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Abstract—The problem of obtaining maximal nonlinearity in
Boolean functions is well researched, both from the cryptographic
and evolutionary computation side. However, the results are
still not conclusive enough to be able to show how good a
heuristic approach is when tackling this problem. In this paper,
we investigate how to obtain the maximal possible nonlinearity
in balanced Boolean functions, but we also analyze how difficult
is the problem itself. In order to do so, we conduct experiments
with Estimation of Distribution algorithms as well as the fitness
landscape analysis and the deception analysis. Our results indi-
cate that the first difficulties arise from the weak fitness function
and somewhat inappropriate representation of solutions coupled
with a huge search space. The fitness landscape analysis does not
reveal any significant differences that could justify the assumed
jump in difficulties when going from Boolean functions with 6
inputs to those with 8 inputs. Finally, we show that this problem
is not order-1 deceptive.

I. INTRODUCTION

Evolutionary algorithms represent a well used paradigm to
solve many real world problems. As such, one can also find
their role in the field of cryptography. Cryptography is a
science of secret writing where the goal is to hide the meaning
of a message [1]. Naturally, secrecy (confidentiality) is not
the only goal, but is the easiest to grasp when considering
it on a more abstract level. Some other goals that are usual
in cryptography are authentication, data integrity or message
integrity [1]. To fulfill those goals one has on his disposal
cryptographic algorithms, more commonly known as ciphers.

Cryptography is a huge area and there exist a number of
taxonomies where a common one is on the basis on how
the key is used [1]. There, we talk about symmetric key
cryptography when all parties use the same key, and public
key cryptography when there is a public and a private key.
Next, symmetric key cryptography can be further divided into
block ciphers and stream ciphers. Block ciphers operate on
blocks of fixed length of data with an unvarying transformation
that is specified by the key. Most of the stream ciphers encrypt
message bits by adding encryption bits modulo two.

Well designed ciphers are made in a way to be able to
resist cryptanalytic attacks, e.g. to possess some cryptographic
properties that make them strong. To resist against one on the
most well researched kind of attacks - linear cryptanalysis [2],
one requires that a cipher possess enough nonlinearity. That
nonlinearity may come from various sources like multipli-
cation or addition operation modulo some value or from
Boolean functions. In fact, Boolean functions (more precisely,
vectorial Boolean functions also known as S-boxes) are the
most common way to add nonlinearity to ciphers [3]. S-boxes
are dominantly used in block ciphers, while Boolean functions

(or S-boxes with the number of outputs strictly smaller than
the number of inputs) are used in stream ciphers. Although
Boolean functions lost some of their appeal as a cryptographic
primitive in today’s practice, they still represent an interesting
research area.

To obtain Boolean functions with good enough properties
to be used in practice, one can use either random search,
heuristics, algebraic construction, or a combination of the
aforesaid techniques. Here we are interested in heuristic tech-
niques, and more precisely evolutionary computation (EC).
In Section III, we present a number of related works, but
for now it suffices to say that there is a plethora of works
examining the successfulness of EC techniques when evolving
Boolean functions. Furthermore, one standard goal in existing
papers is to evolve balanced Boolean functions with maximal
nonlinearity (and usually with some additional properties).
Since we have the same goal here, we first give a rough
motivation for our research. As explained in Section II, finding
maximal nonlinearity is not an easy problem; moreover, e.g.
for balanced Boolean functions with eight inputs, theory says
that the best possible nonlinearity is 118, but in practice we
know of only nonlinearity 116 (obtained both with heuristics
and algebraic constructions). Is finding a function with non-
linearity 118 important? In our opinion it is not, since the gain
in the security would be minimal and furthermore, today it is
considered as a minimum for a Boolean function to have 13
inputs to be secure [4]. However, one noteworthy goal would
be either to find such a function or to show there are no such
functions. Unfortunately, heuristic methods are in general not
able to give us an answer on whether a particular solution
exists, but they are able to produce solutions that could be
(but are not necessary) good enough. Note that despite the
theory, there exists a dose of doubt on whether such functions
with nonlinearity equal to 118 really exist.

