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ABSTRACT 

 

The water quality monitoring through in situ 

sampling is costly and time consuming process that 

results in sparse point data difficult to achieve 

continuous water quality maps. Recent 

developments in remote sensing technology, 

especially in optical remote sensing, provide a 

significant potential to complement and enhance 

classical laboratory measurements. In this study we 

have assessed single band, first derivative and band 

ratio models for retrieving concentrations of 

chlorophyll a, turbidity and total suspended solids 

(TSS) from hyperspectral reflectance data collected 

along the River Sava. The spectral band ratio model 

showed the best correlation with Chl-a 

(R745/R418, R2 = 0.72) and  TSS (R373/R396 , R2 

= 0.78), while the first derivative model had the 

best correlation with turbidity values (R2 = 0.87). 

These results represent a promising first step in the 

initiative to develop a methodology for the water 

quality monitoring of the River Sava using 

remotely sensed data originating from various 

airborne and satellite hyperspectral sensors.  
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INTRODUCTION 

 

Escalating human population growth and 

industry pressures lead to nutrient over-enrichment 

and increase in eutrophication [1], which is a 

serious ecological problem causing a major concern 

in many coastal and inland water ecosystems [2,3]. 

Eutrophication of inland waters presents a 

persistent water quality problem through the 

overgrow of algae and may affect not only the 

source of drinking water but also can be 

accumulated in the aquatic foods causing direct 

influence on the human health. 

One of the major challenges for the 

environmental managers and decision makers is 

establishment of economic and reliable monitoring 

system at watershed extent that would provide 

water quality data with sufficient spatial and 

temporal resolution. Such system would enable the 

assessment of land-based pollution sources as well 

as effectiveness of the wastewater treatment 

infrastructure or other management plans. 

Varieties of satellite and air-borne remote 

sensing tools are being currently used for 

monitoring water quality parameters of surface 

waters. These water quality parameters can be 

quantified using remote sensing techniques 

allowing management plans to be formulated to 

reduce movement of substances from watersheds to 

water bodies, thus reducing the effects of the 

pollutants on water quality.  

The optical remote sensing of rivers at the 

watershed scale is characterized by rapid results, 

low cost and provides important means to estimate 

chlorophyll a (Chl-a), total suspended solids (TSS) 

and turbidity values concentrations in surface 

waters. These parameters are often used to 

characterize general water quality and as an 

indicator of trophic state [4,5]. 

The Sava River flows through Slovenia, 

Croatia, along the northern border of Bosnia and 

Herzegovina, and through Serbia. This Southeast 

Europe River is a major contributor to the Danube 

watershed discharging in Belgrade. Its central part 

is a natural border of Bosnia and Herzegovina and 

Croatia. In addition to drinking water, sanitation 

and general household uses, the River Sava is also 

extensively used for river transport, agricultural and 

industrial production, as well as recreational 

purposes. Sava river is a low-productive water 

ecosystem. With the population growth and 

development the natural biological balance of Sava 

River has been disturbed by the increase of 

discharges from municipal and industrial 

wastewater pollution, as well as from agricultural 

runoff [6]. With the exception of the city of Zagreb 

municipal wastewaters are released in the River 

Sava in Croatia without any treatment or after 

primary treatment. There are however on-going 

projects for developing wastewater treatment 

capacity in the bigger towns. 

The goal of the present study is to assess 

different models for the prediction of 
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concentrations of water quality parameters from the 

hyperspectral data and test the need for the 

implementation and development of specific local 

algorithms. In this study we also present the results 

of coupling water quality parameters and in-situ 

radiometric measurements. This is a first step in the 

initiative to develop a methodology for the water 

quality monitoring of the Sava River by using 

remotely sensed data originating from airborne and 

spaceborne multispectral and hyperspectral sensors. 

 

 

MATERIALS AND METHODS 

 

Data collection. Field data were acquired 

during the three-day data collection campaign in 

July 2010, which covered the whole stretch of the 

River Sava in Croatia ( 

FIGURE 1). We have chosen the locations 

upstream and downstream of bigger towns, 

including the city of Zagreb, to be able to estimate 

pollution contribution of the urban areas. The 

stations in the East are located in the most 

productive agricultural area in Croatia that 

represents the biggest non-point source pollution of 

the River Sava. In general point and non-point 

source pollution build up downstream from the 

border from Slovenia to the border with Serbia. 

