Limit theorems for random Lasota-Yorke maps using the spectral method

Davor Dragičević, UNSW

(joint work with Gary Froyland, Cecilia González-Tokman and Sandro Vaienti)

November 28, 2016

D.D was supported by an Australian Research Council Discovery Project DP150100017 and by the Croatian Science Fundation under the project HRZZ-IP-09-2014-2285 Let I = [0, 1] denote the unit interval equipped with Borel σ -algebra \mathcal{B} and a Lebesgue measure m. We say that $T: I \rightarrow I$ is a *piecewise expanding map* if there exists a partition

$$0 = x_0 < x_1 < \ldots < x_{k-1} < x_k = 1$$

and $\alpha > 1$ such that:

 restriction T|_(xi-1,xi) is a C¹ function which can be extended to a C¹ function on [xi-1, xi];

2
$$|T'(x)| \ge \alpha > 0$$
 for $x \in (x_{i-1}, x_i)$;

3 $g(x) = \frac{1}{|T'(x)|}$ is a function of bounded variation.

1 *transfer operator:* $L: L^1(m) \to L^1(m)$ defined by

$$Lf(x) = \sum_{y \in T^{-1}(x)} \frac{f(y)}{|T'(y)|};$$

- L is quasicompact of diagonal type on the BV space and consequently it has a nonnegative fixed point which gives the existence of *acim*;
- onder some additional assumptions acim is unique (and we denote it by μ) and mixing;
- in this case L = Π + N and we have the exponential decay of correlation result.

Central limit theorem

Assume that $\phi \colon I \to \mathbb{R}$ bounded observable in BV such that $\int_{[0,1]} \phi \, d\mu = 0$. For each $n \in \mathbb{N}$, let

$$S_n = \sum_{k=0}^{n-1} \phi \circ T^k.$$

Theorem (Rousseau–Egele, 1983)

We have that
$$\lim_{n\to\infty}\int_{[0,1]}rac{S_n^2}{n}=\sigma^2$$
, where

$$\sigma^{2} = \int_{[0,1]} \phi^{2} d\mu + 2 \sum_{n=1}^{\infty} \int_{[0,1]} \phi(\phi \circ T^{n}) d\mu < \infty.$$

If $\sigma^2 > 0$, then $\frac{S_n}{\sqrt{n}}$ converges in distribution to $N(0, \sigma^2)$.

Theorem

If $\sigma^2 > 0$, then there exists $\delta > 0$ and a strictly convex, continuous and nonnegative function $c: (-\delta, \delta) \to \mathbb{R}$ which vanishes only at 0 such that

$$\lim_{n\to\infty}\frac{1}{n}\log\mu(S_n>n\varepsilon)=-c(\varepsilon),\quad\text{for }\varepsilon\in(0,\delta).$$

We define

$$L_ heta(g)=L(e^{ heta\phi}g), \quad ext{for } g\in BV ext{ and } heta\in\mathbb{C}.$$

Since $\theta \mapsto L_{\theta}$ is analytic, for θ sufficiently close to 0,

$$L_{\theta} = \omega(\theta) \Pi(\theta) + N(\theta).$$

For CLT $(d\mu = f dm)$:

$$\lim_{n \to \infty} \int_{[0,1]} e^{itS_n/\sqrt{n}} d\mu = \lim_{n \to \infty} \int_{[0,1]} L^n_{it/\sqrt{n}}(f) dm = \lim_{n \to \infty} \omega(it/\sqrt{n})^n$$
$$= e^{-t^2\sigma^2/2},$$

for $t \in \mathbb{R}$.

