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1. Introduction

Scheduling can be defined as a decision-making process that deals with the allocation

of resources to tasks under specific conditions with the goal to optimize one or more

objectives. Scheduling is widely used on a regular basis in a variety of tasks ranging

from large scale problems in manufacturing, industrial and service industries to highly

specific resource management especially in computer-based systems. Resources, tasks

and objectives can take different forms making scheduling a very interesting and de-

manding problem field.

During the recent decades a substantial amount of research was directed towards

exploring efficient techniques of dealing with scheduling-based problems. Though

usually complex and heavy in resource demands, these approaches very often try to

find suitable solutions to only concrete problem instances without focusing on gener-

ating reusable and efficient tools to cope with scheduling demands from a more general

perspective.

In this thesis the problem of scheduling tasks is addressed by means of genetic

programming with focus on the resource constrained scheduling problem as a math-

ematical model. As part of a very large body of research called machine learning,

genetic programming is used to learn and evolve suitable scheduling heuristics to be

applied efficiently to generate feasible schedules for a larger set of problem instances

taking performance and solution reusability into account.

In the first chapter of this work, the resource constrained scheduling problem is

presented alongside with properties definitions, constraints, complexity analysis and

different solving approaches. The second chapter presents genetic programming as a

nature inspired machine learning technique. The application of genetic programming

to the concrete problem domain is described in the third chapter including a detailed

overview of the devised hyper-heuristic problem solving model. The fourth chapter

focuses on the experimental setups and procedures used in the evolution of scheduling

heuristics. Achieved results with proper explanation and effectiveness analysis are

given in the fifth chapter. At last, a conclusion is given regarding the devised heuristic
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approach with possible future work extensions and ideas.
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2. RCSP

Before describing the problem this thesis focuses on, it is important to mention the

very basics of scheduling theory which is the critical path method (CPM) [8] that

emerged in the late 1950s. CPM is an activity network method with activity-on-node

representation commonly used with all forms of projects. This method assumes unlim-

ited availability of resources which leads to great underestimation of project duration

in total. However, this method is used even today as a basis for making scheduling

decisions especially for activities’ properties calculations.

One extension of the CPM model can be made by adding resource constraints

which define the resource constrained (project) scheduling problem, commonly ab-

breviated as RCSP or RCPSP.

2.1. Problem Definition

In general, the resource constrained scheduling problem considers activities and re-

sources. Activities have known durations and resource demands, while resources are

of limited availability. Additionally, activities are linked by precedence relations. The

problem consists of finding a feasible schedule with minimal total duration by assign-

ing start times to each activity such that the precedence and resource constraints are

satisfied.

More formally, the RCPSP can be defined as a combinatorial optimization problem

in form of a tuple [2]:

RCPSP = (A,E, p,R,B,D, c). (2.1)

All activities constituting the project are defined by the set A = {A0, . . . , An+1}.
By convention the activities A0 and An+1 represent the start and the end of a schedule.

These activities are usually referred to as dummy activities. The set of non-dummy

activities is identified by A′ = A \ {A0, An+1}.
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Durations are represented by the vector p ∈ Nn+2
0 where pi is the duration of

activity Ai. A special case applies for both dummy activities: p0 = pn+1 = 0.

The precedence relation is given by the setE which defines pairs such that (Ai, Aj) ∈
E means that activity Ai precedes activity Aj . Additionally, we assume that A0 pre-

cedes all other activities and that An+1 succeeds all other activities.

Generally, resources can be categorized as renewable, non-renewable and doubly-

constrained [16]. Renewable resources are available at any given time with full re-

plenishment capacity. Non-renewable resources are available only in predetermined

amounts without replenishment capability. Doubly-constrained resources are limited

per each time period and for the whole project duration. In this thesis we shall work ex-

clusively with renewable resources which can be formalized by the setR = {R1, . . . , Rr}
where the resources’ availabilities are defined as vector B ∈ Nr.

D ∈ N(n+2)×r
0 defines activity demands on resources with dummy activities having

demands of 0 for all resources. In order for an activity to execute, all demands have to

be satisfied.

The objective function is defined as c : χ → R. This function maps from the fea-

sible schedule space to real values. In case the tuple member is omitted, it is assumed

that the objective function is the project makespan.

The solution of RCPSP is schedule S ∈ χ in Rn+2 such that Si represents the start

time of activity Ai. Ci = Si + pi denotes the completion time of activity Ai. As we

assume that S0 = 0 , the schedule makespan equals to Sn+1. As already mentioned,

a solution S is feasible only if the precedence (2.2) and resource constraints (2.3) are

satisfied, where At = {Ai ∈ A | Si ≤ t ≤ Si + pi} is the set of concurrently running

activities at a given time t.

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (2.2)∑
Ai∈At

Dij ≤ Bj ∀t ≥ 0,∀Rj ∈ R (2.3)

The above defined constraints and the set At state that an activity can not be in-

terrupted once it is started. This property is referred to as not allowing preemption.

Taking this into account, RCSP can further be defined as follows:

Definition 2.1. The RCPSP is the problem of finding a non-preemptive schedule S

of minimal makespan Sn+1 subject to precedence constraints (2.2) and resource con-

straints (2.3).
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2.1.1. Computational complexity

According to the computational complexity theory, the RCPSP is one of the most in-

tractable combinatorial optimization problems. RCPSP belongs to the class of prob-

lems that are NP-hard in the strong sense [4] meaning that its decision version is NP-

complete. Here the decision version is defined as follows:

Definition 2.2. The decision variant of the RCPSP is the problem of determining

whether a schedule S of makespan Sn+1 not greater than H subject to precedence

and resource constraints exists or not.

If no final time at which all activities must be finished is given then the RCPSP

is not NP-hard (in the strong sense) as in this case a feasible solution can be found

in polynomial time. One of the approaches would include scheduling all activities

according to precedence constraints.

2.2. Properties Definition

For further problem analysis and implementation it is important to mention the basic

properties of RCPSP. For each activity in the problem instance there is a variety of

properties that can be calculated to define the time-frame in which a specific activity

can be scheduled.

Let the set of all activities that can be scheduled at a given time t be defined asE(t)

- the set of eligible activities at time t. To calculate the set, the following properties are

needed:

• ESj - the earliest start time of activity j

• EFj - the earliest finish time of activity j

• LSj - the latest start time of activity j

• LFj - the latest finish time of activity j

To calculate the above mentioned variables the total project time (horizon) T must

be known in advance. This value is either given in the problem description or it can be

calculated with any appropriate heuristic [9] or with the following simple formula:

T =
n∑
j=1

pj. (2.4)
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To calculate the values of ESj and EFj we set ES0 = EF0 = 0, while the other

values are calculated as follows:

ESj = max{EFi : i ∈ Pj} (2.5)

EFj = ESj + pj, j ∈ {1, . . . , n}, (2.6)

where Pj denotes the set of activities that directly precede the activity with index j.

The procedure for calculating the values of LSj and LFj is similar, but with the

difference that the recursive calculation starts form the upper bound T with LFn =

LSn = T by using the following expressions:

LFj = min{LSi : i ∈ Fj} (2.7)

LSj = LFj − pj, j ∈ {n− 1, . . . , 1}, (2.8)

where Fj denotes the set of activities that directly succeed the activity with index j.

One can note that the aforementioned calculation procedures assume unlimited re-

sources and rely only on the precedence relations.

Finally we can define E(t) as follows:

E(t) = {j : j ∈ A,ESj + 1 ≤ t ≤ LFj}. (2.9)

As can be seen from the above expression, each activity Aj can be scheduled and

executed in the given time frame between its earlier start and latest finish time where

we assume integer time values.

The concrete difficulty of a RCPSP instance depends upon many different parame-

ters of which the following are mentioned as most important in literature [6]:

1. Network complexity - NC

Defined as the average number of non-redundant arcs per node (including

the super-source and -sink nodes) [13].

2. The effect of resources:

(a) Resource factor - RFr

Defines the average activities’ needs for resources. This factor is de-

fined as follows:

RFr =
1

|A|
· 1

|R|
∑
j∈A

∑
r∈R

1, ujr > 0

0, otherwise.
(2.10)
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If the resource factor equals 1, each activity demands at least some amount

of each resource. If the factor equals 0, activities do not demand any

amount of any resource, therefore the problem collapses to a scheduling

problem without resources.

(b) Resource strength - RSr

The resource strength factor connects the demands for resources with

the actual resources’ availabilities. This factor is defined as follows:

RSr =
ar

1

|A|
·
∑

j∈A ujr

, (2.11)

where ar is the availability of resource with index r and ujr the demand for

the resource r of activity j. If the resource strength equals 0 then there is

no available amount of resource r. Otherwise if it equals 1, the amount of

available resources allows the problem to be treated as a scheduling prob-

lem without resources. It is important to note that some problem instances

are generated with the additional property that each resource has the same

resource factor. In that scenario RSr becomes a project-specific property.

It is important to note the correlation between the given factors and the execution

time. Experiments conducted by Kolisch et al. [13] show that a negative but very

weak correlation exists between the network complexity and the program execution

time, while a great magnitude of a positive correlation between the resource factor and

execution time exists as for a negative correlation between the resource strength and

the execution time.

2.3. Schedule Properties

To ease the presentation of schedule generation schemes and the understanding of

gained results a number of terms and definitions concerning different types of sched-

ules are introduced in this section. All given definitions are referenced from [9].

Definition 2.3. A complete schedule (CS) assigns a schedule starting and finishing

time SSj(CS) (SFj(CS) := SSj(CS)+pj) to each activity j = 1, . . . , n, i.e. activity

j is performed in the periods SSj + 1(CS), . . . , SFj(CS).