 

 
 

 
 

FIGURE 1 

Measuring stations 

 

The collected data consisted of 

laboratory measurements of in-situ water quality, 

spectral reflectance measurements above water 

surface and spectral reflectance measurements 

inside water column 

Data were acquired on 14 monitoring stations 

under clear-weather conditions using two different 

measurement systems: above water and in-water 

spectroradiometers. Parallel to the radiometric data 

acquisition, the water samples were collected at 0.3 

m below surface for laboratory analysis. These 

samples were stored in a cooler with ice in the dark, 

and taken back to the laboratory for analysis within 

8 hours. 

Spectral surface reflectance measurements 

were taken with the ASD FieldSpec® 3 VNIR 

spectrometer (350-1050 nm) with the attached fibre 

cable 70-90 cm above the water surface. The 

instrument was positioned at an angle 90–135° with 

the plane of the incident radiation away from the 

sun. 

Downwelling radiance measurements, Ld(W 

m−2 sr−1) were collected at each sample site using a 

99% Spectralon panel as an optical standard for 

calibrating upwelling radiance. A dark reference 

was collected with each measurement of Ld.  

In-water spectral reflectance measurements 

were obtained from the profiling radiometer PRR-

800 (Biospherical inc.). The split PRR-800 

configuration separates the radiance Lu and 

radiance Ed heads (cosine collector) and orients the 

detector plates in a horizontal plane. The profiler 

was lowered manually, from the sunny side of the 

standing platform until the bottom was reached. 

The data were processed with the use of 

Biospherical profiler software to produce surface 

water reflectance in all available 14 spectral bands: 

340; 380; 412; 443; 465; 490; 510; 532; 555; 589; 

625; 665; 683 and 710 nm.  

 

Data preparation and statistical analysis. 

To eliminate the sun glint spectra and optimize the 

signal-to-noise ratio for in situ above water 

spectroradiometric data, the inconsistent radiance 

measurements were removed and the measurements 

at each site were averaged over at least 10 

measurements. Such averaged measurements were 

transferred in tabular form used further in statistical 

analysis. The spectral range was trimmed from 

1050 nm to 950 nm because of high water 

absorption of the signal in that NIR region. 

Statistical analysis was done using a statistical 

package R.  

The evaluation between estimated water 

quality values (Xest) using spectral indices and 

analytically measured values (Xmeas) is based on 

percentage difference: 
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(1) 

 

Mean normalized bias (MNB) is a measure of 

the over or under estimation of the observed values 

(systematic error). Those errors can in principle, be 

removed when the nature of the bias is identified. 

They are usually linked to the limitations of the 

measurement equipment or improper calibration. 

The normalized root mean square error 

(NRMS) provides a good measure of data scatter 

for normally distributed variables (random error) 

and gives useful information of the accuracy 

between the estimated and observed data [7,8]. 

In this study we define MNB as follows: 

 

MNB =
1

N
ei

i=1

N

å

 

       (2) 

while NRMS is represented with standard 

deviation of e   

 

NRMS=
1

N
(ei -e )2

i=1

N

å

 

(3) 

where N is the total number of samples and e

is mean value of e . 

These measures of difference are often 

reported in similar studies to compare performance 

of different models. 

 

 

RESULTS 

 

Water quality data. The collected water 

samples were analysed in the laboratory for a 

number of water quality parameters. Analytically 

measured in-situ concentrations of optically visible 

water quality parameters are shown in TABLE 1. 

The difference between the minimum and 

maximum values is about one order of magnitude 

for all the examined parameters. The contrast 

between low values of Chl-a that are indicative to 

the oligotrophic waters and relatively high turbidity 

and TSS values was observed on most of the 

stations. One of the reasons is probably a rainy 

period that preceded the monitoring campaign and 

that caused high sediment levels in water runoff. 

Weak relationships between Chl-a (r=0.1) 

concentrations and TSS values suggest higher 

amounts of non-algal turbidity in the water column 

in Sava River. Turbidity and TSS show strong 

positive relationship (r=0.62). 

 

Spectral reflectance measurements. 

