Limit theorems for deterministic and random Lasota-Yorke maps using the spectral method

Davor Dragičević, UNSW

(joint work with Gary Froyland, Cecilia González-Tokman and Sandro Vaienti)

November 25, 2016

D.D was supported by an Australian Research Council Discovery Project DP150100017 and by the Croatian Science Fundation under the project HRZZ-IP-09-2014-2285

Piecewise expanding maps

Let I=[0,1] denote the unit interval equipped with Borel σ -algebra $\mathcal B$ and a Lebesgue measure m. We say that $T\colon I\to I$ is a piecewise expanding map if there exists a partition

$$0 = x_0 < x_1 < \ldots < x_{k-1} < x_k = 1$$

and $\alpha > 1$ such that:

- 1 restriction $T|_{(x_{i-1},x_i)}$ is a C^1 function which can be extended to a C^1 function on $[x_{i-1},x_i]$;
- **2** $|T'(x)| \ge \alpha > 0$ for $x \in (x_{i-1}, x_i)$;
- 3 $g(x) = \frac{1}{|T'(x)|}$ is a function of bounded variation.

Deterministic setting

1 transfer operator: $L: L^1(m) \to L^1(m)$ defined by

$$Lf(x) = \sum_{y \in T^{-1}(x)} \frac{f(y)}{|T'(y)|};$$

- 2 L is quasicompact of diagonal type on the BV space and consequently it has a nonnegative fixed point which gives the existence of acim;
- $oldsymbol{3}$ under some additional assumptions acim is unique (and we denote it by μ) and mixing;
- 4 in this case $L = \Pi + N$ and we have the exponential decay of correlation result.

Central limit theorem

Assume that $\phi\colon I\to\mathbb{R}$ bounded observable in BV such that $\int_{[0,1]}\phi\,d\mu=0$. For each $n\in\mathbb{N}$, let

$$S_n = \sum_{k=0}^{n-1} \phi \circ T^k.$$

Theorem (Rousseau–Egele, 1983)

We have that $\lim_{n\to\infty}\int_{[0,1]}\frac{S_n^2}{n}=\sigma^2$, where

$$\sigma^2 = \int_{[0,1]} \phi^2 d\mu + 2 \sum_{n=1}^{\infty} \int_{[0,1]} \phi(\phi \circ T^n) d\mu < \infty.$$

If $\sigma^2 > 0$, then $\frac{S_n}{\sqrt{n}}$ converges in distribution to $N(0, \sigma^2)$.

Large deviation principle

Theorem

If $\sigma^2>0$, then there exists $\delta>0$ and a strictly convex, continuous and nonnegative function $c\colon (-\delta,\delta)\to \mathbb{R}$ which vanishes only at 0 such that

$$\lim_{n\to\infty}\frac{1}{n}\log\mu(S_n>n\varepsilon)=-c(\varepsilon),\quad \textit{for }\varepsilon\in(0,\delta).$$

Ideas of the proofs

We define

$$L_{\theta}(g) = L(e^{\theta \phi}g), \quad \text{for } g \in BV \text{ and } \theta \in \mathbb{C}.$$

Since $\theta \mapsto L_{\theta}$ is analytic, for θ sufficiently close to 0,

$$L_{\theta} = \omega(\theta)\Pi(\theta) + N(\theta).$$

For CLT $(d\mu = f dm)$:

$$\lim_{n\to\infty} \int_{[0,1]} e^{itS_n/\sqrt{n}} d\mu = \lim_{n\to\infty} \int_{[0,1]} L_{it/\sqrt{n}}^n(f) dm = \lim_{n\to\infty} \omega(it/\sqrt{n})^n$$
$$= e^{-t^2\sigma^2/2},$$

for $t \in \mathbb{R}$.

For LDP:

we first show that $\omega'(0)=0$ and $\omega''(0)=\sigma^2$ and then that

$$\lim_{n\to\infty}\frac{1}{n}\log\int_{[0,1]}e^{\theta S_n}\,d\mu=\Lambda(\theta),$$

where $\Lambda(\theta) = \log \omega(\theta)$, for $\theta \in \mathbb{R}$ sufficiently close to 0.

