics

63

are the main ones responsible for slowing the evaluation. It also seems that the
learned heuristics from the third phase do not have that much effect on the
evaluation time.
As mentioned in the previous section, since the machine learned heuristics use all
the available parameters, it is expected of them to need more real time to finish the
evaluation than the other heuristics. It seems like this is true for the third phase
heuristic that was learned using CC, but not the ones that were learned using F node
heuristic and the 1. hand task heuristic. Here it seems that the best results are
produced by the third phase learned heuristic using algorithm 5. For the hand written
node and task heuristics it seems to be faster using the learned scheduling server
heuristic but for the learned node and task heuristics it is faster to use the hand
written one.

Image 5-13 Comparison of third phase approaches evaluation times on the full
dataset using 3 scheduling servers

64

Image 5-14 Comparison of third phase approaches evaluation times on the full
dataset using 7 scheduling servers

5.4 Top Results

As mentioned in the previous chapters, there are a lot of combinations of the possible
task, executing node and scheduling server heuristics. There are also several
algorithms developed for scheduling that use those heuristics. To put it more in
perspective, every scheduling server heuristic that was learned using some
combination of a task and node heuristic can be evaluated using some other
combination of a task and node heuristic. The problem with this is that the
combinations do not always scale in performance from the smaller version dataset to
the full dataset. In other words, if combination A is outperforming combination B on
the smaller version dataset, combination B can still outperform combination A on the
full dataset.
The number of overall possible combinations that are presented is measured in
thousands. It would take too long to test them all on the big dataset. And also the
idea here is to find a combination with an overall great performance, not the one that
just fits the full dataset, so it could be used in real systems.
To find a good combination, a lot of combinations were first tested on the smaller
version dataset (around 4,500 combinations). Then the best 200 combinations were
chosen for the second round. For the second round, the full dataset was split into
multiple pieces in size of the smaller version (around 300 pieces). Those 200 best
combinations were then evaluated on 20 pieces from the full dataset. Every
combination (Ci) was then averaged using Equation (5.1) where Partj is one of those
20 pieces and an RCi (Partj) is an evaluation result of combination i against part j.

65

(5.1)

From those 200 averaged results, 50 best combinations were chosen to evaluate
against the full dataset. They were ranked based on their performance (that is, the
better combination has a higher rank). Primarily, they are based on those averages
and secondly on their results against the full dataset. Those ranks were then
compared and combination’s ranked position changes have been calculated. In other
words, if one combination was at rank 3 on the averages and rank 5 on the full
dataset, the ranked position change would be of -2.
In Table 5-5 the best five results for averages are presented. Those are results for 7
servers only since 7 servers outperform 3 servers. With node and task heuristics
where it says CC 5, it means they were trained as cooperative coevolution with
algorithm 5. Similarly learned server heuristics are represented as NN <algorithm>
<executing node heuristic> <task heuristic> <number of servers>. Along with those
heuristics, their average results and the results on the full dataset are also presented.
With those values, their rank position changes are also presented.

Table 5-5 Best five from averages

Algorithm	 Node	heur	 Task	heur	 Server	heur	 Results	avg	
Results	
big	 Rank	change	

5	 CC	5	 CC	5	 NN	5	CC	CC	7	 30082	 959250	 0	

5	 CC	5	 CC	5	 NN	5	F	1.hand	7		 30094	 1297500	 0	

5	 G		 CC	3	 NN	5	F	1.hand	7		 30151	 1301650	 -24	

5	 F	 1.	hand	 NN	5	F	1.hand	7		 30370	 1301850	 -26	

5	 G		 1.	hand	 NN	5	F	1.hand	7		 30863	 1301800	 -24	

66

6. Conclusion

A special case of makespan optimization in scheduling is tackled in this thesis. The
problem consists of multiple different elements that need to be scheduled. The thesis
presents the system model that fits the given problem. That system model was
designed in three phases. The hardest constraint for the model to work was to run
the evaluation with the full dataset in less than an hour.
The complete models consist of two main algorithms and three types of heuristics.
The first algorithm is responsible for distributing tasks between scheduling servers.
The second one is responsible for executing tasks on executing nodes from one
scheduling server by connecting and disconnecting the executing nodes to that
server. The heuristics can be divided in task heuristics, executing node heuristics and
scheduling server heuristics. Scheduling server heuristics are responsible for
assigning the executing nodes to the scheduling servers. Executing node heuristics
are responsible for selecting which nodes to connect to and which nodes to
disconnect from the scheduling server. Finally, task heuristics are responsible for
selecting which tasks to execute next.
The thesis presents some of the possible greedy hand written heuristics which cover
those functionalities. The thesis also presents some machine learning techniques
that were used to improve the hand written heuristics. Those techniques include
using genetic programming with symbolic regressing trees that also have some
decision tree components in cooperative coevolution. Those were used to learn the
executing node and task heuristics. Artificial neural networks trained by particle
swarm optimization were used for scheduling server heuristics.
The results indicate that using machine learning techniques can greatly improve the
system’s efficiency. This presents a segment that can be further explored in order to
produce even better system results than the ones that are presented in this thesis.
The thing to note here is that by adding more parameters to the learning models, the
models may produce better results but may take more time to produce those
parameters. The hardest constraint states that the evaluation must be completed in
less than an hour.