Definition 2.4. CS is called feasible if the precedence and resource constraints are

satisfied for all scheduled activities included in the schedule.
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Table 2.1: Notation Description

Notation Definition

CS feasible complete schedule

PS feasible partial schedule

SSj starting time for activity j

SFj finish time for activity j

pj duration of activity j

Definition 2.5. A (feasible) partial schedule (PS) is a schedule in which the starting

times are only set for a subset all activities.

Definition 2.6. A local left shift of an activity j consists of a sequence of starting time

reductions by one period with each intermediate schedule being feasible. If a feasible

starting time SS ′j < SSj for an activity j exists but can not be obtained by a local shift,

then assigning SS ′j to activity j represents a global left shift.

The defined local and global left shifts yield two classes of schedules:

Definition 2.7. Semi-active feasible schedules are schedules for which no further local

left shifts are possible. A subset of this set is build by the active schedules which are

schedules for which no further global left shift is possible. In terms of start times, an

active schedule is a schedule where none of the activities can be started earlier without

delaying some other activity (activity preemption is not allowed).

Definition 2.8. A non-delay schedule is a schedule for which there is no time point t

at which an eligible activity j can be started (in addition to the active ones) neglecting

the resource constraints for the interval [t, t + pj]. That is, in a non-delay schedule

no activity can be started earlier without delaying some other activity even if activity

preemption is allowed.

Here it is important to mention that the set of non-delay schedules is a subset of

active schedules (2.1), therefore it is on average of smaller cardinality. Also the set of

non-delay schedules may not contain an optimal solution. In other words, one can not

guarantee to find an optimal solution if considering only non-delay schedules.
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Figure 2.1: Schedule type subsets.

2.4. Schedule Generation Schemes

Schedule generation schemes (SGS) are used to generate feasible schedules out of

given project instances and activities’ priorities (if applicable). The generation schemes

are core ingredients of most heuristic solution procedures. The general idea is that the

SGS builds a schedule from scratch taking resource and precedence constraints into ac-

count where the construction can take place in three different directions. In this work,

only the forward planning direction is used for schedule generation (see 2.4.3). During

the building process, the SGS upgrades partial schedules until all activities are sched-

uled and a complete feasible schedule is generated. A partial schedule is therefore a

schedule where only a subset of the n+ 2 activities have been scheduled.

In the literature, two different schedule generation schemes are available: the serial

SGS and the parallel SGS. Both schemes generate feasible schedules but differ in the

way activities and time is handled throughout the procedures.

As can be seen in sections 2.4.1 and 2.4.2, both algorithms include a moment where

it is necessary to decide which activity will be considered next for scheduling out of

the current (eligible) set. In general, the first activity in the set is taken. But if prior-

ity scheduling is applied, then the process of picking an activity relies on its relative

priority in the given set.

Both the serial and parallel SGS are presented in the following sections each with

one concrete example. Both examples are based on the project instance given in figure

2.2.

Each activity is presented with its id ∈ {0, . . . , 8}, duration pj and resource de-

mand rj,1. For the purpose of simplicity, this project instance contains only one re-
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Figure 2.2: Example project instance.

source R1 = 4.

2.4.1. Serial Schedule Generation Scheme

The serial SGS is based on activity-incrementation meaning that there is no actual

time variable present during the construction of a schedule. The algorithm consists of

g = 1, . . . , n stages where n is the number of activities. In each stage one activity is

selected for scheduling out of the set of eligible activities. During the selection process,

eligibility concerns only the precedence constraint while the resource constraints are

considered later in the algorithm.

Each stage is associated with two disjoint activity sets: Sg and Eg. The set Sg com-

prises all activities that are already scheduled and part of the current partial schedule in

the stage g. The set Eg comprises all activities eligible for scheduling in stage g. Note

that the conjunction of Sg and Eg does not always give the set of all activities as some

activities are not eligible for scheduling at this stage. Let J be the set of all activities

and let A(t) = {j ∈ J | Fj−pj ≤ t ≤ Fj} be the set of activities which are being pro-

cessed (active) at the time instant t. Now we can define R̃k(t) = Rk −
∑

j∈A(t) rj,k as

the remaining capacity of resource type k at the time moment t and Fg = {Fj | j ∈ Sg}
as the set of all finish times. Let further be Eg = {j ∈ J \ Sg | Pj ⊆ Sg} the set of eli-

gible activities where Pj is the set of immediate predecessors of activity with index j.

Finally, let K = {1, . . . , K} be the set of resource types. The serial SGS is described

in algorithm 1 [12].

During the initialization, the dummy activity j = 0 is assigned a completion time
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Algorithm 1 Serial SGS
Initialize: F0 = 0, Si = {0}
for g = 1 to n do

Calculate: Eg, Fg, R̃k(t) (k ∈ K); t ∈ Fg
Select one j ∈ Eg
EFj = maxh∈Pj

{Fh}+ pj

Fj = min{t ∈ [EFj − pj, LFj − pj] ∩ Fg | rj,k ≤ R̃k(τ),

k ∈ K, τ ∈ [t, t+ pj] ∩ Fg}+ pj

Sg = Sg−1 ∪ j
end for

of 0 before being inserted into the partial schedule. At the beginning of each step the

set of eligible activities Eg, the set of finish times Fg and the remaining capacities

R̃k(t) where t ∈ Fg are calculated and updated. After the initialization, one activity j

is selected from the eligible set. To be able to find the right finish time of the selected

activity it is necessary to calculate the earliest precedence finish timeEFj of that activ-

ity. Note that this earliest finish time is not a static value as it is determined only based

on the set of already scheduled activities. Now it is possible to calculate the earliest

precedence- and resource-feasible finish time Fj within the time frame [EFj, LFj].

The latest finish time is calculated by backward recursion from an upper bound of the

project’s finish time T [5]. This value must be determined beforehand.

The serial SGS generates active schedules as shown by Kolisch [11] meaning that

using this approach one is guaranteed to be able to generate an optimal schedule, as

described in section 2.3 of this chapter. The time complexity of the serial SGS is

O(n2 · |K|) [15].

For the purpose of easier understanding the serial SGS given in algorithm 1, a full

example is presented in figure 2.3. Activities’ priorities are given in table 2.2, while the

pre-calculated latest finish values are presented in table 2.3. These latest finish values

are calculated by using the expression 2.7.

Table 2.2: Priority values.

Activity index j 1 2 3 4 5 6 7

Priority value 2 7 3 4 6 5 1

11



Table 2.3: Latest finish times.

Activity index j 1 2 3 4 5 6 7

LFj 12 12 18 14 19 18 1

Figure 2.3: Serial SGS example.

12



For the above example it is important to notice that for each calculation of the

finish time Fj a full "table search" should be done which can be performed in O(n)
time where n is the number of entries. In other words, it is necessary to check for

a selected activity j whether there are enough resource available in all time periods

covered in the interval [time, time + pj], where time is a moment resulting from the

intersection [EFj − pj, LFj − pj]∩Fg. The final finish time is the first time (by value)

to fulfil all constraints. This part was simplified in the given example but should be

taken into account. As listed, the set of finish times also contains finish times of both

dummy activities. This is of particular importance as without the finish time of the first

dummy activity (source), no activity could be scheduled at time = 0.

The complete schedule generated by the serial SGS example is presented in figure

2.4 by using a resource-histogram (see section 4.5).

Figure 2.4: Resulting schedule.

2.4.2. Parallel Schedule Generation Scheme

The parallel schedule generation scheme is based on time-incrementation. Each iter-

ation g links to one schedule time tg. Activities scheduled up to iteration g are either

part of the complete set Cg or active set Ag. The complete set contains all activities

that have been scheduled and have completed up to tg, therefore we can define the

complete set as Cg = {j ∈ J | Fj ≤ tg}, where J is the set of all activities. The

active set contains all activities which are scheduled but have not finished yet, that is

Ag = {j ∈ J | Fj − pj ≤ tg < Fj}. In each iteration, one activity is selected for

scheduling out of the eligible set Eg = {j ∈ J \ (Cg ∪ Ag) | Pj ⊆ Cg ∧ rj,k ≤
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R̃k(tg)(k ∈ K)}. In other words, the eligible set contains all activities which can be

precedence- and resource-feasibly started at time tg. For Pj and R̃k(tg) definitions

refer to section 2.4.1.

The parallel SGS is described as follows [12].

Algorithm 2 Parallel SGS

Initialize: g = 0, tg = 0, A0 = {0}, C0 = {0}, R̃k(0) = Rk

while |Ag ∪ Cg| ≤ n do
g = g + 1

tg = minj∈Ag{Fj}
Calculate: Cg, Ag, R̃k(tg), Eg

while |Eg| > 0 do
Select one j ∈ Eg
Fj = tg + pj

Calculate: Ag, R̃k(tg), Eg

end while
end while
Fn+1 = maxh∈Pn+1{Fh}

The initialization sets the schedule time to 0, schedules the first dummy activity

(source) and sets available resource capacities. The first step in each iteration con-

sists of determining the current schedule time tg. This is simply done by taking the

minimum finish time of all currently scheduled activities. Afterwards, the complete,

active and eligible set are calculated together with the current resource availabilities.

The second step of each iteration schedules a subset of the eligible activities that can

be started at time tg. Even though the parallel SGS might have less than n iterations,

there is always exactly n selection decisions which have to be made [12]. The time

complexity of the parallel SGS is also O(n2 · |K|).
Both the serial and parallel SGS always generate feasible schedules in case of

the resource-uncostrained problem. The parallel SGS constructs non-delay schedules

meaning that it is possible to never gain an optimal schedule (see 2.3).