Random Lasota-Yorke maps

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and assume that $\sigma \colon \Omega \to \Omega$ is invertible transformation that preserves \mathbb{P} . Furthermore, assume that \mathbb{P} is ergodic. We now take the collection T_{ω} , $\omega \in \Omega$ of piecewise expanding maps. For $\omega \in \Omega$ and $n \in \mathbb{N}$, set

$$T_{\omega}^{n} = T_{\sigma^{n-1}\omega} \circ \ldots \circ T_{\sigma\omega} \circ T_{\omega}$$

and

$$L_{\omega}^{n}=L_{\sigma^{n-1}\omega}\circ\ldots\circ L_{\sigma\omega}\circ L_{\omega}.$$

The associated skew-product transformation $\tau\colon \Omega\times I\to \Omega\times I$ is given by

$$\tau(\omega, x) = (\sigma\omega, T_{\omega}x).$$

Existence and uniqueness of ACIM, Buzzi 2000

Under some mild assumption we have that

$$||L_{\omega}h||_{BV} \leq K(\omega)||h||_{BV}$$
, for $h \in BV$ and $\log K \in L^1(\mathbb{P})$;

and there exists $N \in \mathbb{N}$ we have

$$var(L_{\omega}^{N}h) \leq \alpha^{N}(\omega)var(h) + K^{N}(\omega)||h||_{1},$$

for $h \in BV$ and a.e. $\omega \in \Omega$ and with

$$\int_{\Omega} \log \alpha^{N}(\omega) d\mathbb{P}(\omega) < 0.$$

If for each subinterval $J\subset I$ and for a.e. $\omega\in\Omega$, there exists $n(\omega)\in\mathbb{N}$ such that

essinf_{$$x \in [0,1]$$} $(L_{\omega}^{n} \mathbf{1}_{J}) > 0$, for $n \ge n(\omega)$,

there exists a unique acim (w.r.t. $\mathbb{P} \times m$) μ for τ such that $\pi_*\mu = \mathbb{P}$, where $\pi\colon \Omega \times I \to \Omega$ is a projection. We can regard μ as a collection of fiber measures μ_ω , $\omega \in \Omega$ on I. Also, one has fiberwise decay of correlation result.

We consider observables $\phi \colon \Omega \times I \to \mathbb{R}$ such that

$$\mathrm{esssup}_{(\omega,x)}|\phi(\omega,x)|<\infty\quad\text{and}\quad\mathrm{esssup}_{\omega}\,\mathit{var}(\phi(\omega,\cdot))<\infty.$$

Moreover, we assume that

$$\int_{[0,1]} \phi(\omega,\cdot) d\mu_{\omega} = 0, \quad \omega \in \Omega.$$

We form Birkhoff sums

$$S_n(\omega,x) = \sum_{i=0}^{n-1} (\phi \circ \tau^i)(\omega,x) = \sum_{i=0}^{n-1} \phi(\sigma^i \omega, T^i_\omega x).$$

We are interested in the quenched type of limit theorems i.e. those that give an information about the asymptotic behaviour of Birkhoff sums w.r.t. to μ_{ω} for "typical" ω .

Previous work:

- Kiffer, 1998: quenched limit theorems in random environment but not with spectral method;
- 2 Aimino, Nicol and Vaienti, 2014: spectral method but the base space is assumed to be a Bernoulli shift.

MET, Froyland/Lloyd/Quas, 2013.

