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Piecewise expanding maps

Let / = [0, 1] denote the unit interval equipped with Borel
o-algebra B and a Lebesgue measure m. We say that T: [ — [ is

a piecewise expanding map if there exists a partition
O=xg<x1<...<Xp—1<Xx=1

and a > 1 such that:
@ restriction T|(X,.717X,.) is a C! function which can be extended
to a C! function on [x;_1, x];
® |T'(x)] > a >0 for x € (xi—1,x);

@ g(x) = \T'71(x)| is a function of bounded variation.
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Deterministic setting

@ transfer operator: L: L*(m) — L*(m) defined by

yeT=1(x)

® L is quasicompact of diagonal type on the BV space and
consequently it has a nonnegative fixed point which gives the

existence of acim;
©® under some additional assumptions acim is unique (and we
denote it by 1) and mixing;

O in this case L =1+ N and we have the exponential decay of
correlation result.
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Central limit theorem

Assume that ¢: | — R bounded observable in BV such that
f[o 1 ¢du =0. For each n € N, let

n—1

Sn=> ¢oTk

k=0

Theorem (Rousseau—Egele, 1983)

: S;_ 2
We have that lim,_, f[o =0 where

o = (,/>2d,u+22/ d(po T du < oo.
n=1 [071]

[0.1]

If 2 > 0, then j—”ﬁ converges in distribution to N(0,c?).
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Large deviation principle

Theorem

If 72 > 0, then there exists § > 0 and a strictly convex, continuous
and nonnegative function c: (—0,9) — R which vanishes only at 0

such that

lim %Iogu(S,, > ne) = —c(e), fore € (0,0).

n—o0
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|deas of the proofs

We define
Lo(g) = L(e’®g), forge BV andfecC.
Since 0 — Ly is analytic, for 6 sufficiently close to 0,
Ly = w(9)1(0) + N(0).
For CLT (du = f dm):

n—oo n—oo

lim / eS/V gy = lim / It/\[(f)dm— lim w(/t/\f)
[0,1] [0,1]

42,2
—e t0/2’

for t € R.
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For LDP:

we first show that w’(0) = 0 and w”(0) = 02 and then that

1
lim = Iog/ e du = N),
[0,1]

n—oo n

where A(0) = logw(0), for § € R sufficiently close to 0.
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Random Lasota-Yorke maps

Let (Q, F,P) be a probability space and assume that 0: Q — Q is
invertible transformation that preserves IP. Furthermore, assume
that P is ergodic. We now take the collection T, w € Q of

piecewise expanding maps. For w € Q and n € N, set

T, =Ton1,0...0Tgu0 Ty,
and
L) =Lyn1,0...0Ls,0L,.

The associated skew-product transformation 7: Q x | — Q x I is
given by
T(w, x) = (ow, Tyx).
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Existence and uniqueness of ACIM, Buzzi 2000

Under some mild assumption we have that
|Loh|lgy < K(w)||h||gy, for he BV and log K € L}(P);
and there exists N € N we have
var(Lh) < aM(w)var(h) + KV (w)] ],
for h € BV and a.e. w € Q and with
/Qlog aN(w) dP(w) < 0.

If for each subinterval J C [ and for a.e. w € Q, there exists

n(w) € N such that

essinf,cpo,1)(L;1s) >0, for n > n(w),
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there exists a unique acim (w.r.t. P x m) u for 7 such that

mept = P, where w: Q x | — Q is a projection. We can regard p as
a collection of fiber measures p,, w € Q on [. Also, one has
fiberwise decay of correlation result.

We consider observables ¢: Q2 x I — R such that
esssup(, )| ¢(w, x)| < oo and  esssup, var(¢(w, -)) < oo.
Moreover, we assume that

d(w, ) du, =0, we.

[0,1]
We form Birkhoff sums
n—1 . n—1 ] ]
Sn(w,x) = Z(qb o) (w, x) = Z o(o'w, T x).
i=0 i=0
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We are interested in the quenched type of limit theorems i.e. those
that give an information about the asymptotic behaviour of
Birkhoff sums w.r.t. to . for "typical” w.

Previous work:

@ Kiffer, 1998: quenched limit theorems in random enviroment

but not with spectral method;

® Aimino, Nicol and Vaienti, 2014: spectral method but the

base space is assumed to be a Bernoulli shift.
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MET, Froyland/Lloyd/Quas, 2013.