For LDP:

we first show that $\omega'(0)=0$ and $\omega''(0)=\sigma^2$ and then that

$$\lim_{n\to\infty}\frac{1}{n}\log\int_{[0,1]}e^{\theta S_n}\,d\mu=\Lambda(\theta),$$

where $\Lambda(\theta) = \log \omega(\theta)$, for $\theta \in \mathbb{R}$ sufficiently close to 0.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and assume that $\sigma \colon \Omega \to \Omega$ is invertible transformation that preserves \mathbb{P} . Furthermore, assume that \mathbb{P} is ergodic. We now take the collection T_{ω} , $\omega \in \Omega$ of piecewise expanding maps. For $\omega \in \Omega$ and $n \in \mathbb{N}$, set

$$T^n_\omega = T_{\sigma^{n-1}\omega} \circ \ldots \circ T_{\sigma\omega} \circ T_\omega$$

and

$$L_{\omega}^{n}=L_{\sigma^{n-1}\omega}\circ\ldots\circ L_{\sigma\omega}\circ L_{\omega}.$$

The associated skew-product transformation $\tau \colon \Omega \times I \to \Omega \times I$ is given by

$$\tau(\omega, x) = (\sigma\omega, T_{\omega}x).$$

Under some mild assumption we have that

 $\|L_{\omega}h\|_{BV} \leq K(\omega)\|h\|_{BV}$, for $h \in BV$ and $\log K \in L^1(\mathbb{P})$;

and there exists $N \in \mathbb{N}$ we have

$$extsf{var}(extsf{L}_{\omega}^{ extsf{N}} extsf{h}) \leq lpha^{ extsf{N}}(\omega) extsf{var}(extsf{h}) + extsf{K}^{ extsf{N}}(\omega)\| extsf{h}\|_{1},$$

for $h \in BV$ and a.e. $\omega \in \Omega$ and with

$$\int_{\Omega} \log \alpha^{N}(\omega) \, d\mathbb{P}(\omega) < 0.$$

If for each subinterval $J \subset I$ and for a.e. $\omega \in \Omega$, there exists $n(\omega) \in \mathbb{N}$ such that

$$\operatorname{essinf}_{x\in[0,1]}(L_{\omega}^{n}\mathbf{1}_{J})>0, \quad \text{for } n\geq n(\omega),$$

there exists a unique acim (w.r.t. $\mathbb{P} \times m$) μ for τ such that $\pi_*\mu = \mathbb{P}$, where $\pi \colon \Omega \times I \to \Omega$ is a projection. We can regard μ as a collection of fiber measures μ_{ω} , $\omega \in \Omega$ on I. Also, one has fiberwise decay of correlation result.

We consider observables $\phi \colon \Omega \times I \to \mathbb{R}$ such that

 $\mathrm{esssup}_{(\omega,x)} |\phi(\omega,x)| < \infty \quad \mathrm{and} \quad \mathrm{esssup}_{\omega} \operatorname{\mathit{var}}(\phi(\omega,\cdot)) < \infty.$

Moreover, we assume that

$$\int_{[0,1]} \phi(\omega,\cdot) \, d\mu_\omega = 0, \quad \omega \in \Omega.$$

We form Birkhoff sums

$$S_n(\omega, x) = \sum_{i=0}^{n-1} (\phi \circ \tau^i)(\omega, x) = \sum_{i=0}^{n-1} \phi(\sigma^i \omega, T^i_\omega x).$$

We are interested in the quenched type of limit theorems i.e. those that give an information about the asymptotic behaviour of Birkhoff sums w.r.t. to μ_{ω} for "typical" ω . Previous work:

- Kiffer, 1998: quenched limit theorems in random environment but not with spectral method;
- 2 Aimino, Nicol and Vaienti, 2014: spectral method but the base space is assumed to be a Bernoulli shift.

MET, Froyland/Lloyd/Quas, 2013.

Assume that $(\Omega, \mathcal{F}, \mathbb{P}, \sigma)$ is a probability space where Ω is a Borel subset of a separable, complete metric space. Furthermore, let Bbe a Banach space and $\mathcal{L} = L_{\omega}, \omega \in \Omega$ a family of bounded linear operators on B such that the map $\omega \mapsto L_{\omega}$ is \mathbb{P} -continuous. Then, for a.e. $\omega \in \Omega$, the following limits exist (and are independent on ω)

$$\Lambda(\mathcal{L}) := \lim_{n o \infty} rac{1}{n} \log \lVert L_{\omega}^n
Vert$$

and

$$\kappa(\mathcal{L}) := \lim_{n \to \infty} \frac{1}{n} \log ic(L_{\omega}^n),$$

where $ic(L_{\omega}^n) = \inf\{r > 0 :$

 $L^n_{\omega}(B_B)$ can be covered with finitely many balls of radius r}.