A complete run of the parallel SGS for the problem described in section 2.4.1 is

given in figure 2.5. In this case, the resulting schedule is identical to the schedule

generated by the serial SGS for this project instance (see figure 2.4).
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Figure 2.5: Parallel SGS example.

2.4.3. Planning Directions

Even though it is not focus to this work, it is worth mentioning the basic planning con-

cepts. A concrete schedule can be generated incrementally from multiple directions:

backward, forward and bidirectional planning [10].
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Backward planning simply builds a schedule by applying a schedule generation

scheme on a reversed project network where each activity is scheduled as late as pos-

sible. Usually this approach results in a schedule not beginning at the start of the

planning horizon. Therefore a simple left shift applied on all activities’ starting times

must be done.

Forward planning is the natural planning procedure where each schedule is con-

structed by scheduling activities from the start of the planning horizon. This procedure

is focus to this work and reflects the schedule generation schemes described in sec-

tion 2.4.

Bidirectional planning relies on constructing schedules in forward and backward

direction simultaneously, where forward and backward priority values must be com-

puted. Here no more information is provided as planning directions are out of the

scope of this work. More details can be found in [10].

2.5. Schedule Representations

One of the main challenges in using metaheuristics lies in the inherent difficulty of

choosing adequate representations for a given problem domain. Fortunately as this

thesis is based on a genetic programming approach, the representation of a schedule

does not influence the process of evolution as the main solution of GP is not a sched-

ule (see chapter 3). For that reason, this section briefly describes the main schedule

representation reported in literature [12].

To avoid confusion, it is important to notice that the below described representa-

tions define schedule representations in forms that yield concrete schedules only when

used as input for schedule generation schemes (see section 2.4). Actual schedules

which are results of schedule generation schemes are represented by a vector of finish

times (F1, F2, . . . , Fn). This type of representation is beneficial in its simplicity and

the ability to calculate all necessary values based on its content.

2.5.1. Activity List

In the activity list representation, a precedence feasible activity list is given:

λ = [j1, j2, . . . , jn]. (2.12)

In this representation, each activity must have a higher index than each of its pre-

decessors. As can be noticed, the serial SGS can easily be used in conjunction with
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this representation by simply choosing the next activity by index in each iteration. For

usage in the parallel SGS, additional transformations need to be applied.

2.5.2. Random Key Representation

The random key representation makes use of an array in which each activity j is as-

signed (typically a real-valued) number rj:

ρ = (r1, r2, . . . , rn). (2.13)

Both the serial and parallel SGS can easily be used to derive concrete schedules

using this representation. In each iteration of both algorithms we simply select the

activity with the highest or lowest value (depending on interpretation) in the eligible

set. From this approach one can see that the random values represent priority values.

2.5.3. Priority Rule Representation

The priority rule representation defines a list priority rules:

π = [π1, π2, . . . , πn], (2.14)

where each π is one priority rule. Both the serial and parallel SGS can be used to

generate schedules using this representation. In the decoding procedure, the priority

of the i-th activity is determined by the rule πi. This representation differs from the

random key representation in the fact that the priority values are calculated directly

during the decoding process and not beforehand.

For more information on different schedule representation refer to [12].

2.6. RCSP Solving Methods

Depending upon the characteristics of the resource constrained scheduling problem,

RCSP solving methods can generally be divided into exact and heuristic approaches [6].

Exact solving approaches search the complete space of feasible solutions and there-

fore guarantee optimality. But the search space is often of impractical size which

makes such approaches almost useless for a very large number of problem instances.

Nevertheless, it is important to mention the main representatives of this category:

• Integer Programming (IP) - In order to use IP as a solving approach, it is

necessary to introduce a large number of binary decision variables upon which a
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feasible schedule can be generated. This is generally impractical as the number

of variables grows in relation to the number of activities.

• Implicit Enumeration - This technique relies on implicit enumeration trees

and specific borders to conclude feasible solutions. Under good formulation,

this method is said to be useful.

• Branch-and-bound (B&B) - By using a tree structure and branch conditions

on relaxed problems this method can reduce the space of feasible solutions.

• Dynamic Programming - The initial problem is recursively divided into smaller

problems which are solved separately and later connected to generate the final

solution.

As exact methods are generally not applicable for larger problem instances, many

different heuristic approaches have been developed. Heuristics differ from exact meth-

ods by searching only a part of the solution space which offers possible better perfor-

mance in a given time frame but not optimality. Nevertheless, in most cases generating

a feasible and good enough solution is far more important than optimality. Therefore

heuristic approaches are a popular and useful option for solving the RCSP.

As this work is focused on a heuristic approach, further heuristic methods analysis

is given in the next subsection.

2.6.1. Scheduling Heuristics Classification

Known scheduling heuristics for solving the resource constrained project scheduling

problems can be further be classified into two categories: priority rule-based methods

(or constructive heuristics) and metaheuristic-based approaches [10].

The first class of methods always start with no scheduled activity. A single schedule

is incrementally constructed by selecting a subset of activities in each step until all

available activities are scheduled and a complete schedule is created. This process is

controlled by the schedule generation scheme (see 2.4) in combination with priority

rules (functions), where the latter is applied to calculate activities’ priorities.

The second class of methods are applied to initial complete solutions with the goal

of achieving improvement in terms of a selected criterion. This procedure consists of

successively applying a set of operators to transform one solution into another. The

main representatives of this category are genetic algorithms, tabu search, simulated

annealing, ant colony optimization and others. These approaches heavily depend on

selecting a suitable schedule representation (see 2.5).
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It is interesting too see that genetic programming offers a bridge between the men-

tioned two heuristics classes as GP is a metaheuristic-based approach for evolving

priority rules used in incremental schedule generation. This makes the GP approach

particularly interesting for research.

2.7. Scheduling Environments

As mentioned in the introduction part of this thesis, most traditional RCSP solving ap-

proaches focus on solving a specific problem instance, meaning that the problem being

solved is analysed under static conditions. In those conditions all activities’ values e.g.

due-date, duration and resource demands are fixed and do not change throughout the

scheduling process.

A far more interesting and demanding environment is the dynamic scheduling en-

vironment in which activities’ properties’ values are subject to changes at any time

before being scheduled. That is, changes are possible for all unprocessed activities.

Properties of activities that are already scheduled are, of course, not being changed.

This environment offers a challenging problem as it is not possible to apply all meth-

ods (exact or heuristic) to find reasonable solutions. One of the main approaches used

in generating dispatching (scheduling) rules that handle dynamic environments is ge-

netic programming. As this approach is an important part of this thesis, an example

with explanation is given in section 6.3.
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3. Genetic Programming

“How can computers be made to do what needs to

be done, without being told exactly how to do it?”
Arthur Samuel, 1959

As argued before, evolutionary computation (EC) techniques are in general able to

find high quality solutions for concrete problem instances, but evolutionary algorithms

by themselves are not able to handle one of the most challenging tasks in computer

science, namely getting a computer to solve problems without the need of program-

ming it explicitly [1]. This central and interesting task can be formulated by the given

quotation of Arthur Samuel.

Genetic programming (GP) has been around for more than 30 years and has been

widely received by the computer science community.

Functionally, GP is an evolutionary algorithm inspired by biological evolution and

aims to find computer programs that perform a user-defined computational task. It is

therefore a machine learning technique that searches the solution space of programs

instead of actual solutions to problem instances. This idea differentiates GP to other

evolutionary-based metaheuristics. GP is able to evolve higher-level solutions (pro-

grams) that can be applied to generate solutions to a variety of problem instances.

Therefore, GP offers a solid ground for evolving solutions in terms of the RCSP.

GP shares the same initial decision demands as other EC techniques, including se-

lecting the appropriate problem representation, genetic operators (crossover, mutation,

selection), fitness function and GP primitives. Each of these components are crucial

for a successful application of GP, therefore it is worth mentioning the basic concepts.

3.1. Fitness Function

The fitness function represents a crucial procedure used by GP during evolution to mea-

sure the quality of an individual solution (program). The fitness function is domain-
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specific and therefore reflects the inherent properties of the concrete optimization prob-

lem.

By applying the fitness function, each individual is associated with a value rep-

resenting its successfulness in learning to solve a given task. This value represents a

basic concept used in other operators e.g. fitness-based selection, guiding the search

and learning process of GP into the right direction.

3.2. Genetic Operators

Each GP evolution starts with a population of usually low fitness. Throughout the

evolution, the application of genetic operators transforms the initial population into a

fitter one. In terms of machine learning, these operators are defined as search operators.

Even though a variety of operators exists, the three principal genetic operators are [3]:

• Crossover - The crossover operator combines the genetic material of two (or

more) parents by swapping one or more parts of one parent with one or more

parts of the other. In terms of tree-based structures (see section 3.4) in the

crossover procedure, randomly selected subtrees of each parent are selected

and swapped.

• Mutation - Mutation operates on only one individual. Usually, after crossover

has occurred, each resulting child is additionally mutated with low probability

(parameter) in order to introduce new genetic material. In tree structures, a mu-

tation randomly selects a root node of a subtree and replaces it with a randomly

generated subtree.

• Selection - In general, this operator is applied to select individuals out of a

given population. The selected individuals are subject to other operators (usu-

ally crossover).

3.3. GP Primitives

The GP approach relies on building complex learning structures out of a set of more

simpler primitives. These primitives are divided into two sets: the function and termi-

nal set.
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3.3.1. The Terminal Set

Definition 3.1. The terminal set is comprised of the inputs to the GP program, the con-

stants supplied to the GP program and the zero-argument functions with side-affects

executed by the GP program [3].