In this paper, although we look for maximal nonlinearity,
we do not consider that as our end goal. Rather, through
that investigation we try to analyze whether this problem
is difficult for EC. Our reasoning is that if we can show
the problem is not difficult for EC methods and yet no one
is able to find such functions, that could serve as a strong
indication that such functions do not exist. Conversely, if the
problem is difficult, then it makes more plausible there are
such functions, and we are just missing some breakthrough
in the currently used approaches to find them. Naturally,
it is quite obvious to see that the problem is not easy in
any case since the search space for a Boolean functions
with n inputs equals 22

n

, which for Boolean functions with



8 inputs equals 2256. To make our investigation stronger,
we do not limit our attention only to Boolean functions
with eight inputs. The smaller sizes are used to better
understand the problem and the larger sizes are used as a
sanity check for the problem difficulty, i.e. if it is easy to
find maximal nonlinearity there, then it should be also easy
to find it for eight inputs. Finally, we note that the Boolean
functions we consider here are not appropriate for real world
usage in cryptography since we do not consider all properties
a Boolean function should possess to be used in cryptography.

A. Motivation and Contributions

The empirical investigation of the Boolean functions using
EDAs aims to determine whether the combination of low
order building blocks (in EDAs these building blocks are
encapsulated in the factorization determined by the proba-
bilistic model) allows the algorithm to find better solutions
of the problem and furthermore, we evaluate whether the
representation of higher order dependencies in probabilistic
models makes a significant impact in the quality of the
solutions found by EDAs. With those experiments, we aim
to give answer to the following questions:
• Whether probabilistic modeling of the search space by

means of estimation of distribution algorithms can be an
efficient approximation to solve the problem at hand.

• Is there any influence of the order and type of the
interactions that the model is able represent in the results
of the EDAs?

• Does the highly symmetric representation used to encode
the problem influence the behavior of EDAs, and if yes,
how?

• Which fitness function is more appropriate to solve this
problem using EDAs?

• Can the reported symmetric properties of the space be
used to make a more intelligent (or informed) use of
probabilistic modeling?

As already indicated in the previous section, we do not limit
ourselves only to experimental results with EDAs, but also
we persevere to give more insight into the problem difficulty.
Therefore, first we conduct a fitness landscape analysis in an
effort to recognize similarities among landscapes for various
dimensions of Boolean functions. Here, the motivation stems
from the expectation that if landscapes are similar then there
is no reason that one dimension is more difficult to solve than
some other (except the obvious reason which is the exponential
growth of the search space).

The notion of building blocks that are combined to create
optimal solutions as the result of the application of genetic
operators is central to genetic algorithms (GAs). Deception
analysis is very related to the idea that for some problems the
information available from the fitness of low order schema
is misleading. In these situations the combination of partial
subsolutions of high fitness will eventually lead the GA
away from the optimum. The deception analysis uses recent
theoretical results [5] about the symmetry structure of Boolean

function. We show that according to the recent definition of
deception proposed by Whitley [6], Boolean functions are not
1-order deceptive.

B. Outline

The paper is organized in the following way. It consists of
three main parts; in Section V we work with the estimation
of distribution algorithms in an effort to estimate the hardness
of this problem when stepping away from more commonly
used evolutionary algorithms. In Section VI, we present a
fitness landscape analysis of the search space of balanced
Boolean functions, and in Section VII we analyze whether
this problem is deceptive. However, first we introduce in
Section II necessary details about cryptographic properties ans
representation of Boolean functions. Next, in Section IV, we
present fitness function we use in our experiments. Finally, we
end with short conclusions in Section VIII.

II. THEORETICAL BACKGROUND

In this section, we present the notation we follow, as well as
the basic information about Boolean functions representations
and cryptographic properties of interest. Let n,m ∈ N. Next,
the set of all n-tuples of the elements in the field F2 is denoted
as Fn

2 , where F2 is the Galois field with two elements. The
set Fn

2 represents all binary vectors of length n[4]. An (n,m)-
function is any mapping F from Fn

2 to Fm
2 where Boolean

functions represent m = 1 case. The inner product of vectors
~a and ~b is denoted as ~a · ~b and it equals ~a · ~b = ⊕n

i=1aibi,
with “⊕” being addition modulo two. The Hamming weight
(HW ) of a vector ~a, where ~a ∈ Fn

2 , is the number of non-zero
positions in the vector.