If $\kappa(\mathcal{L}) < \Lambda(\mathcal{L})$, then there exists $1 \le l \le \infty$ and a sequence of Lyapunov exponents

$$\Lambda(\mathcal{L}) = \lambda_1 > \lambda_2 > \ldots > \lambda_l > \kappa(\mathcal{L}) \quad (\text{if } 1 \le l < \infty)$$

or

$$\Lambda(\mathcal{L}) = \lambda_1 > \lambda_2 > \dots \quad \text{and} \quad \lim_{n \to \infty} \lambda_n = \kappa(\mathcal{L}) \quad (\text{if } I = \infty);$$

and for \mathbb{P} -almost every $\omega \in \Omega$ there exists a unique splitting (called the *Oseledets splitting*) of *B* into closed subspaces

$$B = V(\omega) \oplus \bigoplus_{j=1}^{l} Y_j(\omega),$$

depending measurably on ω and such that:

1 For each $1 \le j \le l$, dim $Y_j(\omega)$ is finite-dimensional, Y_j is equivariant i.e. $L_{\omega}Y_j(\omega) = Y_j(\sigma\omega)$ and for every $y \in Y_j(\omega) \setminus \{0\}$,

$$\lim_{n\to\infty}\frac{1}{n}\log\|L_{\omega}^n y\|=\lambda_j.$$

2 V is equivariant i.e. $L_{\omega}V(\omega) \subseteq V(\sigma\omega)$ and for every $v \in V(\omega)$, $\lim_{n \to \infty} \frac{1}{n} \log \|L_{\omega}^n v\| \leq \kappa(\mathcal{L}).$ In order to be able to apply MET, we will require that: Ω is a Borel subset of a separable, complete metric space and that

the map $\omega
ightarrow T_\omega$ has a countable range

We also form a twisted cocycle. More precisely, for $\omega \in \Omega$ and $\theta \in \mathbb{C}$, we define

$$L^ heta_\omega(h)=L_\omega(e^{ heta\phi(\omega,\cdot)}h),\quad h\in BV.$$

Theorem

For $\theta \in \mathbb{R}$, we have

$$\lim_{n\to\infty}\frac{1}{n}\log\int_{[0,1]}e^{\theta S_n(\omega,\cdot)}\,d\mu_\omega=\Lambda(\theta),$$

for \mathbb{P} -a.e. $\omega \in \Omega$ where $\Lambda(\theta)$ is a top Lyapunov exponent of the cocycle L^{θ}_{ω} , $\omega \in \Omega$.

In order to establish the corresponding regularity property of Λ we introduce some additional assumptions. We require that:

- **1** norms of L_{ω} are uniformly bounded;
- 2 densities v_{ω}^{0} are uniformly bounded from below $(d\mu_{\omega} = v_{\omega}^{0} dm)$ away from zero;
- **3** there exists $D, \lambda > 0$ such that

$$\|L_{\omega}^n f\|_{BV} \leq D e^{-\lambda n} \|f\|_{BV},$$

for $f \in BV$, $\int f \, dm = 0$, $n \in \mathbb{N}$ and a.e. ω .

We briefly sketch the argument that shows that $\theta \mapsto \Lambda(\theta)$ is of C^2 on a neighborhood of 0.