Assume that $(\Omega, \mathcal{F}, \mathbb{P}, \sigma)$ is a probability space where Ω is a Borel subset of a separable, complete metric space. Furthermore, let B be a Banach space and $\mathcal{L} = \mathcal{L}_{\omega}$, $\omega \in \Omega$ a family of bounded linear operators on B such that the map $\omega \mapsto \mathcal{L}_{\omega}$ is \mathbb{P} -continuous. Then, for a.e. $\omega \in \Omega$, the following limits exist (and are independent on ω)

$$\Lambda(\mathcal{L}) := \lim_{n \to \infty} \frac{1}{n} \log \|L_{\omega}^{n}\|$$

and

$$\kappa(\mathcal{L}) := \lim_{n \to \infty} \frac{1}{n} \log ic(L_{\omega}^n),$$

where $ic(L_{\omega}^n) = \inf\{r > 0 :$

 $L^n_\omega(B_B)$ can be covered with finitely many balls of radius r}.

MET2

If $\kappa(\mathcal{L}) < \Lambda(\mathcal{L})$, then there exists $1 \le l \le \infty$ and a sequence of Lyapunov exponents

$$\Lambda(\mathcal{L}) = \lambda_1 > \lambda_2 > \ldots > \lambda_l > \kappa(\mathcal{L}) \quad (\text{if } 1 \le l < \infty)$$

or

$$\Lambda(\mathcal{L}) = \lambda_1 > \lambda_2 > \dots$$
 and $\lim_{n \to \infty} \lambda_n = \kappa(\mathcal{L})$ (if $I = \infty$);

and for \mathbb{P} -almost every $\omega \in \Omega$ there exists a unique splitting (called the *Oseledets splitting*) of B into closed subspaces

$$B = V(\omega) \oplus \bigoplus_{j=1}^{l} Y_j(\omega),$$

MET3

depending measurably on ω and such that:

1 For each $1 \leq j \leq l$, dim $Y_j(\omega)$ is finite-dimensional, Y_j is equivariant i.e. $L_\omega Y_j(\omega) = Y_j(\sigma\omega)$ and for every $y \in Y_j(\omega) \setminus \{0\}$,

$$\lim_{n\to\infty}\frac{1}{n}\log\|L_{\omega}^ny\|=\lambda_j.$$

2 V is equivariant i.e. $L_{\omega}V(\omega)\subseteq V(\sigma\omega)$ and for every $v\in V(\omega)$,

$$\lim_{n\to\infty}\frac{1}{n}\log\|L_{\omega}^nv\|\leq\kappa(\mathcal{L}).$$

In order to be able to apply MET, we will require that: Ω is a Borel subset of a separable, complete metric space and that

the map $\;\;\omega o \mathcal{T}_\omega\;\;$ has a countable range

We also form a twisted cocycle. More precisely, for $\omega \in \Omega$ and $\theta \in \mathbb{C}$, we define

$$L_{\omega}^{\theta}(h) = L_{\omega}(e^{\theta\phi(\omega,\cdot)}h), \quad h \in BV.$$

Theorem

For $\theta \in \mathbb{R}$, we have

$$\lim_{n\to\infty}\frac{1}{n}\log\int_{[0,1]}e^{\theta S_n(\omega,\cdot)}\,d\mu_\omega=\Lambda(\theta),$$

for \mathbb{P} -a.e. $\omega \in \Omega$ where $\Lambda(\theta)$ is a top Lyapunov exponent of the cocycle L_{ω}^{θ} , $\omega \in \Omega$.

Regularity of Λ

In order to establish the corresponding regularity property of Λ we introduce some additional assumptions. We require that:

- **1** norms of L_{ω} are uniformly bounded;
- 2 densities v_{ω}^{0} are uniformly bounded from below $(d\mu_{\omega}=v_{\omega}^{0}\,dm)$ away from zero;
- **3** there exists $D, \lambda > 0$ such that

$$||L_{\omega}^{n}f||_{BV}\leq De^{-\lambda n}||f||_{BV},$$

for $f \in BV$, $\int f dm = 0$, $n \in \mathbb{N}$ and a.e. ω .

We briefly sketch the argument that shows that $\theta \mapsto \Lambda(\theta)$ is of C^2 on a neighborhood of 0.