A. Boolean Function Representations

We are interested in two unique representations of Boolean
functions. A Boolean function f on Fn

2 can be uniquely repre-
sented by a truth table (TT), which is a vector (f(~0), ..., f(~1))
that contains the function values of f , ordered lexicographi-
cally [4]. This represent the natural encoding of evolutionary
algorithms’ solutions as a string of bits.

The second unique representation of a Boolean function is
the Walsh-Hadamard transform Wf where we are interested
in it since through it we calculate relevant cryptographic prop-
erties of Boolean functions. The Walsh-Hadamard transform of
a Boolean function f measures the correlation between f(~x)
and the linear function ~a · ~x [4]:

Wf (~a) =
∑
~x∈Fn

2

(−1)f(~x)⊕~a·~x. (1)

B. Boolean Function Properties

In the truth table representation, a Boolean function with
n inputs is balanced if its Hamming weight equals 2n−1.
Alternatively, A Boolean function f is balanced if the Walsh-
Hadamard spectrum of a vector ~0 equals zero [7], [8]:

Wf (~0) = 0. (2)



The nonlinearity Nf of a Boolean function f is the mini-
mum Hamming distance between the function f and all affine
functions [4]. The nonlinearity Nf of a Boolean function
f expressed in terms of the Walsh-Hadamard coefficients
equals [4]:

Nf = 2n−1 − 1

2
max~a∈Fn

2
|Wf (~a)|. (3)

If a Boolean function f has the correlation immunity
property of order t, an even number of inputs n, and k ≤ n

2−1
then its nonlinearity Nf has an upper bound as follows [9]:

Nf ≤ 2n−1 − 2
n
2−1 − 2k, (4)

where k equals t+ 1 if f is balanced or has Hamming weight
divisible by 2t+1 and k equals t otherwise.

In the case when k > n
2 − 1 then the nonlinearity property

has the upper bound:

Nf ≤ 2n−1 − 2k. (5)

For further information about Boolean functions and their
cryptographic properties, we refer interested readers to [4].

III. RELATED WORK

There exists a multitude of examples where heuristic tech-
niques yielded good results in constructing Boolean functions
with cryptographic properties. Therefore, one could aim to
classify those works on a basis of what heuristics they use,
what cryptographic properties and Boolean function sizes are
objective or what representation of Boolean function is used.
Here, we opted to follow the last direction and we briefly
enumerate several important works. As already mentioned in
Section II, there is usually a distinction between the represen-
tation that the heuristics uses to represent individuals and that
fitness function uses to evaluate individuals.

Accordingly, the best researched representation (and one
we also follow) of solutions is as a bitstring, i.e. truth table
representation. The first paper, as far as the authors know, that
explores the evolution of Boolean functions for cryptography
is by Millan et al. [10]. There, the authors try to evolve
Boolean functions with high nonlinearity. Millan, Clark, and
Dawson further increased the strength of genetic algorithms
(GAs) by combining them with the hill climbing together with
a resetting step. The goal was to find highly nonlinear Boolean
functions with up to 12 variables [11]. Clark and Jacob
experimented with two-stage optimization to generate Boolean
functions with high nonlinearity and low autocorrelation [12].
They used a combination of simulated annealing and hill
climbing with a cost function motivated by Parseval’s theorem.