FIGURE 2 presents the above water reflectance 

values over various measuring stations. The general 

observed characteristics of the reflectance curves 

are shifting reflectance peak in the green-yellow 

region (560 nm), absorption peak at 670 nm and 

reflectance peak in near infrared (810 nm). NIR 

reflection peak at around 700 nm and absorption 

peak at 670 nm are not pronounced on all the 

spectral curves presumably because of the masking 

effect of suspended matter. TSS and turbidity 

increase the values of reflectance in the visible and 

NIR part of the spectrum [9]. 

Water surface condition characterized with 

waves and sun glint can have serious impact on the 

above water collection of spectral data [10]. The 

concurrent data acquired with these two instruments 

were used in order to verify the consistency of in-

water and above-water measurements within our 

dataset and to examine the impact of surface 

conditions. 

FIGURE 3 shows the difference between 

band ratios as measured by ASD FieldSpec and 

PRR-800 instrument just below the water surface in 

the space-time co-located stations. The two 

instruments show a fairly good agreement between 

ratios in green and blue spectral region (MNB < 

15.5% and NRMS < 1.3%) and larger bias in red 

and green ratio (MNB = 33% and NRMS = 3%). 

This result is in line with the study from Bhatti et 

al. (2010) where they found that difference between 

above water and in-water spectral reflectance 

measurements was almost constant in blue and 

green region and minimal, but not consistent in the 

red region. 

 

Correlation of spectral data and water quality 

parameters. In order to identify the most 

appropriate spectral regions for developing water 

quality retrieval algorithms, the relationship was 

examined between spectral data and analytically 

measured in-situ water quality parameters. 

Raw spectral data were recalculated to single-

band reflectance, first derivative of reflectance and 

reflectance ratios. 

 

TABLE 1 

The range of concentrations for Chl a, TSS and turbidity at the Sava River stations during the campaign 

in 2010 
 

 N Mean SD Min Max 

Chl a [mg m-3] 14 0.55 0.5 0.12 1.83 

TSS [mg l-1] 14 229.71 128.04 25.00 385.00 

Turbidity [NTU] 14 12.97 8.99 3.31 37.23 

ei = 100 ´ (Xesti
- Xmeasi

) / Xmeasi
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FIGURE 2  

Reflectance values at different stations along the 

Sava River (black lines are spectra collected 

with ASD FieldSpec® and drawn on the left 

ordinate, blue lines are spectra collected with 

PRR-800 and drawn on the right ordinate) 

 

 

 
FIGURE 3 

Comparison of ASD FieldSpec® and PRR-800 

concurrent reflectance ratios 

 

 

Single band reflectance. All 601 bands 

reflectance from 350 nm to 950 nm were correlated 

to Chl-a, TSS and turbidity values. The correlation 

curves showing Pearson correlation coefficient (r) 

are shown in FIGURE 4. It can be clearly observed 

that correlations are positive for all analysed water 

quality parameters.  Single bands showing the 

strongest correlation with Chl-a, TSS and turbidity 

are presented in TABLE 2. 

It can be observed that bands reflectance at 

wavelengths located in the local absorption peak 

and reflectance peak of the NIR region correlate 

strongest with Chl-a. This correlation in NIR region 

around 700 nm is well described in literature and 

has been used for the estimation of 

chlorophyll concentrations [11-13]. 

 

 
(a) 

 
(b) 

 
(c) 

 

FIGURE 4  

Correlation coefficients between reflectance 

values and (a) Chl-a, (b) TSS and (c) Turbidity 

values; blue lines represent regions with 

statistical significance p < 0.05 

 

TABLE 2 

Spectral reflectance regions with the highest 

correlation coefficient (r) with Chl-a, TSS and 

turbidity. 

 

 Chl-a TSS Turbidity 

Range 

[nm] 713 745 489 819 719 813 

r 0.73 0.72 0.71 0.73 0.77 0.79 

 

Correlation with TSS is strongest in the 

absorption peak of the blue-green region and 

reflectance peaks in NIR region. Turbidity is 

strongest correlated with the band in the reflectance 

peak in NIR region of the reflectance curve. Other 
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authors reported high correlation of single band 

reflectance with TSS in the region near 700 nm [13] 

and turbidity in the region near 710 nm [9] 570 nm 

[14]. 