Regularity of Λ

Key points:

1 we construct the top space as $v_{\omega}^{0} + \mathcal{W}^{\theta}(\omega, \cdot)$ where \mathcal{W}^{θ} is a (unique) solution of $F(\theta, \mathcal{W}) = 0$, where

$$F(\theta, \mathcal{W}) = \frac{L_{\sigma^{-1}\omega}^{\theta}(v_{\sigma^{-1}\omega}^{0} + \mathcal{W}(\sigma^{-1}\omega, \cdot))}{\int (L_{\sigma^{-1}\omega}^{\theta}(v_{\sigma^{-1}\omega}^{0} + \mathcal{W}(\sigma^{-1}\omega, \cdot))) dm} - \mathcal{W}(\omega, \cdot) - v_{\omega}^{0},$$

where $\mathcal{W} \in \mathcal{S}$ and

$$\mathcal{S}:=\{\mathcal{W}\colon \Omega\times I\to \mathbb{C}: \mathcal{W}(\omega,\cdot)\in BV, \; \mathsf{esssup}_{\omega}\|W(\omega,\cdot)\|_{BV}<\infty\}.$$

- 3 for θ close to 0, the top Oseledets space of the twisted cocycle L_{θ}^{θ} , is one-dimensional.

Also, $\Lambda'(0) = 0$ and $\Lambda''(0) = \Sigma^2$, where Σ^2 is a variance.

Theorem (Large deviation principle)

Assume that $\Sigma^2 > 0$. Then, there exists $\varepsilon_0 > 0$ and a function $c: (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}$ which is nonnegative, continuous, strictly convex, vanishing only at 0 and such that

$$\lim_{n\to\infty}\frac{1}{n}\log\mu_{\omega}(S_n(\omega,\cdot)>n\varepsilon)=-c(\varepsilon),\quad \text{for } 0<\varepsilon<\varepsilon_0 \text{ and a.e. } \omega.$$

We can also obtain CLT.

Theorem (Central limit theorem)

If $\Sigma^2 > 0$, we have that

$$\lim_{n\to\infty}\int g(S_n(\omega,\cdot)/\sqrt{n})\,d\mu_\omega=\int g\,dN(0,\Sigma^2),$$

for g continuous and bounded and a.e. $\omega \in \Omega$.

Idea of the proof

We need to show that

$$\lim_{n\to\infty}\int e^{it\frac{S_n(\omega,\cdot)}{\sqrt{n}}}\,d\mu_\omega=e^{-\frac{t^2\Sigma^2}{2}},\quad\text{for a.e. }\omega\in\Omega.$$

This follows by proving that:

1

$$\lim_{n\to\infty}\int e^{it\frac{S_n(\omega,\cdot)}{\sqrt{n}}}\,d\mu_\omega=\lim_{n\to\infty}\prod_{j=0}^{n-1}\lambda_{\sigma^j\omega}^{\frac{it}{\sqrt{n}}},$$

where

$$\lambda_{\omega}^{\theta} = \int L_{\sigma^{-1}\omega}^{\theta}(v_{\sigma^{-1}\omega}^{0} + \mathcal{W}^{\theta}(\sigma^{-1}\omega, \cdot)) dm =: H(\theta, \mathcal{W}^{\theta})(\omega);$$

2 by Taylor expansion of $\theta \to H(\theta, W^{\theta})$ around 0:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\log\lambda_{\sigma^{j}\omega}^{\frac{it}{\sqrt{n}}}=-\frac{t^{2}\Sigma^{2}}{2}.$$

Local central limit theorem

Theorem (Local central limit theorem)

Assume that $\Lambda(it) < 0$ for $t \neq 0$. Then, for a.e. ω and every bounded interval $J \subset \mathbb{R}$, we have

$$\lim_{n\to\infty}\sup_{s\in\mathbb{R}}\left|\Sigma\sqrt{n}\mu_{\omega}(s+S_ng\in J)-\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-\frac{s^2}{2n\Sigma^2}}|J|\right|=0,$$