From the very meaning of the word terminal one can see that the terminal set

contains elements which terminate a branch of a tree. No matter if inputs, constants

or zero-argument functions, terminals always return an actual numeric value without

taking an input. Therefore, terminal nodes have an arity of zero. In this context, arity

is simply the number of arguments (inputs) of a function.

The selection of an appropriate terminal set is not an easy task and needs to be

executed with special care, as terminals are in general very domain-specific and reflect

the actual problem state.

3.3.2. The Function Set

Definition 3.2. The function set is comprised of statements, operators and functions

available to a GP program [3].

The function set may or may not be domain-specific. Generally speaking, the range

of available functions is very large and may contain any available programming con-

struct. Some often used examples include:

• Boolean Functions - AND, OR, NOR, XOR.

• Arithmetic Functions - PLUS, MINUS, DIVIDE, MULTIPLY.

• Conditional Statements - IF, ELSE, THEN.

• Others - Memory functions, variable assignments, control flow statements,

loops etc.

Choosing the right function and terminal set can be difficult. As general rule, the

given sets should be powerful enough to be able to represent a solution to the problem

at hand. But one should not spend to much time crafting domain-specific functions

and terminals as GP is very creative at combining simple constructs into much more

expressive statements.
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3.4. Executable Program Structure

One of the most important steps in every EC application is selecting the appropriate

problem representation. Terminals and functions are not programs, but can be used to

create them by assembling executable program structures. Even though a handful of

different representation exist (graph, linear, tree and others), we will mention the most

important one: the tree representation.

3.4.1. Tree Structure

The figure 3.1 represents a simple tree-based solution. The tree can be executed in

many different orders, but there is a convention for the execution.

Figure 3.1: Tree structure example.

The two standard conventions for tree execution are prefix and postfix order execu-

tion. The postfix notation executes a tree by evaluating the leftmost node for which all

inputs are available. This order is referred to as postfix notation because the operators

appear after the operands. The second commonly used execution scheme is the prefix

order execution. It is the precise opposite of postfix notation as the operators appear

before their operands. In this order, nodes that are closer to the root node are evaluated

before the terminal nodes. The prefix notation has the advantage that execution time

can be saved in trees containing IF/THEN branches.

As the prefix notation is used in this work, an example execution of the tree in

figure 3.1 is given as follows:
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IF < X 10 + Y 4 6

Figure 3.2: Prefix notation example.

Internal states: X = 2, Y = 5

IF(<(X, 10), +(Y, 4), 6)

=> IF(<(2, 10), +(5, 4), 6)

=> IF(FALSE, +(5, 4), 6)

=> 6

Figure 3.3: Prefix evaluation example.

Here it is interesting to see that the tree structure uses only local memory as it is

build in inherently. For example, the values X and Y are only local to their parent

operator, meaning that they are not available to any other part of the program during

execution. This is also true for all other values.

The given example also presents the mentioned prefix notation advantage. As the

IF statement is resolved to FALSE, only the third argument is evaluated, while the

second argument does not need to be executed at all.
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4. The Application of GP

As discussed in the previous chapter, in terms of RCSP genetic programming gener-

ates higher-level solutions that can be used to find actual schedules for any problem

instance. As GP is a machine learning technique it is necessary to provide a learning

set upon which GP can evolve functions that can be used in combination with a sched-

ule generation scheme to schedule a set of activities and provide a feasible complete

schedule of good quality.

The mentioned function is used to calculate activities’ priorities which are used to

prioritize certain activities in the selection process of a given SGS (see section 2.4).

This function is called a priority function and represents the actual solution of GP in

terms of scheduling.

The main goal is to evolve appropriate priority functions on a selected learning

set and successfully apply them to any project instance, even outside the learning set.

Even though the process of evolving a qualifying priority function might take a longer

time than actually finding a solution to a concrete project, the result afterwards can be

used for generating schedules for any instance in a matter of seconds.

4.1. Implementation Model

In order to create a flexible and customizable development-experimental environment a

hyper-heuristic model was devised and implemented to evolve appropriate scheduling

heuristics for the RCSP using genetic programming.

To ease the usage of available GP implementations, the concrete implemented

model is coupled with ECF (Evolutionary Computation Framework) [7] and written

using the C++ programming language. This framework offers interfaces to simply

plug-in the necessary operators and run the evaluation with desired parameters. In

case of RCSP, the only operator needed to be implemented is the evaluation operator

modelled as the RCSPEvalOp class. This connection is presented with a class diagram

in figure 4.1.
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Figure 4.1: Association with ECF.

The RCSPEvalOp class implements the evaluate() function defined by the Eval-

uateOp interface that is exposed by ECF. This function takes as its only argument a

reference to a generic Individual object. This individual represents one solution of the

evolution. The idea of the evaluation class (RCSPEvalOp) is to evaluate the given so-

lution and return the evaluation measure value as a Fitness object. This object is then

assigned to the individual by the framework and later used in the proceeding evolution.

This is the only association needed for the framework to successfully run.

The evaluator class references four core component class instances: IMetaAlgo-

rithm, ProblemState, PriorityFunction and ICriterion.

The IMetaAlgorithm interface represents a generic scheduling algorithm inspired

by a concrete schedule generation scheme (see 2.4). As can be seen in figure 4.2, the

interface demands the implementation of the createSchedule() function which must

receive references to an initialized problem state and a chosen priority function.
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Figure 4.2: IMetaAlgorithm interface.

The priority function can be used for calculating activities’ priorities during or be-

fore the scheduling process, depending on the terminals (static and/or dynamic) and the

implemented SGS type. As the main representation of GP is a tree, the PriorityFunc-

tion class references the Tree class defined by ECF. The idea of the priority function

is to evaluate the current referenced tree and set priority values for all eligible activ-

ities exposed by the problem state. If custom priority functions are needed, one can

simply extend the PriorityFunction class and override the calculatePriorities function

accordingly.

The concrete project is modelled as a ProblemState instance (see figure 4.3). Each

problem state represents one concrete project containing all needed information, in-

cluding activities definitions and resource demands. Each activity definition includes

basic activity information as for example activity id, duration and references to prede-

cessor and successor activities. The resource demands are modelled as separate object

instances of the ResourceRequest class which references a concrete resource and stores

the needed amount. A specific resource is implemented as the Resource class. This

class stores basic resource information and exposes functions for taking and freeing a

resource as well as checking if the resource is available for a certain amount.

Apart from storing necessary information, the problem state exposes a variety of

functions for manipulating the activity and resource set with minimal effort. Here it is

also possible to customize or upgrade a problem state by extending the ProblemState

class. As shown in the class diagram, a concrete problem state also references the
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Figure 4.3: ProblemState class references.

Schedule class. As activities are manipulated through the problem state, it is generally

simple to update a schedule instance in the problem state class. This can, of course, be

changed if needed.

The last component referenced by the RCSPEvalOp class is the ICriterion inter-

face. This interface simply uses a complete schedule instance and calculates an arbi-

trary measure. In this work the main optimization criterion used is the makespan which

is simply the finish time of the last dummy activity which is equivalent to the total du-

ration of the scheduled project instance. A complete class diagram of the RCSPEvalOp

class with references is given in figure 4.4.

All components of the implemented hyper-heuristic model are generic and can

be extended and reimplemented as needed. The current implementation is oriented

towards the domain specifications of the used problem instances (see chapter 5) and

enables the usage of any appropriately described problem definition with an arbitrary

number of activities and resources.

Also it is important to note that the shown class diagrams contain only the most

crucial components and relations to avoid complex diagrams.
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Figure 4.4: RCSPEvalOp class references.

4.2. Custom Schedule Generation Schemes

As mentioned before, schedule generation schemes are modelled with the IMetaAlgo-

rithm interface which enables any generic implementation as long as the demanded

createSchedule function is implemented. In this work three custom SGS versions are

devised and implemented (see figure 4.5). Two versions are based on the parallel SGS

while the third is an implementation of the serial SGS.

Figure 4.5: Custom SGS implementations.
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4.2.1. Custom Parallel SGS

As time-incrementation is a natural approach to scheduling activities, two versions of

the parallel SGS are given. The main property that differentiates the two versions is

idleness.

The first implementation features a parallel SGS with inserted idleness. This ver-

sion selects the highest priority activity and schedules all other activities only if they

do not delay the start of the selected activity. This is true only if the high-priority ac-

tivity can be scheduled at a given time as the eligible set only takes the precedence

constraint into account while the resource constraint is resolved dynamically during

the scheduling process. This property that allows for a certain activity to be delayed

and scheduled at a later point is called inserted idleness. This approach is presented as

algorithm 3 (ParallelInsertedIdlenessSGS).

Algorithm 3 Custom Parallel SGS with inserted idleness
if has_no_dynamic_terminals then
priority_func.calculatePriorities(problem_state)

end if
while hasUnprocessedActivities do
E = getEligibleActivities()

if has_dynamic_terminals then
priority_func.calculatePriorities(E)

end if
Sort E by priority

tnext = getNextPossibleSchedulingT ime(E[0])

for i to |E| do
Ai = E[i]

if i > 0 and createsDelay(tnext, Ai) then
continue

end if
if areResourceAvailableFor(Ai) then

Schedule Ai
end if

end for
Skip to next time

end while
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The second version of a parallel SGS is very similar but does not include idleness.

Therefore, activities are schedules (if possible) by priority without special focus on the

activity with the highest priority. This version is shown as algorithm 4 (ParallelNoIn-

sertedIdlenessSGS).

