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Piecewise expanding maps

Let I = [0, 1] denote the unit interval equipped with Borel

σ-algebra B and a Lebesgue measure m. We say that T : I → I is

a piecewise expanding map if there exists a partition

0 = x0 < x1 < . . . < xk−1 < xk = 1

and α > 1 such that:

1 restriction T |(xi−1,xi ) is a C 1 function which can be extended

to a C 1 function on [xi−1, xi ];

2 |T ′(x)| ≥ α > 0 for x ∈ (xi−1, xi );

3 g(x) = 1
|T ′(x)| is a function of bounded variation.
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Deterministic setting

1 transfer operator: L : L1(m)→ L1(m) defined by

Lf (x) =
∑

y∈T−1(x)

f (y)

|T ′(y)|
;

2 L is quasicompact of diagonal type on the BV space and

consequently it has a nonnegative fixed point which gives the

existence of acim;

3 under some additional assumptions acim is unique (and we

denote it by µ) and mixing;

4 in this case L = Π + N and we have the exponential decay of

correlation result.
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Central limit theorem

Assume that φ : I → R bounded observable in BV such that∫
[0,1] φ dµ = 0. For each n ∈ N, let

Sn =
n−1∑
k=0

φ ◦ T k .

Theorem (Rousseau–Egele, 1983)

We have that limn→∞
∫

[0,1]
S2
n
n = σ2, where

σ2 =

∫
[0,1]

φ2 dµ+ 2
∞∑
n=1

∫
[0,1]

φ(φ ◦ T n) dµ <∞.

If σ2 > 0, then Sn√
n
converges in distribution to N(0, σ2).
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Large deviation principle

Theorem

If σ2 > 0, then there exists δ > 0 and a strictly convex, continuous

and nonnegative function c : (−δ, δ)→ R which vanishes only at 0

such that

lim
n→∞

1

n
logµ(Sn > nε) = −c(ε), for ε ∈ (0, δ).
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Ideas of the proofs

We define

Lθ(g) = L(eθφg), for g ∈ BV and θ ∈ C.

Since θ 7→ Lθ is analytic, for θ sufficiently close to 0,

Lθ = ω(θ)Π(θ) + N(θ).

For CLT (dµ = f dm):

lim
n→∞

∫
[0,1]

e itSn/
√
n dµ = lim

n→∞

∫
[0,1]

Lnit/
√
n(f ) dm = lim

n→∞
ω(it/

√
n)n

= e−t
2σ2/2,

for t ∈ R.
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For LDP:

we first show that ω′(0) = 0 and ω′′(0) = σ2 and then that

lim
n→∞

1

n
log

∫
[0,1]

eθSn dµ = Λ(θ),

where Λ(θ) = logω(θ), for θ ∈ R sufficiently close to 0.
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Random Lasota-Yorke maps

Let (Ω,F ,P) be a probability space and assume that σ : Ω→ Ω is

invertible transformation that preserves P. Furthermore, assume

that P is ergodic. We now take the collection Tω, ω ∈ Ω of

piecewise expanding maps. For ω ∈ Ω and n ∈ N, set

T n
ω = Tσn−1ω ◦ . . . ◦ Tσω ◦ Tω

and

Lnω = Lσn−1ω ◦ . . . ◦ Lσω ◦ Lω.

The associated skew-product transformation τ : Ω× I → Ω× I is

given by

τ(ω, x) = (σω,Tωx).
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Existence and uniqueness of ACIM, Buzzi 2000

Under some mild assumption we have that

‖Lωh‖BV ≤ K (ω)‖h‖BV , for h ∈ BV and logK ∈ L1(P);

and there exists N ∈ N we have

var(LNω h) ≤ αN(ω)var(h) + KN(ω)‖h‖1,

for h ∈ BV and a.e. ω ∈ Ω and with∫
Ω

logαN(ω) dP(ω) < 0.

If for each subinterval J ⊂ I and for a.e. ω ∈ Ω, there exists

n(ω) ∈ N such that

essinfx∈[0,1](L
n
ω1J) > 0, for n ≥ n(ω),
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there exists a unique acim (w.r.t. P×m) µ for τ such that

π∗µ = P, where π : Ω× I → Ω is a projection. We can regard µ as

a collection of fiber measures µω, ω ∈ Ω on I . Also, one has

fiberwise decay of correlation result.

We consider observables φ : Ω× I → R such that

esssup(ω,x)|φ(ω, x)| <∞ and esssupω var(φ(ω, ·)) <∞.

Moreover, we assume that∫
[0,1]

φ(ω, ·) dµω = 0, ω ∈ Ω.

We form Birkhoff sums

Sn(ω, x) =
n−1∑
i=0

(φ ◦ τ i )(ω, x) =
n−1∑
i=0

φ(σiω,T i
ωx).
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We are interested in the quenched type of limit theorems i.e. those

that give an information about the asymptotic behaviour of

Birkhoff sums w.r.t. to µω for ”typical” ω.

Previous work:

1 Kiffer, 1998: quenched limit theorems in random enviroment

but not with spectral method;

2 Aimino, Nicol and Vaienti, 2014: spectral method but the

base space is assumed to be a Bernoulli shift.
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MET, Froyland/Lloyd/Quas, 2013.