Next, there is a line of works that uses different than the
truth table representation to encode individuals, but to evaluate
them, first they map solutions to the truth table representation.
Picek, Jakobovic, and Golub experimented with GAs and ge-
netic programming (GP) to find Boolean functions that possess
several optimal properties [13]. As far as the authors know,
this is the first GP application for evolving cryptographically
suitable Boolean functions. Here, the evolved tree (genotype)

is a posteriori transformed to the truth table representation for
the evaluation purposes. Hrbacek and Dvorak used Cartesian
genetic programming (CGP) to evolve bent Boolean functions
of sizes up to 16 inputs where the authors experimented
with several configurations of algorithms in order to speed
up the evolution process [14]. As far as we are aware, this is
the fist CGP application for evolving cryptographic Boolean
functions. Picek et al. compared the effectiveness of GP and
CGP algorithms when looking for highly nonlinear balanced
Boolean functions with eight inputs [15]. A detailed analysis
of the efficiency of a number of evolutionary algorithms and
fitness functions is given in [16]. There, the authors also gave
a thorough related work list.

Besides the truth table representation of solutions, we were
able to find only a handful of papers that use the Walsh-
Hadamard spectrum to encode individuals. Although that
representation seems natural, both from the Boolean functions
perspective, as well as from the evolutionary one, there are
some difficulties. The main problem lies in a fact that it is not
known what Walsh-Hadamard values (or in what ordering)
constitute a Boolean function. More precisely, on the basis
of Parseval’s theorem one can infer what values could be in
the Walsh-Hadamard spectrum, but it is impossible to say
what the positions should be. Therefore, when generating
the Walsh-Hadamard spectrum it is necessary to make an
inverse transform to verify that the spectrum indeed maps to
a Boolean function. Clark et al. experimented with simulated
annealing in order to design Boolean functions using spectral
inversion [17]. They worked in the spectral domain where the
cost function punishes those solutions that are not Boolean
functions. Mariot and Leporati used GAs where the genotype
is a list of integer values in order to evolve plateaued Boolean
functions [18]. Plateaued functions have only three values in
the Walsh-Hadamard spectrum and therefore represent some-
what easier task to evolve when working with the Walsh-
Hadamard representation than in the case when considering
balanced Boolean functions.

Finally, Picek, McKay, Santana, and Gedeon explore how to
find balanced Boolean function with eight inputs and maximal
nonlinearity, but they approach this task through the analysis
of symmetries one encounters in the search space [5]. They
conclude that this problem exhibits a number of symmetries
which makes it difficult for many evolutionary algorithms.
This work also represents a motivation of a sort for our
research since we continue to approach this problem from the
more analytical perspective, where the main goal is to deduce
possible obstacles in the evolutionary search.

IV. FITNESS FUNCTION

We start from the fitness functions as used in [5] to evaluate
the quality of a Boolean function:



nonlin(f) = min
affine f1∈22N

δ(f, f1) (6)

imbal(f) = abs(|x : f(x) = 1| − |x : f(x) = 0|) (7)
= min

balanced f1∈22N
2× δ(f, f1)

fit(f) = max
f∈22N

{nonlin(f)− imbal(f)} (8)

Note that the fitness function above is the same as in a
number of related works, cf. [15], [16] where one punishes the
imbalanced solutions. Here, δ represents Manhattan distance
(Hamming distance) between two Boolean functions, i.e. be-
tween a candidate Boolean function and all affine functions.
The nonlinearity nonlin(f) is computed as per Eq. (3).

We note that extensive preliminary experiments with this
function showed that no variant of EDA (with and without
local search) was able to reach the 116 fitness value for a
Boolean function size of eight inputs. It seems this is not only
due to the symmetric nature of the search space but to the
relatively few information about the quality of the solutions
provided by the nonlinearity expression.

Indeed, in related works one can find other attempts on
fitness functions that use more information in the nonlinearity
part and consequently produce better results. One prominent
example is from the work of Clark and Jacob [19] where they
use whole Walsh-Hadamard spectrum:

cost(f) =
∑
~a

||Wf (~a)| −X|R , (9)

with X and R being real valued parameters. We acknowl-
edge that using the above function can result in improvements
of results, but nevertheless we believe that the cost of two
more additional parameters that need to be tuned is significant.
As far as we are aware, there is no straightforward way to
choose those parameters, nor is there some obvious scaling
rule between the parameter values and the Boolean function
size.