Algorithm 4 Custom Parallel SGS with no inserted idleness
if has_no_dynamic_terminals then
priority_func.calculatePriorities(problem_state)

end if
while hasUnprocessedActivities do
E = getEligibleActivities()

if has_dynamic_terminals then
priority_func.calculatePriorities(E)

end if
Sort E by priority

tnext = getNextPossibleSchedulingT ime(E[0])

for i to |E| do
Ai = E[i]

if areResourceAvailableFor(Ai) then
Schedule Ai

end if
end for
Skip to next time

end while

The parallel SGS versions are of particular importance as they are build upon a

time-incrementation approach which is easily applicable in dynamic conditions.

4.2.2. Custom Serial SGS

Another approach concerns the serial SGS. Here no special customizations are made

and the concrete serial SGS described in chapter 2.4.1 is implemented alongside with

support for dynamic activity calculation. Here it is important to say that the perfor-

mance of the parallel SGS outperforms the serial SGS by far. This is due to the need

of the serial SGS to check resource and precedence constraints for each time moment

of an activity’s duration, which is a very demanding operation.
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Also, the serial SGS is based on activity-incrementation and therefore not suitable

for dynamic conditions, at least not in its primal form.

Both versions support dynamic and static terminals. If only static terminals are

present the priorities calculation can be done only once before the SGS executes. If

at least one dynamic terminal is used, the SGS will recalculate the priorities of the

eligible set in every iteration automatically.

4.3. RCSP Terminal and Function Set

In order for GP to be expressive and have the tools to evolve intelligent solutions, it is

necessary to define an appropriate and domain-specific terminal and function set.

The defined function set comprises basic arithmetic and logic operators as well as

some custom ones as shown in figure 4.1. It is up to GP to use these operators to build

more complex and meaningful operations.

Table 4.1: Function Set

Function name Definition
+, -, * addition, subtraction and multiplication

/ Protected division: DIV (a, b) =

1, |b| < 0.000000001

a
b
, otherwise.

MAX MAX(a) =

a, a > 0

0, otherwise.

POS POS(a) =

a, a > 0

−a, otherwise.

NEG NEG(a) = −a

IF IF (a, b, c) =

b, a > 0

c, otherwise.

Choosing an appropriate terminal set is a far more comprehensive task, especially

in terms of RCSP. In general, RCSP domain-specific terminals can be divided into

two categories: static and dynamic terminals. Each of these categories can further be

divided into project-specific and activity-specific terminals. Project-specific terminals

include terminals which are specific for a project instance and depend only on the

32



general project properties and not on specific activities. Activity-specific terminals are

terminals which reflect properties specific to a concrete activity.

Static terminals do not change during execution which means it is possible to cal-

culate their values only once before the scheduling begins. The complete set of static

terminals is presented in table 4.2.

Table 4.2: Static Terminal Set

Category Terminal Description

Project-specific

RF resource factor

RS resource strength

TNA total number of activities (not including dummies)

TD total project duration (horizon)

Activity-specific

D activity duration

RR number of required resources

RRT RR times quantity required for each resource

ARU average resource usage

DPC number of direct predecessors

DSC number of direct successors

TPC total number of predecessors

TSC total number of successors

SPC number of stages (levels) in predecessors’ tree

SSC number of stages (levels) in successors’ tree

GRPW* greatest rank positional weight all

ES earliest activity start

EF earliest activity finish

LS latest activity start

LF latest activity finish

Dynamic terminals are more flexible and their value can change according to the

current state of activities and resources. Therefore, if dynamic terminals are used, it

is necessary to recalculate priorities of certain activities during execution. The set of

used dynamic terminals is given in table 4.3.
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Table 4.3: Dynamic Terminal Set

Category Terminal Description

Project-specific

NUA number of unprocessed activities

NAA number of active activities

NPA number of processed activities

SUD sum of durations of unprocessed activities

SAD sum of durations of active activities

SPD sum of durations of processed activities

Activity-specific
NSP number of scheduled predecessors

SL slack: max(EF −D − time,0)

The proposed sets are quite large and hold different types of information. The

question is, which terminals are most important and store information that is crucial

for scheduling? As in RCSP activities are scheduled, one should give more focus to

activity-specific terminals. These terminals hold valuable information and can be used

to extract decisions of whether or not an activity should be scheduled at some point.

The process of filtering the most useful terminals in terms of evolution is described in

chapter 5.

4.4. Optimization Criterion

A crucial step in using evolutionary computation techniques is modelling the fitness

function. Even though many different criteria can be analysed in the RCSP as TWT

(total weighted tardiness),ETw (weighted earliness and tardiness), total weighted com-

pletion time and others, this work focuses on the project makespan.

As mentioned in chapter 2, the project makespan equals the project duration which

is simply the finish time of the last dummy activity. It is a common goal in a vari-

ety of scheduling problems to create schedules of minimal makespan in order to save

time and resources. To achieve minimal total project duration it is necessary to sched-

ule activities for simultaneous execution (if possible) and avoid serialization. This is

apparently a very complicated task considering resource and precedence constraints.

In terms of GP, a learning set must be established (see chapter 5) which means that
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the optimization criterion must take many different project instances into account and

guide the learning and evolution process into the right direction.

As project instances differ in the number of activities and their hardness (in terms

of finding good solutions) it is profitable to define a fitness function that is normalized

accordingly, meaning that it gives the same range of values for any kind of project.

Even though a variety of functions can be defined, all of them can be generalized into

two different approaches. The first approach concentrates exclusively on the number

of projects and not on the project hardness, yielding the following function:

fi =
Ci

pavgi · √ni
, (4.1)

where fi is the fitness value, Ci the achieved makespan, pavgi the average activity du-

ration and ni the number of activities for project instance i. One could argue about the

selected division with
√
ni as being a subjective measure. But a handful of tests for a

variety of project instances and measures proved this decision valid as good normalized

values are achieved for the whole range of used instances.

The second approach additionally takes the project hardness into account. The

influence of a project’s hardness can be modelled using the resource factor RF and

resource strength RS described in section 2.2. Here the following function is devised:

fi =
Ci ·RFi

pavgi · √ni ·RSi
, (4.2)

where the resource factor and strength are defined on the project level. Even though

this function achieves good measures when comparing easier to hard problems, it is not

good enough in normalizing values according to the number of activities, yielding a

large range of values for different projects. This property could possibly lead to forcing

GP evolution to focus on harder problems, neglecting the more easier ones. Because

of this, the function 4.1 was selected to represent a solution’s fitness value in all further

experiments.

As GP learns on base of a learning set containing more than one project instance,

the final fitness value is determined on behalf of the achieved values of all projects as

follows:

fk =
fi
N

=

∑N
i

Ci

pavgi ·√ni

N
, (4.3)

where fk is the fitness value for one individual solution for all projects in a given set

with N instances. As can be seen from the selected equation, in each evaluation step
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only the value Ci is subject to change while all other values are constants. Therefore,

the goal to find the minimal fk reflects in favouring ever smaller values of Ci.

4.4.1. Variable Optimization Criteria

Another beneficial aspect of the GP approach to solving the RCSP is the ability to

easily target any optimization criterion by simply changing the implemented schedule

evaluation procedure. In terms of the devised hyper-heuristic model, one must simply

add a custom ICriterion class and plug it into the evaluation procedure. No further

changes are necessary for a successful application.

Even though only the makespan criterion is targeted in this work, here we present

two other possible optimization criteria which can simply be inserted into the existing

framework: the total weighted completion time (4.4) and the net present value (4.5).

∑
wiCi, (4.4)

n∑
i=1

cFi e
−αCi . (4.5)

This optimization criterion variability contributes to the various benefits of the ge-

netic programming solving method.

4.5. Schedule Visualization

In lack of available software solutions for easier solution understanding and visual fea-

sibility checking, throughout this work an additional resource histogram visualization

tool was implemented using the Java programming language.

The tool renders a resource histogram for any valid input definition file. The input

file should contain basic information for each activity following the prescribed defini-

tion rules.

The general input file definition is simply a text file with the following structure:
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# this is a comment

# project info: this part is optional!

# if you don’t use it, comment or remove it

# first line: project name

PR_INFO

<name>

# resource info

# first line: number of resources

# other lines: <resource id> <amount>

RES_INFO

<num>

<other>

# activity info

# first line: number of activities without dummies

# other lines:

# <activity id> <duration> <finish time> <<resource requirements>>

# <resource requirements>: <id0 amount> <id1 amount> ... <idR-1 amount>

ACT_INFO

<first line>

<other lines>

Figure 4.6: Resource histogram input file structure.

The tool supports any number of activities and resources, rendering a responsive

graph whose size can be changed dynamically. An example input file with two re-

sources is presented in figure 4.7.

PR_INFO

example1

RES_INFO

2

0 4

1 4

ACT_INFO

6

1 2 2 1 3

2 4 6 1 3

3 1 1 0 1

4 2 8 2 2

5 3 4 2 1

6 1 9 4 0

Figure 4.7: Example resource histogram input file.

The given example yields the following output graph:

The rendered resource histogram presents each activity with an id-signed rectangle
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Figure 4.8: Example resource histogram graph.

for each resource allocation, where the x-axis represents the time flow, while the y-axis

is divided into partial graphs for each resource. Therefore, the activity with id = 1

starts in t = 0 and finishes in t = 2, taking two units of resource R0 and three units

of resource R1. The project makespan is given with the finish time of the last activity

which is, in case of example in figure 4.7, the activity with id = 6 with its finish time

in time moment t = 6. As dummy activities have no duration and resource demand,

they are not shown in the graph and should not be part of the definition file.