67

7. References

[1] Pinedo, M. L. Scheduling: Theory, Algorithms, and Systems. Third edition,
NewYork, 2008.

[2] Scheduling (computing), https://en.wikipedia.org/wiki/Scheduling_(computing),
May 2016.

[3] Coulouris, George; Jean Dollimore; Tim Kindberg; Gordon Blair. Distributed
Systems: Concepts and Design (5th Edition). Boston, 2011.

[4] Genetic programming, http://en.wikipedia.org/wiki/Genetic_programming, May
2016.

[5] Koza, J. R.: Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: The MIT Press. 1992.

[6] The GP Tutorial, http://www.geneticprogramming.com/Tutorial/, May 2016.
[7] James C. Bean: Genetic Algorithms and Random Keys for Sequencing and

Optimization, University of Michigan 1993
[8] Coevolutionary algorithms,

http://wiki.ece.cmu.edu/ddl/index.php/Coevolutionary_algorithms, May 2016.
[9] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary approach to

function optimization,” in PPSN III: Proceedings of the International Conference
on Evolutionary Computation. The Third Conference on Parallel Problem Solving
from Nature. June 2005

[10] Kolmen D: Koevolucijski algoritmi. Faculty of Electrical Engineering and
Computing, May 2011

[11] Artificial neural network, http://en.wikipedia.org/wiki/Artificial_neural_network,
May 2016

[12] Marko Čupić: Prirodom inspirirani optimizacijski algoritmi. Metaheuristike,
2013.

[13] Activation functions,
http://en.wikibooks.org/wiki/Artificial_Neural_Networks/Activation_Functions, May
2016

[14] Sigmoid function, http://en.wikipedia.org/wiki/Sigmoid_function, May 2016
[15] Čupić, Dalbelo Bašić, Gloub: Neizrazito, evolucijsko i neuroračunarstvo, 2013.
[16] Particle swarm optimization,

https://en.wikipedia.org/wiki/Particle_swarm_optimization, May 2016
[17] Allaoua, Laoufi, Gasbaoui, Abderrahmani: Neuro-Fuzzy DC Motor Speed

Control Using Particle Swarm Optimization,
http://lejpt.academicdirect.org/A15/001_018.htm, May 2016

[18] Blum L. A., Langley P., Selection of relevant features and examples in
machine learning. Pittsburgh, October 1995

68

[19] Glaubius R, Tidwell T., Gill C., Smart W. D. Real-Time Scheduling via
Reinforcement Learning. Washington University in St. Louis 2010

[20] Shrivastava S. Reinforcement Learning for Scheduling Threads on a Multi-
Core Processor, Stanford 2010

[21] Lee C.-Y., Piramuthu S., Tsai Y.-K. Job shop scheduling with a genetic
algorithm and machine learning, Nov 2010

[22] Shaw M. J., Park C. S., R Narayan, Intelligent scheduling with machine
learning capabilities: the induction of scheduling knowledge. Carnegie Mellon
University 1990

69

On-line Scheduling Heuristics in Distributed Environments

Abstract

This thesis tackles a specific type of multiple machine scheduling problem. It deals
with scheduling tasks on executing nodes through a network of scheduling servers,
where the goal is to optimize the makespan. In this problem executing nodes
represent the machines with eligibility restrictions. Tasks are machine bound
because every task can only be executed at a specific machine and they can also be
precedence constrained to other tasks. The thesis describes the tackling of the
problem in three phases. Each of those phases presents a part of the system and
some hand written heuristics that were used in order to solve the problem. The thesis
also presents some machine learning techniques, like genetic programming and
neural networks, which were used in order to produce the best possible heuristics.

Key words

Scheduling, multiple machines, scheduling heuristics, on-line execution, distributed
environment, resource constrained, machine eligibility restrictions, machine learning
techniques, genetic programming, artificial neural networks

70

Heurističko raspoređivanje na zahtjev u raspodjeljenoj
okolini

Sažetak
Rad se bavi specifičnim tipom raspoređivanja na paralelnim strojevima. Bavi se
raspoređivanjem poslova na izvršne čvorove kroz mrežu servera za raspoređivanje.
Pri tome je cilj optimizacija vremena trajanja. U ovom problemu izvršni čvorovi
predstavljaju strojeve sa ograničenjima pridruživanja poslova. Svaki posao je
ograničen na samo jedan stroj, a početak izvođenja mu može ovisiti o nekom drugom
zadatku. Rad opisuje tri faze rješavanja problema. U svakoj od faza je predstavljen
dio sustava i neke rukom pisane heuristike koje su korištene u rješavanju problema.
Rad isto predstavlja neke tehnike strojnog učenja poput genetskog programiranja i
neuronskih mreža koje su korištene da bi se proizvele što bolje heuristike.

Ključne riječi
Raspoređivanje, paralelni strojevi, heuristike raspoređivanja, izvođenje u realnom
vremenu, raspodjeljena okolina, ograničenja u resursima, ograničenja pridruživanja
poslova, tehnike strojnog učenja, genetsko programiranje, suradnička koevolucija,
umjetne neuronske mreže