Therefore, we opted to modify fitness function in a way that
adds more information about the quality of a certain solution
with regards to the Walsh-Hadamard spectrum, but avoiding
the drawbacks of additional parameters:

modified Nf = Nf +
(2n − freq(|Wf (~a)|))

2n
, (10)

where freq is the number of times the maximum
Walsh-Hadamard coefficient Wf (~a) occurs among all Walsh-
Hadamard coefficients.The rationale behind this definition is
allowing the optimization algorithm to reduce the number of
occurrences of the Walsh-Hadamard coefficients of maximum
value, in the expectation that this pressure will lead to a
minimum number of repetitions, and eventually a transition to
a function with a smaller maximal Wash-Hadamard coefficient.
It is a more informative version of Eq. (3) because it allows
to distinguish between different functions that share the same
amount of nonlinearity. Since the gain due to reducing the

frequency of the maximum coefficient should not be higher
than the gain in increasing nonlinearity itself, we normalize
the second part of our fitness function by dividing it with a
value 2n, which effectively bounds the value of the fraction to
[0, 1] range. Finally, to deal with the imbalanced solutions, we
add the balancedness criterion penalty to the fitness function
we use in this paper:

fitness = Nf +
(2n − freq(|Wf (~a)|))

2n
− imbal(f). (11)

V. ESTIMATION OF DISTRIBUTION ALGORITHMS

The main idea of Estimation of distribution algorithms
(EDAs) [20], [21] is to extract patterns shared by the best
solutions, represent these patterns using a probabilistic graph-
ical model (PGM) [22], and generate new solutions from this
model. In contrast to GAs, EDAs apply learning and sampling
of distributions instead of classical crossover and mutation
operators. Modeling the dependencies between the variables
of the problem serves to efficiently orient the search to more
promising areas of the search space by explicitly capturing
and exploiting potential relationships between the problem
variables. The pseudocode of an EDA is shown in Algorithm 1.

Algorithm 1: Estimation of distribution algorithm

1 Set t⇐ 0. Generate N solutions randomly.
2 do {
3 Evaluate the solutions using the fitness function.
4 Select a population DS

t of K ≤ N solutions
according to a selection method.

5 Calculate a probabilistic model of DS
t .

6 Generate N new solutions sampling from the dis-
tribution represented in the model.

7 t⇐ t+ 1
8 } until Termination criteria are met.

We work with positive distributions denoted by p. p(xI)
denotes the marginal probability for XI = xI . p(xi | xj)
denotes the conditional probability distribution of Xi = xi
given Xj = xj . Three types of probabilistic graphical models
are used: 1) Univariate model. 2) 1-order Markov model. 3)
Tree model.

A. Probabilistic models
A probability distribution pT (x) that is conformal with a

tree is defined as:

pT (x) =

n∏
i=1

p(xi|pa(xi)), (12)

where Pa(Xi) is the parent of Xi in the tree, and
p(xi|pa(xi)) = p(xi) when pa(Xi) = ∅, i.e. Xi is a root
of the tree. We allow the existence of more than one root in
the PGM (i.e. forests) although for convenience of notation
we refer to the model as tree.

One particular case of trees are chain-shaped distributions
in which each variable depends Xi on the previous variable in
a given order. We call this case as the 1-order Markov model.



pMK(x) = p(x1)

n∏
i=2

p(xi | xi−1) (13)

The simplest example of distributions is the univariate
model, where variables are assumed to be independent. For
this model the probability of a solution is the product of the
univariate probabilities for all variables:

pu(x) =

n∏
i=1

p(xi) (14)

Univariate approximations are expected to work well for
functions that can be additively decomposed into functions of
order one (e.g. g(x) =

∑
i xi). The 1-order Markov model

captures only dependencies between adjacent variables, and
the tree model can represent a maximum of n − 1 bivariate
dependencies. The computational cost of EDAs is mainly
associated to the methods needed to learn and sample the
models. The most complex EDA used in this paper is Tree-
EDA which has a computational cost O(n2). Examples of
EDAs that use univariate, 1-order Markov, and tree models are
respectively presented in [20], [23] and [24], [25] and details
on the methods used to learn and sample the models can be
obtained from these references.