In order to start the tool, one must provide the input file as the first and only argu-

ment and run the rendering process. If the Java code is packed into a jar file, the run

command is:

java -jar resource-histogram.jar input.txt

Figure 4.9: Start tool (jar) command.

After the tool starts, a graph is presented in the given program window and a .png

file is automatically generated and stored into the root folder of the executable file.
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5. Experimental Setup

As in other EC techniques, the GP working environment is also coupled to the necessity

of finding good parameters for the underlying algorithms and domain-specific evalua-

tor where every decision must be supported by an extensive round of experiments. The

experimental flow applied in this work contains the following major steps:

1. Initial parameters

2. Defining the learning and test set

3. Convergence analysis

4. Feature selection

5. Parameter optimization

6. Conducting final experiments

Each of these steps depends on the previous ones. Because of this, every decision

brought as a result of concluding a specific step is done on behalf of a round of experi-

ments and a handful of experience. In the next sections, each step is described in more

details, while the final experiments are given in chapter 6.

5.1. Initial Parameters

Before any experiments can be conducted it is necessary to define an initial set of

parameters to start with. In terms of GP, a set of used terminals and functions must be

decided upon and the basic algorithmic parameters must be set.

Initially, all available functions are used for the function set, while a subset of

activity-specific and project-specific terminals are used to form the terminal set (see

table 5.1).
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Table 5.1: Initial function and terminal set.

Functions +, -, *, /, MAX, POS, NEG, IF

Terminals GRPW*, DSC, RS, RR, ARU, TPC, NSP

Additionally, the basic evolution parameters have to be set. Here a Steady State

Tournament genetic algorithm is used with the following parameters:

Table 5.2: Initial EC parameters.

Tournament size 3

Tree max depth 7

Mutation probability 0.3

Population size 500

SGS type PSGS (inserted idleness)

This configuration is used for the first round of experiments in dataset selection and

convergence analysis.

5.2. The Learning and Test Set

As a machine learning technique, GP needs a selected learning set to learn and evolve

results of expected quality. In this work existing problem sets were used from the

project scheduling problem library (PSPLIB) [14] which contains various types of syn-

thetic resource constrained project scheduling problems as well as optimal and heuris-

tic solutions.

Each project definition file contains a well defined structure. This structure was not

changed in any way and the implemented evaluator was adapted to easily parse input

files of the given type, offering a good and large data set for the purpose of this work.

The existing project instances are of different properties differing in the number of

activities, network complexity, resource factors, resource strengths and project hori-

zon. The range and various values of the used instances is presented in table 5.3.

Here the first step is to decide upon a large enough learning set that will cover a

variety of instances with different properties. The total number of available project

instances is greater than 2000. Therefore, a learning set of 56 instances has been

established, covering various types of instances.
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Table 5.3: Data set values range.

Property name Values
Number of activities {30, 60, 90, 120}

Network complexity {1.5, 1.8, 2.1}

Resource factor {0.25, 0.5, 0.75, 1.0}

Resource strength {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0}

The second step includes establishing a large enough test set containing instances

the algorithm has not seen before during the learning phase. As the test set all avail-

able instances without the selected learning set are used, building a test set of 1984

instances. This means that the selected learning set is more than 35 times smaller than

the test set, or precisely it is roughly 2.82 % of the test set.

Here a larger learning set of 112 instances was also devised, but according to a

handful of preliminary experiments, the smaller set showed better overall results. This

was tested by comparing the results for both learning sets for the best and average

solutions throughout 50 points for 12 runs where each run had the terminal evaluations

number set to 106. The first result presented in figure 5.1 is generated by taking the

best solutions according to the selected learning set and evaluating them on the test set.

Figure 5.1: Best solution success.

As shown, the smaller learning set generates better solutions and is of smoother

convergence. Here one can also note that after a certain numbers of evaluations, the
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larger learning set generates solutions that are even worse than the initially randomly

generated ones when tested. This is not the case with the smaller learning set, as all

solutions tend to be of approximately the same quality.

Additionally, the average success of solutions generated by both learning sets is

presented in figure 5.2.

Figure 5.2: Average solution success.

The results also supports the smaller set as it evolves overall fitter solutions.

Both results are tested on a separate test set containing 1872 instances. This set

was established by taking all instances and filtering out those existing in the 56 and

112 instances learning sets, offering the same conditions for both options.

The presented results support the selection of the smaller learning set, which is

later used in all further experiments. A full list of selected projects building the 56

instances learning set is presented in appendix A with all major properties. One can

see that a variety of properties’ values is covered, building a meaningful and qualifying

learning set.

5.3. Convergence Analysis

The first step in the GP experimental flow is to determine the appropriate number of

evaluations needed for GP to converge. This is necessary to set the maximal number

of evaluations to be used in all following experiments. Ideally, this number should be

as low as possible to save time and resources.
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Convergence analysis is done by running a set of N experiments for which the ter-

minal condition is set to be an excessive number of evaluations. This terminal number

usually depends on the task at hand and can be as large as 106 evaluations or more.

In each generation of each run the minimum minimum, minimum average, median

minimum and maximum minimum of N runs are recorded to a log file. After all runs

terminate, all N log files are parsed and the algorithmic state of the recorded variables

is stored into a certain number of points, e.g. 100. This process yields a predefined

number of state points reflecting the algorithmic convergence throughout all genera-

tions. After plotting the generated values, one can easily determine the appropriate

number of evaluations to be used in further experiments. The result of the conver-

gence step should indicate the minimal needed number of evaluations which produce

the greatest change in minimal and overall fitness values.

In this work for the selected learning set of 56 instances two rounds of experiments

have been conducted, one for each type of parallel SGS (with and without inserted

idleness). Each round consists of 30 separate runs with the terminal evaluation number

set to 106. Here the serial SGS is not analysed as the total evaluation would take too

much time to finish and at this stage the parallel versions offer a much more promising

environment for further experiments. The convergence results for both algorithm are

shown in 5.3 and 5.4 using 100 state points.

Figure 5.3: Convergence for the parallel SGS with inserted idleness.
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Figure 5.4: Convergence for the parallel SGS with no inserted idleness.

As can be seen in the given figures, the greatest fitness value change happens in

the first 2 · 105 to 3 · 105 evaluations. Therefore, the maximum evaluations termination

number is set to 2.5·105 evaluations. This value is further used in the process of feature

selection.

Additionally it is interesting to notice that the given results indicate that the parallel

SGS with no inserted idleness generates generally better results. However, the parallel

SGS with inserted idleness is used in feature selection in hope that its nature to prefer

higher priority activities will reflect on a smarter feature choice.

Even though some major improvement in solution fitness happens for both algo-

rithm versions after approximately 8.5 · 105 evaluations, this evaluation number is not

selected as a terminal one in the first round of further experiments as this would lead

to huge time consumption needs. Also it is important to note that this behaviour is a

characteristic of the learning set and not the test set for which stagnation occurs much

earlier.

5.4. Feature Selection

After convergence analysis is done, the next step includes the feature selection, as now

the maximal needed number of evaluations for generating good results is determined.

The goal of this process is to filter functions and terminals which are most impor-

tant and beneficial for the evolution and to eliminate those who do not present any

useful information source. Here many approaches can be thought of, but in general

one can divide feature selection into two categories: full feature selection and greedy
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feature selection. Each of these heuristic approaches can be realized in two counter

ways, as a build-up and build-down heuristic approach.

The build-up feature selection, as its name states, tries to build the optimal set of

operators. This selection type uses two sets: the set of used and unused operators.

The used operators set contains those operators which are used by the evolutionary

algorithm during execution, while the unused operators set represents operators which

are currently not used. Usually this heuristic starts with an empty used operators set,

even though one can predefine the starting operators set if desired. In each iteration,

the selection algorithm selects one operator from the unused set and inserts it into the

used operators set. The newly establish operators set is then used in evolution and

a final fitness value is determined. After evaluation is done, the inserted operator is

removed from the used operators set and added back to the unused set. This process

is repeated for all operators in one iteration. When all operators are evaluated after

separate injection, the one operators with the highest score is selected for joining the

used operators set. In order for the selected operator to finally be added, the overall

algorithm success must be greater with the used set including the new operator than

without it. If this is not true, the selected operator is not added to the used operators

set. This decision point ensures that the an operator can be added only if it enhances

the targeted algorithm. The selection process is repeated until no operator is added in

one iteration (or all are added).

The described build-up feature selection process is realized as a full selection as

all operators are analysed in each iteration. Another approach consists of selecting the

first operator that enhances the algorithm. This approach is known as greedy build-up

feature selection.

Contrary to the build-up heuristic, the build-down feature selection heuristic tries

to enhance the used operators set by filtering out operators that decrease the overall

algorithm success. This selection process starts with the used operators set being full.

In each iteration, one operator is removed from the set and the used operators set is used

in evolution, yielding a fitness value. This is repeated for each operator. After all fitness

values for each removed operator are determined, the one operator whose removal

results with the highest enhancement is set to be the candidate for being removed from

the used operators set. In order to be removed the overall algorithm success must be

higher with the operators set not containing the selected operator than containing it.

Otherwise, the operator stays in the used operators set.

This build-down feature selection is also described as a full selection. The greedy

version of this selection simply removes the first operator whose removal brings any
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kind of algorithm enhancement.