 

First-derivative of reflectance. Derivative 

spectra indicate the rate of change of reflectance 

with wavelength giving us information on the slope 

of the reflectance curve at the certain wavelength. It 

is a useful tool for enhancing the spectral features 

that can be related to absorption bands of different 

optically visible water constituents [15].  

Derivatives are often used to remove the 

background signal [16] and separate out peaks of 

overlapping bands [17]. They are also used as a 

method of data normalization since they are 

relatively less sensitive to the spectral variations of 

sunlight and skylight [18]. 

The strongest correlation with Chl-a 

(FIGURE 5) are found with the bands at 563 nm (r 

= 0.80), 750 nm (r = 0.80) and 753 nm (r = 0.81), 

which correspond to the reflectance peak in the 

green-yellow region and absorption peaks in the 

NIR region of the reflectance curve respectively. 

Han et al. (1997) [19] reports the best correlation in 

inland waters with the first derivative of reflectance 

at 690 nm and in coastal waters [20]  with the first 

derivative of reflectance in the regions of 630–645 

nm, 660–670 nm, 680–687 nm and 700– 735 nm. 

TSS has the highest correlation coefficient 

with the bands at 702 nm (r = 0.81), 706 nm (r = 

0.80) and 804 nm (r = 0.87). These two regions are 

local reflectance peaks in NIR. The strongest 

correlation with turbidity is observed with the 

bands at 730 nm (r = 0.91), 821 nm (r = 0.93) and 

826 nm (r = 0.92), which are, located in the local 

absorbance peaks of the NIR region.  

 

Reflectance ratios. Reflectance ratios are 

widely used in the water quality retrieval 

algorithms, but they are not universally applicable 

[21]. Most of the algorithms developed for the 

retrieval of Chl-a concentrations are based on the 

peak near 700 nm [11] and the widely used NIR-red 

band ratio of R705/R670 [9,12,22]. In recent 

studies some authors found other ratios to be more 

useful for Chl-a estimation from their datasets. 

Huang, Jiang et al. [21], found the highest 

correlation with the band ratio R861/R866 (r = 

0.93) Jiao, Zha et al. [23] report that the highest 

correspondence was achieved using the ratio of 

R719/R667 (r  = 0.93). 

The band ratio of R705/R670 showed no 

correlation in our data set. All the NIR-red band 

ratio combinations from R660 to R730 showed 

poor correlation. Furthermore, the band ratio 

R861/R866 used by Huang (2010) showed also 

poor correlation with Chl-a values. 

To find the reflectance band ratios that in our 

dataset correlate strongest with the water quality 

parameters, a matrix with all possible spectral 

band ratios was created containing 180 000 

combinations.  

 

 
(a) 

 
(b) 

 
(c) 

 

FIGURE 5 

Correlation coefficients between first derivative 

of reflectance values and (a) Chl-a, (b) TSS and 

(c) Turbidity values; blue lines represent regions 

with statistical significance p < 0.05 

 

 

To identify possible zones of interest, the 

obtained correlations were presented on the “heat 

maps” (FIGURE 6) where the location of each 

point corresponds to the ratio of wavelengths on the 

x and y axis and the point colour shows the absolute 

value of the correlation coefficient with the 

observed water quality parameter.  
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Band ratios R745/R418, R373/R396 and 

R396/R390 showed highest coefficients of 

determination respectively with Chl-a (r = 0.85), 

TSS (r = 0.88) and turbidity (r = 0.85).  

For the Chl-a estimation it was expected to 

have one band in the NIR region, but it was unusual 

to find that the best correlation was between the 

ratio of NIR and violet/blue bands. To the best of 

our knowledge it is because of the optical properties 

of other water constituents mask phytoplankton 

pigment signals in blue-green region in turbid 

waters. These are typically dissolved colour 

substances like yellow substance, coloured mineral 

particles and eventually degraded plankton 

products.  

 

Regression models. Linear regression models 

for the retrieval of the observed water quality 

parameters were developed with the spectral indices 

obtained using different presented methods 

(TABLE 3.). 