B. Enhancement to EDAs

Hybridization has been proposed [26] an as one of the most
efficiency-enhancement technique for EDAs. We implemented
different greedy search algorithms as part of the EDA. In this
paper, results are presented for a local optimizer that proposes
swaps between pairs of variables with different values and
accept the move if the fitness is improved. A maximum
number of moves was set to 2n

10 .
The other enhancement added to the EDA was partial

sampling. In classical EDAs, when a new solution is generated
all variables are sampled from the model. The idea of partial
sampling is to use a template from the selected population and
sample only a subset of the variables using the learned proba-
bilistic model. That way, some of the structure of the selected
solution is kept, but information from the model is added.
Partial sampling is defined by a parameter 0 < rate ≤ 1 that
indicates which proportion of variables will be sampled.

C. Experimental benchmark

From preliminary experiments with the three EDAs some
observations were extracted that shaped the design of the
experiments described here:
• The class of probabilistic model used was not necessarily

the most decisive factor in the success rate of the algo-
rithm.

• The selection strength, determined by the truncation
selection factor had a strong effect in the success of the
EDAs. In particular, it seems that a very strong selection
pressure was important to reach high fitness solutions.

• The sampling rate was also crucial. A low sampling rate
(r = 0.25) led almost in every case to solutions of higher
fitness.

Therefore, in an initial step we decided to investigate the
influence of three factors in the behavior of the algorithms:
• Type of probabilistic model.
• Strength of selection.
• Population size.
We conducted experiments with the fitness function as given

in Eq. 8 (informally called “weak” fitness) where for smaller
dimensions (i.e. up to 6 inputs) EDAs succeed in reaching
the global optimum, while for larger dimension (8 inputs and
higher) they are stuck in local optima. By local optima here
we understand all values that are lower than the currently
known best values (since it is not always clear whether there
exist better values). Due to the lack of space, we do not give
those results here. Instead, we concentrate only on results with
fitness function as in Eq. (11).

Each EDA is uniquely defined by the configuration of
these three factors. All other parameters were identically set.
100 experiments were run for each EDA configuration for
problems n ∈ [8, 10]. For n = 12, only 20 repetitions of the
problems were conducted due to the high computational cost.
Also, for n = 12, Tree-EDA was not applied for the same
reasons. Experiments were run in a cluster of 752 × 86 64
processing cores, 2.5 TB of RAM and 22 TB of disk. Note that
we do not give results for smaller sizes of Boolean functions
since the problem there is easy regardless of the choice of the
fitness function.

The average fitness of the best solution achieved in each of
the runs for all problem sizes are shown in Fig. 1. The color
of each cell in the matrix represents the average fitness for an
EDA (x axis top) with given population size (x axis bottom)
and truncation selection (y axis). We give results for Boolean
function dimensions a) n = 8; b) n = 10; c) n = 12.

In order to determine the effect of using different fac-
torizations in the search for optimal solutions, we tested
for significant differences between the three EDAs for each
combination of population size and truncation selection. A
multiple comparison statistical test was conducted using the
best solutions reached in 100 runs. The Kruskal Wallis test
was applied first, and a post-hoc test was applied afterwards to
look for statistical differences between each pair of algorithms.
A Bonferroni correction was added to compensate for multiple
comparisons. All tests used as pvalue α = 0.01. The test did
not show statistical differences between any pair of algorithms
showing that the order of dependencies between the variables
included in the model is not a relevant factor for the behavior
of EDAs for the Balanced function problem.

One interesting question is which is the best solution among
all that have the same non-linearity value, i.e. which is the
best value of freq(|Wf (~a)|)? This value could serve as a
surrogate of how close are the solutions to the next best non-
linearity value (118). In our experiments, the best value of
256 − freq(|Wf (~a)|) was 240, still far from the possible
maximum which is 255. It was reached only once. The



a)b)c)

Fig. 1: EDA results for different configurations of the population size (N ∈ {50, 100, 250, 500}), the truncation parameter
t ∈ {0.2, 0.4}, and different problems. a) n = 8; b) n = 10; n = 12.

Fig. 2: Histogram of the fitness values above 116.

distribution of the fitness values for all solutions with fitness
above 116 in all the configurations previously analyzed are
shown in Fig. 2.