Here it is important to mention that after adding or removing an operator, the al-

gorithm evaluation must be repeated a certain number of times, resulting in a list of

fitness values, where the overall algorithm success is determined as the median fitness

value. In this work, each algorithm evaluation is repeated ten times. Also one can no-

tice that the results of both greedy versions depend on the order of the terminals listed

in the configuration file as each terminal is selected in a serial manner which is defined

before the process starts.

The evaluation process can potentially demand a great amount of time in terms

of RCSP, depending on the evaluation function performance and the number of used

project instances. Therefore it is necessary to exploit parallelism in terms of algo-

rithm evaluations. In this work, a generic queue-based thread pool implementation

was implemented in order to use all processor resources available on one machine.

This implementation offers an input queue where any generic task can be scheduled

for execution. The thread pool is automatically initialized to the number of logical

processors in a system. All threads pull tasks from the input queue and execute them,

leaving the result in the output queue. The main thread can wait for all tasks to be

finished and dynamically cast the results to whatever value is predefined. This model

can be used in all feature selections.

As these procedures are very time consuming, here only the partial results of the

greedy build-up selection are presented in table 5.5 and 5.6, where the predefined input

order of all terminals is given in table 5.4.

Table 5.4: Initial terminals definition order.

Terminals

GRPW*, DSC, DPC, NSP, TSC, TPC, SSC, SPC, D, ES, EF, LS,

LF, TNA, RF, RS, RR, RRT, ARU, NUA, NAA, NPA, SUD, SAD,

SPD, SL
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Table 5.5: Selected static terminal set.

Category Terminal Description

Project-specific TNA total number of activities (not including dummies)

Activity-specific

RRT RR times quantity required for each resource

DPC number of direct predecessors

DSC number of direct successors

TPC total number of predecessors

TSC total number of successors

SPC number of stages (levels) in predecessors’ tree

SSC number of stages (levels) in successors’ tree

GRPW* greatest rank positional weight all

EF earliest activity finish

Table 5.6: Selected dynamic terminal set.

Category Terminal Description

Activity-specific NSP number of scheduled predecessors

As shown above, the majority of the selected terminals are static activity-specific

terminals, while only one dynamic terminal is selected. This is an expected result due

to the fact that crucial information is stored in activity related terminals and that the

predefined order of all terminals favours static terminals. Most dynamic terminals are

given at the end of the predefined range, therefore it is expected that those terminals

will be selected at some earlier stage of the selection procedure.

Even though the selection process did not finish completely at this point, the partial

results are used in further optimization steps.
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5.5. Parameter Optimization

One important step in the optimization of a GP system is the parameter optimization.

The goal of this procedure is to find an optimal set of algorithm parameters that are ca-

pable of leading the evolution process into the right direction as efficiently as possible.

This optimization step is highly domain specific and therefore coupled to the concrete

evaluation function.

Full parameter optimization is a potentially very time consuming procedure, espe-

cially if a larger number of parameters is considered. Therefore, the optimization step

is done by optimizing one by one parameter from the selected parameter set where

after each optimization phase one parameter value is fixed before proceeding to the

next step. Even though this resembles a greedy approach, it usually results in a good

parameter selection that can be generated in a reasonable amount of time.

In each optimization step one parameter is considered. For this parameter a range

of values are selected and a set of experimental runs is conducted with the defined

parameter configuration. In each run the best fitness values are tracked to offer enough

information to make a meaningful decision. After the optimization is done for all

selected parameters, one can start to conduct final experiments.

In this work three parameters are considered for the tuning phase: population size,

mutation rate and tree depth. Each tuning step considers three values for each param-

eter where a set of 20 runs is executed. Here it is important to note that a decision is

made on behalf of solutions evaluated on the test set, not on the initial learning set.

The first optimization step includes optimizing the population size parameter. Here

a range of three different population sizes are considered: 200, 500 and 1000. The

achieved results are shown in figure 5.5. One can see that best results are generated for

a population size od 200 and 1000 individuals, where the larger population generates

slightly better solutions but with a larger dissipation of fitness values. However, since

the results are relatively similar and a larger population is proven to be a good option,

the population size of 1000 is selected.
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Figure 5.5: Boxplot for population sizes.

The second parameter to be considered is the individual mutation rate. Here three

different values are considered: 0.3, 0.6, 0.9. The results are shown in figure 5.6.

Figure 5.6: Boxplot for individual mutation rates.
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Here the best choice is a mutation rate of 0.3, that is 30 % which generates overall

best solutions.

The last parameter considered for the tuning phase is the tree depth. The results for

three different tree depths are shown in figure 5.7. Even though all three depths have

almost the same median values, the three depth of value 7 generates best results.

Figure 5.7: Boxplot for tree depths.

The final selected parameters are shown in table 5.7.

Table 5.7: Final selected algorithm parameters.

Population size 1000

Mutation probability 0.3

Tree max depth 7
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6. Results

6.1. Final Experiments

For the final stage of experiments, all selected parameter values from the previous

stages are taken into account. Here all three different schedule generation schemes are

considered (see chapter 2.4).

For each SGS, a set of 20 runs is executed with the additional terminal stagnation

value set to 50. This property ensures that the evaluation process terminates after 50

consecutive generations without improvement. For each run of each SGS, the final

best solution is taken and evaluated on the test set (see 5.2). The achieved results are

shown in figure 6.1.

Figure 6.1: SGS final runs.

Here the psgs denotes the parallel SGS with inserted idleness, the psgs1 the parallel
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SGS with no inserted idleness and finally the ssgs denotes the serial SGS version.

In general, the results show an interesting difference between all three devised SGS

versions. The parallel SGS with inserted idleness shows worst results with greater dis-

sipation of best fitness values while the parallel SGS with no inserted idleness gener-

ates much better results than all other versions. The serial SGS seems interesting as it

generates solutions of very similar fitness values (low dissipation).

6.2. Comparison With Existing Heuristics

In order to see how successful the solutions are, it is necessary to compare the best

ones with existing scheduling heuristics (priority rules). For this reason, a few well

known scheduling heuristics are selected and applied to the aforementioned test set.

For easier comparison, all results are presented in two tables, where the results in

table 6.1 show heuristic and GP achievements for the learning set, while the table 6.2

presents achievements for the test set. Here the best available GP solution for each

SGS version is used to calculate the given values.

Table 6.1: Heuristic and GP results for the learning set.

Heuristics PSGS PSGS1 SSGS
GRPW* 2.239477 2.209870 2.218405

LST 2.240350 2.204331 2.221249

LFT 2.232402 2.192071 2.223641

GRPW 2.378092 2.363225 2.433958

SPT 2.476479 2.372084 2.595813

MSL 2.368033 2.329719 2.366418

MIS 2.305050 2.256045 2.350593

MTS 2.238293 2.208614 2.248315

GP 2.188030 2.147660 2.187520
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Table 6.2: Heuristic and GP results for the test set.

Heuristics PSGS PSGS1 SSGS
GRPW* 2.096891 2.071174 2.091556

LST 2.086764 2.063453 2.080368

LFT 2.092721 2.063559 2.094752

GRPW 2.208572 2.185470 2.257091

SPT 2.287955 2.220975 2.408350

MSL 2.169497 2.138705 2.203557

MIS 2.175285 2.139966 2.211620

MTS 2.114407 2.081516 2.115462

GP 2.090783 2.067081 2.088606

The comparison clearly shows that the best solutions evolved by GP achieve better

results than most of the existing priority values for all SGS versions. For the parallel

SGS with inserted idleness and the serial SGS only the LST priority rule achieves better

results than the GP solution. In case of the parallel SGS with no inserted idleness,

the priority rules LST and LFT achieve slightly better results. The description of all

applied heuristics can be found in appendix B.

Additionally it is interesting to see the difference between achieved results for all

project instances in the test set and the best known results in terms of makespans. This

comparison is given in figure 6.2 where the results are achieved by the parallel SGS

with no inserted idleness as this SGS proved to generate best results.

Figure 6.2: Best known and achieved results differences (PSGS1).
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In the given figure, the blue line marked with squares represents the projects’ hori-

zon values, the orange line marked with rotated squares represents best-known solu-

tions, the grey line marked with triangles represents the results achieved with the GP

solution and finally, the yellow line marked with circles represents the absolute differ-

ence between best-known and achieved results.

One can notice that the overall difference between best known and achieved results

differentiates only in small amounts, proving that the GP solutions give high-quality

results for any instance in the test set. Also it is worth mentioning that the gap be-

tween achieved makespans and the maximum total project durations (horizons) is rel-

atively large for all project instances without exception. This indicates that genetic

programming is capable of evolving solutions which will tend to generate schedules of

high-quality for a variety of different project instances.

For easier analysis an additional error histogram is given in figure 6.3. This figure

shows the distribution of the aforementioned differences in selected intervals for the

same solution as in figure 6.2.

Figure 6.3: Best known and achieved results difference histogram (PSGS1).

This result shows that the smallest differences (errors) are by far the most common

ones. As the difference grows, it becomes of much rarer occurrence.

Result differences and histograms for all three SGS variations can be found in

appendix C. Concrete solution examples are given in appendix D.
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6.3. Dynamic Environment

One of the main advantages of GP evolved priority functions is their applicability in

dynamic conditions as described in section 2.7. Here a simplified example is presented

with additional explanation.

The figure 6.4 presents the initial project schedule generated in a static environ-

ment, meaning that all activities’ properties are calculated before the scheduling pro-

cedure begins.

Figure 6.4: Initial project schedule.

The second figure 6.5 presents the generated schedule for the same project instance

but in dynamic conditions.
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Figure 6.5: Project schedule in dynamic conditions.