Assume that (Ω,F ,P, σ) is a probability space where Ω is a Borel

subset of a separable, complete metric space. Furthermore, let B

be a Banach space and L = Lω, ω ∈ Ω a family of bounded linear

operators on B such that the map ω 7→ Lω is P-continuous. Then,

for a.e. ω ∈ Ω, the following limits exist (and are independent on

ω)

Λ(L) := lim
n→∞

1

n
log‖Lnω‖

and

κ(L) := lim
n→∞

1

n
log ic(Lnω),

where ic(Lnω) = inf{r > 0 :

Lnω(BB) can be covered with finitely many balls of radius r}.
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MET2

If κ(L) < Λ(L), then there exists 1 ≤ l ≤ ∞ and a sequence of

Lyapunov exponents

Λ(L) = λ1 > λ2 > . . . > λl > κ(L) (if 1 ≤ l <∞)

or

Λ(L) = λ1 > λ2 > . . . and lim
n→∞

λn = κ(L) (if l =∞);

and for P-almost every ω ∈ Ω there exists a unique splitting (called

the Oseledets splitting) of B into closed subspaces

B = V (ω)⊕
l⊕

j=1

Yj(ω),
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MET3

depending measurably on ω and such that:

1 For each 1 ≤ j ≤ l , dimYj(ω) is finite-dimensional, Yj is

equivariant i.e. LωYj(ω) = Yj(σω) and for every

y ∈ Yj(ω) \ {0},

lim
n→∞

1

n
log ‖Lnωy‖ = λj .

2 V is equivariant i.e. LωV (ω) ⊆ V (σω) and for every

v ∈ V (ω),

lim
n→∞

1

n
log ‖Lnωv‖ ≤ κ(L).
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In order to be able to apply MET, we will require that: Ω is a

Borel subset of a separable, complete metric space and that

the map ω → Tω has a countable range

We also form a twisted cocycle. More precisely, for ω ∈ Ω and

θ ∈ C, we define

Lθω(h) = Lω(eθφ(ω,·)h), h ∈ BV .

Theorem

For θ ∈ R, we have

lim
n→∞

1

n
log

∫
[0,1]

eθSn(ω,·) dµω = Λ(θ),

for P-a.e. ω ∈ Ω where Λ(θ) is a top Lyapunov exponent of the

cocycle Lθω, ω ∈ Ω.
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Regularity of Λ

In order to establish the corresponding regularity property of Λ we

introduce some additional assumptions. We require that:

1 norms of Lω are uniformly bounded;

2 densities v0
ω are uniformly bounded from below

(dµω = v0
ω dm) away from zero;

3 there exists D, λ > 0 such that

‖Lnωf ‖BV ≤ De−λn‖f ‖BV ,

for f ∈ BV ,
∫
f dm = 0, n ∈ N and a.e. ω.

We briefly sketch the argument that shows that θ 7→ Λ(θ) is of C 2

on a neighborhood of 0.
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Regularity of Λ

Key points:

1 we construct the top space as v0
ω +Wθ(ω, ·) where Wθ is a

(unique) solution of F (θ,W) = 0, where

F (θ,W) =
Lθσ−1ω(v0

σ−1ω +W(σ−1ω, ·))∫
(Lθ
σ−1ω

(v0
σ−1ω

+W(σ−1ω, ·))) dm
−W(ω, ·)−v0

ω,

where W ∈ S and

S := {W : Ω×I → C :W(ω, ·) ∈ BV , esssupω‖W (ω, ·)‖BV <∞}.

2 Λ(θ) =
∫

log|
∫
eθφ(ω,·)(v0

ω +Wθ(ω, ·)) dm| dP(ω);

3 for θ close to 0, the top Oseledets space of the twisted cocycle

Lθω is one-dimensional.
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Also, Λ′(0) = 0 and Λ′′(0) = Σ2, where Σ2 is a variance.

Theorem (Large deviation principle)

Assume that Σ2 > 0. Then, there exists ε0 > 0 and a function

c : (−ε0, ε0)→ R which is nonnegative, continuous, strictly

convex, vanishing only at 0 and such that

lim
n→∞

1

n
logµω(Sn(ω, ·) > nε) = −c(ε), for 0 < ε < ε0 and a.e. ω.

We can also obtain CLT.

Theorem (Central limit theorem)

If Σ2 > 0, we have that

lim
n→∞

∫
g(Sn(ω, ·)/

√
n) dµω =

∫
g dN(0,Σ2),

for g continuous and bounded and a.e. ω ∈ Ω.
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Idea of the proof

We need to show that

lim
n→∞

∫
e
it Sn(ω,·)√

n dµω = e−
t2Σ2

2 , for a.e. ω ∈ Ω.

This follows by proving that:

1

lim
n→∞

∫
e
it Sn(ω,·)√

n dµω = lim
n→∞

n−1∏
j=0

λ
it√
n

σjω
,

where

λθω =
∫
Lθσ−1ω(v0

σ−1ω +Wθ(σ−1ω, ·)) dm =: H(θ,Wθ)(ω);

2 by Taylor expansion of θ → H(θ,W θ) around 0:

lim
n→∞

1

n

n−1∑
j=0

log λ
it√
n

σjω
= − t2Σ2

2
.
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Local central limit theorem

Theorem (Local central limit theorem)

Assume that Λ(it) < 0 for t 6= 0. Then, for a.e. ω and every

bounded interval J ⊂ R, we have

lim
n→∞

sup
s∈R

∣∣∣∣Σ√nµω(s + Sng ∈ J)− 1√
2π

e−
s2

2nΣ2 |J|
∣∣∣∣ = 0,
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