VI. FITNESS LANDSCAPE ANALYSIS

In this section, we give a fitness landscape analysis for bal-
anced Boolean functions with dimensions from 4 to 12 inputs.
The goal is to identify whether there are some similarities in
landscapes that could point us how difficult this problem is.
We start with Boolean functions with 4 inputs since in [5]
authors showed that the large part of the search space belongs
to the functions with the maximal nonlinearity. Accordingly,
there the problem of obtaining maximal nonlinearity is easy.
When going to functions with 6 inputs, authors report that it is
still easy to find maximal nonlinearity functions, but now the
big proportion of the solutions have suboptimal nonlinearity
values. Increasing just one step more, e.g. going to 8 inputs,
the trend from the 6 inputs case is amplified and now one
cannot find maximal nonlinearity anymore.

Therefore, one can immediately see that this discrepancy
requires more research. Indeed, if the 4 and 6 inputs cases

are easy, and 8 input case is difficult, can this observation
be confirmed with differences in the fitness landscape? Or,
if the landscapes are similar, should that point us that there
is in fact no 118 nonlinearity for functions with 8 inputs?
More generally, one expects that the landscape analysis should
help when designing more suited representations and fitness
functions. Besides the aforementioned sizes, we investigate
also 10 and 12 input cases to strengthen our observations.

When approaching the fitness landscape analysis, the first
question that needs to be addresses is how to measure
landscape properties. Here, we follow properties as given
by Talbi [27], but due to the lack of space, we do not
give description of investigated properties. To measure the
distance between solutions we use a standard measure for the
bitstring representation - Hamming distance (i.e. Manhattan
distance) [27]. To obtain fitness landscape properties, we
use the following strategy. First a random population of 100
balanced individuals (Boolean functions) is generated. Next,
we run a local search algorithm that is run until the solution
converges as given in Algorithm 2. The average fitness of the
initial random populations and results after convergence of the
local search algorithm are given in Table I.

Algorithm 2: Local search algorithm.

1 Set individual size t⇐ 2n.
2 for i = 0 to individual size
3 Flip bit at position i.
4 for j = 0 to individual size
5 if Value at i = value at j and i 6= j then
6 Flip bit at position j.
7 Evalaute individual.
8 if Individual improved then
9 Keep individual.
10 Exit loop and go to next individual.
11 else
12 Restore individual.

Based on the local search results, the obtained fitness
landscape values are given in Table II. Here, d(P ) is the
population diameter and dmmn(P ) is the normalized average



TABLE I: Local search results (landscape analysis).

Boolean variables 4 6 8 10 12

Initial avg. fitness 3.125 19.33 98.21 445.6 1896.7
Converged - avg. 4.871 25.07 111.5 471.6 1951.3
Converged - max. 4.875 26.75 112.984 476.999 1967

TABLE II: Fitness landscape properties.

Property 4 6 8 10 12

d(P ) 16.0 50.0 161.0 590.0 1102.0
dmmn(P ) 0.250162 0.319821 0.397437 0.433907 0.464635
∆dmm -0.000322 0.000432 -0.000173 0.000047 0.000260
Amp(P ) 1.000796 1.066978 1.030360 1.011429 1.000000
∆Amp 0.345531 0.173949 0.071524 0.034883 0.8319
Lmm(P ) 3.224 12.828 26.606 42.102 7.9

population distance. ∆dmm represents variation after conver-
gence, Amp(P ) is fitness amplitude and ∆Amp its variation,
and finally, Lmm(P ) is the number of local search steps.