In this case, after 17 time units (marked with a red line), the properties of all fol-

lowing activities to be schedule are randomly changed. The properties that are subject

to changes are activities’ duration and resource demands.

This simple example proves the capabilities of GP evolved solutions to easily cope

with dynamic conditions and generate schedules of good quality. Moreover, not all

terminals, that is existing priority rules can be calculated in dynamic conditions as for

example the terminal ES (earliest start). For this property the relative activity position

in the project network must be known before the scheduling procedure executes, which

is not the case in dynamic conditions. Therefore, many existing priority rules are

not applicable in those conditions and can only be used to create schedules for static

projects. However, this is not the case for the GP approach, as one can simply use a

specifically selected set of terminals which are able to cope with dynamic conditions.

As schedule generation schemes do not depend on the selected terminals, they can

always be applied regardless of the scheduling conditions.

56



7. Conclusion

The results presented in this work show a successful application of genetic program-

ming to the resource constrained scheduling problem. Moreover, the GP generated

priority functions show promising results in static and dynamic environments, where

many other heuristics and approaches lack in solving capabilities and performance.

When compared to existing heuristics, in most cases the achieved results generate

much better schedules, presenting a competitive approach to solving the RCSP.

Additionally to the versatile GP solutions’ capabilities, the applied solving ap-

proach offers a customizable and generically applicable framework to evolve priority

rules for any class of scheduling problems targeting any selected optimization crite-

rion. Here the generated solutions can be used to create schedules immediately in both

dynamic and static environments, where only one concrete solution can be applied to

any problem instance.

Therefore, the simplicity and adaptivity of the GP approach is proven to be a valid

choice for solving the RCSP and promises qualifying results in any scheduling problem

environment.
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Appendix A
Learning Set Selection

Here all projects contained in the selected 56 instances learning set are presented with

their major properties’ values. The selected learning set consists of four classes of

instances: projects with 30, 60, 90 and 120 activities, each presented in its own table

(A.1, A.2, A.3, A.4). Each of these classes contain a variety of problems with different

values for the following properties:

• NC - Network complexity

• RF - Resource factor

• RS - Resource strength

For more details about the properties see section 2.3 or refer to [14].
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Table A.1: Selected project instances with 30 activities.

Parameter Number j Instance Number NC RF RS
1 1 1.5 0.25 0.2

2 3 1.5 0.25 0.5

6 5 1.5 0.5 0.5

10 4 1.5 0.75 0.5

17 5 1.8 0.25 0.2

18 3 1.8 0.25 0.5

22 4 1.8 0.5 0.5

33 2 2.1 0.25 0.2

34 1 2.1 0.25 0.5

5 2 1.5 0.5 0.2

9 7 1.5 0.75 0.2

25 5 1.8 0.75 0.2

41 8 2.1 0.75 0.2

45 3 2.1 1.0 0.2

Table A.2: Selected project instances with 60 activities.

Parameter Number j Instance Number NC RF RS
1 1 1.5 0.25 0.2

2 2 1.5 0.25 0.5

6 3 1.5 0.5 0.5

10 4 1.5 0.75 0.5

17 5 1.8 0.25 0.2

18 2 1.8 0.25 0.5

22 6 1.8 0.5 0.5

33 1 2.1 0.25 0.2

34 4 2.1 0.25 0.5

5 3 1.5 0.5 0.2

9 4 1.5 0.75 0.2

25 1 1.8 0.75 0.2

41 6 2.1 0.75 0.2

45 3 2.1 1.0 0.2
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Table A.3: Selected project instances with 90 activities.

Parameter Number j Instance Number NC RF RS
1 2 1.5 0.25 0.2

2 7 1.5 0.25 0.5

6 7 1.5 0.5 0.5

10 2 1.5 0.75 0.5

17 6 1.8 0.25 0.2

18 5 1.8 0.25 0.5

22 3 1.8 0.5 0.5

33 2 2.1 0.25 0.2

34 1 2.1 0.25 0.5

5 7 1.5 0.5 0.2

9 6 1.5 0.75 0.2

25 1 1.8 0.75 0.2

41 2 2.1 0.75 0.2

45 2 2.1 1.0 0.2

Table A.4: Selected project instances with 90 activities.

Parameter Number j Instance Number NC RF RS
2 3 1.5 0.25 0.2

5 2 1.5 0.25 0.5

10 2 1.5 0.5 0.5

15 5 1.5 0.75 0.5

22 6 1.8 0.25 0.2

25 5 1.8 0.25 0.5

30 3 1.8 0.5 0.5

42 8 2.1 0.25 0.2

45 1 2.1 0.25 0.5

7 5 1.5 0.5 0.2

12 1 1.5 0.75 0.2

32 2 1.8 0.75 0.2

52 3 2.1 0.75 0.2

57 6 2.1 1.0 0.2
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Appendix B
Priority Rule-Based Heuristics

All priority rules applied for comparison reasons are presented in table B.1. All rules

are given with their description and the additional sort type parameter. This param-

eter denotes which activity’s priority is taken as the highest one after sorting is done

(see 2.4). More details can be found in [10].

Table B.1: Priority rules definition.

Priority rule Description Sort type Priority value
GRPW* Greatest rank positional weight all max dj +

∑
i∈F ∗

j
di

LST Latest starting time min LSj

LFT Latest finish time min LFj

GRPW Greatest rank positional weight max dj +
∑

i∈Fj
di

SPT Shortest processing time min dj

MSL Minimum slack time min LSj − ESj
MIS Most immediate successors max |Fj|
MTS Most total successors max |F ∗j |
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Appendix C
Results and Comparisons

Here the differences between achieved and best known results are given for each SGS

version, together with their error distribution histograms.

Figure C.1: Best known and achieved results differences (PSGS).
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Figure C.2: Best known and achieved results differences (PSGS1).

Figure C.3: Best known and achieved results differences (SSGS).
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Figure C.4: Best known and achieved results difference histogram (PSGS).

Figure C.5: Best known and achieved results difference histogram (PSGS1).
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Figure C.6: Best known and achieved results difference histogram (SSGS).
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Appendix D
Evolved Solution Examples

In this appendix the concrete best achieved solutions are presented for each SGS ver-

sion. The results are shown in infix notation.

(((SSC * GRPW) * ((MAX((EF - IF(DSC,TSC,DSC))) + RRT) +

MAX(IF((IF(TPC,TSC,SPC) - POS(DPC)), POS(IF(TSC,RRT,GRPW)),

(EF + IF(DSC,TSC,TSC)))))) * ((GRPW * GRPW) * (GRPW - TSC)))

Figure D.1: Best PSGS solution (infix).

((((POS((MAX(SPC) * IF(TSC,TSC,GRPW))) /

((IF(TNA,DSC,GRPW) + IF(TSC,RRT,SPC)) /

((RRT / SPC) - IF(SSC,DSC,GRPW)))) + RRT) +

(POS(TNA) + ((MAX(SSC) - DSC) /

((TNA + TSC) / ((RRT / SPC) + IF(NSP,DSC,GRPW)))))) * GRPW)

Figure D.2: Best PSGS1 solution (infix).

((POS(((((POS(SSC) * IF(DPC,NSP,TNA)) +

(POS(SSC) * IF(DPC,NSP,TNA))) *

(IF((TSC - TSC),MAX(DPC),(TSC / TPC)) /

NEG(POS(TPC)))) - POS(((POS(NSP) / POS(DPC)) /

((RRT + SSC) - (TNA + SPC)))))) + (MAX(GRPW) - POS(DPC)))

Figure D.3: Best SSGS solution (infix).
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Evolution of scheduling heuristics for the resource constrained scheduling
problem

Abstract

With the growth of projects in complexity, size and resource demands, finding fea-

sible schedules of good quality becomes a very challenging task within project man-

agement. Therefore the resource constrained project scheduling problem (RCPSP) has

been studied extensively during the last decades yielding a variety of exact and heuris-

tic solving approaches. In this context, the main issue described within this thesis is the

application of genetic programming for the evolution of scheduling heuristics capable

of efficiently handling generic project instances in both static and dynamic conditions.

For this purpose a hyper-heuristic model was devised and implemented with generic

extension capabilities. An extensive round of experiments was conducted for parame-

ter optimization and the generation of best possible solutions. The effectiveness of the

proposed approach is analysed considering existing scheduling heuristics and environ-

mental conditions.

Keywords: resource constrained scheduling, RCPSP, genetic programming, priority

rules



Evolucija heuristika raspored̄ivanja za raspored̄ivanje s ograničenim sredstvima

Sažetak

Pronalazak mogućih rasporeda dobre kvalitete postaje velik izazov u projektnom

menadžmentu s porastom kompleksnosti, veličine i zahtjeva projekata. Iz tog razloga

je problem raspored̄ivanja s ograničenim sredstvima iscrpno istraživan kroz prošla de-

setljeća, rezultirajući u velikom rasponu egzaktnih i heurističkih metoda rješavanja.

U tom kontekstu se ovaj rad fokusira na primjenu genetskog programiranja za evolu-

ciju heuristika raspored̄ivanja sposobnih za efikasno savladavanje generičkih projekata

u statičkim i dinamičkim uvjetima. Za tu potrebu implementiran je hiper-heuristički

model s mogućnošću nadogradnje. Izvršen je niz iscprnih pokusa s ciljem optimizacije

parametara evolucije te generiranja što boljih rješenja. Analizirana je efikasnost pred-

loženog postupka uzimajući u obzir postojeće heuristike raspored̄ivanja i uvjete okruženja.

Ključne riječi: raspored̄ivanje s ograničenim sredstvima, RCPSP, genetsko programi-

ranje, prioritetna pravila