Regularity of Λ

Key points:

1) we construct the top space as $v^0_{\omega} + W^{\theta}(\omega, \cdot)$ where W^{θ} is a (unique) solution of $F(\theta, W) = 0$, where

$$F(\theta, \mathcal{W}) = \frac{L_{\sigma^{-1}\omega}^{\theta}(v_{\sigma^{-1}\omega}^{0} + \mathcal{W}(\sigma^{-1}\omega, \cdot))}{\int (L_{\sigma^{-1}\omega}^{\theta}(v_{\sigma^{-1}\omega}^{0} + \mathcal{W}(\sigma^{-1}\omega, \cdot))) \, dm} - \mathcal{W}(\omega, \cdot) - v_{\omega}^{0},$$

where $\mathcal{W} \in \mathcal{S}$ and

 $\mathcal{S} := \{ \mathcal{W} \colon \Omega \times I \to \mathbb{C} : \mathcal{W}(\omega, \cdot) \in BV, \ \mathsf{esssup}_{\omega} \| \mathcal{W}(\omega, \cdot) \|_{BV} < \infty \}.$

2 $\Lambda(\theta) = \int \log |\int e^{\theta \phi(\omega, \cdot)} (v_{\omega}^0 + \mathcal{W}^{\theta}(\omega, \cdot)) dm| d\mathbb{P}(\omega);$

3 for θ close to 0, the top Oseledets space of the twisted cocycle L_{ω}^{θ} is one-dimensional.

Also, $\Lambda'(0) = 0$ and $\Lambda''(0) = \Sigma^2$, where Σ^2 is a variance.

Theorem (Large deviation principle)

Assume that $\Sigma^2 > 0$. Then, there exists $\varepsilon_0 > 0$ and a function $c: (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}$ which is nonnegative, continuous, strictly convex, vanishing only at 0 and such that

$$\lim_{n\to\infty}\frac{1}{n}\log\mu_{\omega}(S_n(\omega,\cdot)>n\varepsilon)=-c(\varepsilon),\quad\text{for }0<\varepsilon<\varepsilon_0\text{ and a.e. }\omega.$$

We can also obtain CLT.

Theorem (Central limit theorem)

If $\Sigma^2 > 0$, we have that

$$\lim_{n\to\infty}\int g(S_n(\omega,\cdot)/\sqrt{n})\,d\mu_{\omega}=\int g\,dN(0,\Sigma^2),$$

for g continuous and bounded and a.e. $\omega \in \Omega$.

We need to show that

$$\lim_{n\to\infty}\int e^{it\frac{S_n(\omega,\cdot)}{\sqrt{n}}}\,d\mu_\omega=e^{-\frac{t^2\Sigma^2}{2}},\quad\text{for a.e. }\omega\in\Omega.$$

This follows by proving that:

1

$$\lim_{n\to\infty}\int e^{it\frac{S_n(\omega,\cdot)}{\sqrt{n}}}\,d\mu_{\omega}=\lim_{n\to\infty}\prod_{j=0}^{n-1}\lambda_{\sigma^j\omega}^{\frac{it}{\sqrt{n}}},$$

where

$$\lambda^{ heta}_{\omega} = \int L^{ heta}_{\sigma^{-1}\omega} (v^0_{\sigma^{-1}\omega} + \mathcal{W}^{ heta}(\sigma^{-1}\omega, \cdot)) \, dm =: H(heta, \mathcal{W}^{ heta})(\omega);$$

2 by Taylor expansion of $\theta \to H(\theta, W^{\theta})$ around 0:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \lambda_{\sigma^j \omega}^{\frac{it}{\sqrt{n}}} = -\frac{t^2 \Sigma^2}{2}.$$

Theorem (Local central limit theorem)

Assume that $\Lambda(it) < 0$ for $t \neq 0$. Then, for a.e. ω and every

bounded interval $J \subset \mathbb{R}$, we have

$$\lim_{n\to\infty}\sup_{s\in\mathbb{R}}\left|\Sigma\sqrt{n}\mu_{\omega}(s+S_ng\in J)-\frac{1}{\sqrt{2\pi}}e^{-\frac{s^2}{2n\Sigma^2}}|J|\right|=0,$$

Davor Dragičević, UNSW Limit theorems