From the presented results, it is not easy to reach any
definitive conclusions, but some trends can be observed. First,
normalized average population distance dmmn(P ) points us
to the concentration of the solutions in the search space.
We see that as the search space grows the corresponding
dmmn(P ) value grows which indicates that the clustering
of the solutions in a small region of search space reduces.
Next, when considering distribution in the objective space,
Amp(P ) value gives us the relative difference between the
best quality of the population and the worst one. From the
results we see that the difference is similar for all dimensions
of interest. Furthermore, when checking the relative variation
of the amplitude ∆Amp between a starting random population
and the final population, we see the value drops as the
dimension increase, which is to be expected. However, for
dimension 12 that value is much higher than for any other
dimension which indicates that the difference between the
starting and final solutions is much higher. Next, the length
of a walk Lmm(P ) belongs to the correlation measures and
indicates the ruggedness of the landscape. Lmm(P ) grows
for dimensions 4 to 10, which points us that those landscapes
are similar. Since we know that for dimension 4 there are
only three possible fitness values (cf. [5]), it is clear that the
landscape is relatively smooth (i.e. with a small number of
optima). The dimensions from 6 to 10 inputs behave similarly.
However, the value for problem size of 12 inputs points to a
extremely rugged landscape with a large number of optima.

VII. DECEPTION ANALYSIS

For convenience, we use the definition of deception recently
given by Whitley [6]. Let h denote a (n − j)-dimensional
hyperplane where j variables have preassigned bit values and
α(h) be a mask with 1 bits marking the locations where the
j variables appear in the problem location and 0 elsewhere.
Let MAX(x, α(h)) return the hyperplane with the best mean
over all 2j order j hyperplanes that can be defined using the
α(h) mask.

A function is order-j deceptive [6] if the j bit values returned
by MAX(x, α(h)) for all hyperplanes of order j are not the
same as the bit values found in a string which is a global
optimum. In the particular case of order-1 deception, the
definition requires that the function will be deceptive if for
the n order-1 hyperplanes the value of MAX(x, α(h)) will
be different to the optimum.

Theorem 1. Balanced Boolean functions are not order-1
deceptive.

Proof. For j = 1, MAX(x, α(h)) can only return two
possible values, 0 and 1, for any variable. Since all balanced
Boolean functions are value-symmetric, for any variable Xi

there is always a global optimum solution x̂ such that x̂i = 0
(respectively, x̂i = 1). Therefore, by definition the function
cannot be order-1 deceptive.

The value-symmetry property that holds for Boolean func-
tions determines that order-1 schemata have equal average
fitness. One open question is what is the distribution of the
average fitness between higher order schemata. To investigate
this issue, we evaluate the complete space of solutions for
n = 4 and determined the frequencies for the schemata. This
information is shown in Fig. 3 for k ∈ {1, 2, 3, 4} where the
average fitness of the schemata have been normalized to ease
the visualization of the results. It can be shown in Fig. 3 that
with the exception or all-zero and or-ones schemata, all other
higher order schemata up to order k = 4 share similar average
fitness. This fact seems to indicate that that the difference
between the average contribution of optimal and suboptimal
schemata is very narrow. An EA that uses this information
can end up trapped in a local optimum or producing optimal
solutions with different configurations.
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Fig. 3: Probabilitity of the schema for k ∈ {1, 2, 3, 4}

VIII. CONCLUSION

In this paper, we approach well researched problem of
obtaining the maximal nonlinearity in balanced Boolean func-
tions with varying number of inputs. First, we give experi-
mental results with Estimation of Distribution Algorithms that



confirm a weakness in fitness function if using only maxi-
mal value of Walsh-Hadamard spectrum. However, changing
the fitness function enables EDAs to reach for instance the
currently best known nonlinearity value (116) for a balanced
Boolean function with 8 inputs. This points us that the same
change should result in the improvement of results for other
EAs that use such a “weak” fitness function and bitstring
representation. Besides that, we note no significant difference
in relation to other evolutionary paradigms.

Next, we provide a fitness landscape analysis that gives
some insights into the perceived difficulty of this problem
and shows there is nothing significantly different with the
landscape of balanced Boolean functions with 8 inputs when
for instance comparing with functions with 6 or 10 inputs.
However, we detect a number of differences for balanced
Boolean functions with 12 inputs which merits further inves-
tigation that we leave for future work. Finally, we provide a
proof that this problem is not order-1 deceptive, which means
the difficulty should also not come from there. As the future
work we plan to investigate higher orders of deception. To
conclude, our investigation points us that two main sources
of difficulties are the search space size and the high level of
symmetries.
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