Assume that (Q, F,P,0) is a probability space where Q is a Borel
subset of a separable, complete metric space. Furthermore, let B
be a Banach space and £ = L,,, w € Q a family of bounded linear
operators on B such that the map w +— L, is P-continuous. Then,
for a.e. w € Q, the following limits exist (and are independent on
w)

A(£) = lim * log|LL)]
and

k(L) := n||_>nc1>o % log ic(L]),
where ic(L?) = inf{r > 0:

L (Bg) can be covered with finitely many balls of radius r}.
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MET?2

If k(L) < A(L), then there exists 1 < / < oo and a sequence of

Lyapunov exponents
ANLY=X > >...> N >k(L) (ifl1</<o0)
or

MLY=X>X2>... and lim A\, =r(L) (if I =o0);

n—oo
and for P-almost every w € € there exists a unique splitting (called

the Oseledets splitting) of B into closed subspaces

/
B=V(w)a Yl
j=1
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MET3

depending measurably on w and such that:
@ For each 1 < j </, dim Yj(w) is finite-dimensional, Yj is
equivariant i.e. L, Yj(w) = Yj(ow) and for every
y € Yj(w) \ {0},
lim > log [[L2y]| = .
n—oo n

@® V is equivariant i.e. L,V (w) C V(ow) and for every
v e V(w),

. 1 n
— <
nlllll n |0g ||L V” Ii(ﬁ)
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In order to be able to apply MET, we will require that: Q is a

Borel subset of a separable, complete metric space and that
the map w — T, has a countable range

We also form a twisted cocycle. More precisely, for w € Q and

0 € C, we define

L% (h) = L,(e?”“)p), heBV.

Theorem
For 0 € R, we have

n—oo n

lim ! Iog/ 50 (r) dp,, = N(8),
[0,1]

for P-a.e. w € Q where \(0) is a top Lyapunov exponent of the

cocycle L%, w € Q.
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Regularity of A

In order to establish the corresponding regularity property of A we
introduce some additional assumptions. We require that:
@ norms of L, are uniformly bounded;

® densities 0

» are uniformly bounded from below

(dpte, = vO dm) away from zero;

© there exists D, A > 0 such that
ILLfllsy < De ||| 8y,

for f € BV, [fdm=0, neNand ae. w.

We briefly sketch the argument that shows that 6 +— A(6) is of C?

on a neighborhood of 0.
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Regularity of A

Key points:
@ we construct the top space as v2 + W9 (w, -) where W7 is a
(unique) solution of F(0, W) =0, where

Lcerflw( Vo 1w+W(U W, ))
f(Lg_lw(vo_lw +W(o 1w, -))) dm

where W € S and

F(O,W) =

S ={W: Qxl - C: W(w,-) € BV, esssup,,||W(w,-)|lsv < oo}.

@ A(8) = [ log| [ ) (s + WP(w, ) dm| dP(w)
© for 0 close to 0, the top Oseledets space of the twisted cocycle

Lg is one-dimensional.
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Also, N'(0) = 0 and A”(0) = £2, where ¥2 is a variance.

Theorem (Large deviation principle)

Assume that ¥? > 0. Then, there exists g > 0 and a function
c: (—eo,20) — R which is nonnegative, continuous, strictly

convex, vanishing only at 0 and such that

.1

lim —log tw(Sn(w,-) > ne) = —c(e), for0<e <ep and a.e. w.
n—oo N

We can also obtain CLT.

Theorem (Central limit theorem)

If Y2 > 0, we have that

fim / &(Sn(w, )/vT) dites = / g dN(0,72),

n—o0

for g continuous and bounded and a.e. w € €.
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|dea of the proof

We need to show that

) it Sn(:) _?52
lim [ e v» duy,=e 2, forae we.

n—o0

This follows by proving that:

(1) )
n
i Sn(w,-) 1t
. t - vn
lim e Vi du, = lim I I AV
n—o00 Freo n—o00 olw’
j=0
where

= Lg,lw(vg,lw + W0 (o w, ")) dm =: H(O, W?)(w);
@ by Taylor expansion of § — H(6, W?) around 0:

lt 2 2
lim ka) A= tz.

n—oo n Jw
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Local central limit theorem

Theorem (Local central limit theorem)

Assume that A(it) < 0 for t # 0. Then, for a.e. w and every

bounded interval J C R, we have

lim sup
n—o0 seR

1
Z\/_/lw(S‘FSngGJ)—\/Te 2"22|J|‘—0
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