The best of the observed models for Chl-a 

retrieval was bend ratio model showing MNB of 

43.35% and NRMS of 25.94% with the highest 

coefficient of determination (R2 = 0.72). The 

first derivative model had MNB of 51.35% and 

NRMS of 28.34%. The most biased was a single 

band model with MNB of 58.47% and MRMS of 

33.19%. All the observed models overestimated 

Chl-a values.  

The same is observed for the estimation of 

TSS, where the band ratio model had the highest 

coefficient of determination (R2 = 0.78), MNB of 

15.91% and NMRS of 58.34%. The first derivative 

model was slightly worse with MNB of 19.65% and 

NMRS of 62.36%. The worst was again the single 

band model with MNB of 47.72% and NRMS of 

84.77% 

The single band model was the most precise 

for the estimation of turbidity with MNB of 6.59% 

and NMRS of 5.28%, but the lowest coefficient of 

determination (R2 = 0.63). The first derivative 

model had MNB of 4.48% and MRMS of 24.95% 

with the highest coefficient of determination (R2 = 

0.87) and the band ratio model had lower 

coefficient of determination (R2 = 0.72) with MNB 

of 9.25% and NMRS of 4.50%. 

 
(a)                                                                      (b) 

 
(c) 

FIGURE 6 

Correlation matrix between reflectance band ratios with a – Chl-a, b – TSS and c – turbidity. Scales on 

the right represent absolute value of Pearson's coefficient. 
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TABLE 3 

Assessment of different models for the prediction of Chl-a, TSS and Turbidity values.

 

Parameter Model Bands Regression equation R2 MNB NMRS 

Chl-a Single 

band 

R713  17.71 x R713 - 0.13 0.54 58.47% 33.19% 

Chl-a First 

derivative 

R753 -15077.19 x R753 + 0.02 0.66 51.35% 28.34% 

Chl-a Band ratio R745/R418 3.31 x R745/R418 -0.84 0.72 43.35% 25.94% 

TSS Single 

band 

R813 13086.31 x R813 + 23.71 0.53 47.72% 84.77% 

TSS First 

derivative 

R804 3589757 x R804 + 0.76 0.75 19.65% 62.36% 

TSS Band ratio R373/R396 -2447.52 x R373/R396 + 2811.57 0.78 15.91% 58.34% 

Turbidity Single 

band 

R819 957.58 x R813 - 2.91 0.63 6.59% 5.28% 

Turbidity First 

derivative 

R821 -56956.11 x R821 - 0.42 0.87 4.48% 24.95% 

Turbidity Band ratio R396/R390 537.51 x R396/R390 - 521.12 0.72 9.25% 4.50% 

 

DISCUSSION AND CONCLUSIONS 

 

In this study we discussed the potentials to use 

hyperspectral data to predict concentrations of 

water quality parameters in inland waters.  

Presented were the results of coupling water 

quality parameters Chl-a, TSS and turbidity with 

field radiometric measurements taken along the 

Sava River.  

All the developed algorithms overestimated 

water quality values. The best precision and 

accuracy were obtained for the algorithms for 

turbidity estimations.  

NIR reflection peak at around 700 nm and 

absorption peak at 670 nm are not pronounced on 

all the reflectance spectra presumably because of 

the masking effect of high concentrations of 

suspended matter. 

The best algorithm for Chl-a was based on the 

R745/R418 band ratio model showing high 

correlation with measured values (R2 = 0.72) with 

MNB of 43.35% and NRMS of 25.94%. The well 

documented algorithm based on NIR/Red 

reflectance band ratio performed very poor in our 

study with R2 < 0.05. 

The best algorithm for TSS retrieval (R2 = 

0.78) was based on the R373/R396 band ratio 

model, but opposite to Chl-a algorithm, showing a 

high dissipation. 

The first derivative model showed as a best 

predictor for turbidity values (R2 = 0.87) MNB of 

4.48% and MRMS of 24.95%. 

The results of our study suggest that the band 

ratios used are useful to estimate water quality, but 

that the larger set of data is needed to achieve 

greater precision. The models developed will 

enable using data acquired from hyperspectral 

airborne and satellite sensors for monitoring water 

quality. This will provide cost-effective method for 

mapping Chl-a, TSS or turbidity values and 

possibly using them as proxy for evaluating trophic 

state and nutrient enrichment of the River Sava and 

similar inland waters. 
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