
Noname manuscript No.
(will be inserted by the editor)

The influence of cyclomatic complexity distribution
on the understandability of xtUML models

Nenad Ukić · Josip Maras · Ljiljana Šerić

Received: date / Accepted: date

Abstract Executable software models formalize functional software requirements.
This means that the understandability of software models is of paramount im-
portance. In this paper, we investigate the influence of distribution of model
cyclomatic complexity on the understandability of Executable Translatable UML
(xtUML) models. We adapt traditional cyclomatic complexity metrics to differ-
ent xtUML sub-models and present two different ways of measuring complexity
distribution: horizontal, among elements of the same type, and vertical, among
elements of different types. In order to test our hypothesis that cyclomatic com-
plexity distribution influences the understandability of xtUML models, we have
performed an experiment with student participants in which we have evaluated the
understandability of three semantically equivalent xtUML models with different
complexity distributions. Results indicate that a better distribution of cyclomatic
complexity has a positive influence on model understandability.

Keywords xtUML · understandability · cyclomatic complexity · distribution

1 Introduction

Traditionally, software models are used in the initial stages of the software develop-
ment process: for requirements analysis, documentation, or early design purposes.
The first formal use of UML-based models in software development typically meant

N. Ukić
Ericsson Nikola Tesla d.d. Poljička cesta 39 Split 21000 Croatia
Tel.: +385-91-3655970
E-mail: nenad.ukic@ericsson.com

J. Maras
University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Ar-
chitecture in Split (FESB), R. Boskovica 32, 21 000 Split, Croatia
E-mail: Josip.Maras@fesb.hr

Lj. Šerić
University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Ar-
chitecture in Split (FESB), R. Boskovica 32, 21 000 Split, Croatia
E-mail: Ljiljana.Seric@fesb.hr



2 Nenad Ukić et al.

using class models to generate the initial source code skeleton, which is then used
as a base for traditional software development. The problem with such, elaborative
approach is that the software skeleton generated from the initial model typically
changes over time which makes the model deprecated.

Executable software models are changing this elaborative paradigm by making
the model a central development artifact. A key feature of executable models is
their ability to be executed, which implies the possibility of testing. In order for
a model to become executable, it must become computationally complete, that
is, in addition to the structure, the model must specify the details of application
behavior [32]. The traditional iterative software development process of testing
and correction can then be applied to models themselves. After a model is verified
and meets all functional requirements, it is used to generate the application source
code. In this translational process, the source code is considered as a temporary
asset on the way from a model to binary form used in production. The intellectual
property of such software development is not the source code, but a model of the
application, as well as the translation mechanism used to generate the source code
[47].

The paradigm of executable software models was introduced by Model Driven
Architecture (MDA)[36] [22] [43] [35]. One of the oldest and most mature exe-
cutable UML methodologies is Executable Translatable UML (xtUML) [5], a suc-
cessor to the Shlaer-Mellor object-oriented methodology [55], adapted to the UML
graphical notation. An open source tool – BridgePoint [42] [41] supports xtUML
model development and is the main enabler of the methodology. There are, how-
ever, other methodologies and approaches to MDA. Except for xtUML, the Object
Management Group (OMG) has published a Foundational subset for executable
UML models (fUML) [38] which simplifies the UML standard and defines precise
semantics for the execution of UML models. The main goal of this effort is to
establish a standard language and execution semantics that will be common to all
higher level languages, including xtUML. By applying the translational approach,
other languages would only translate to fUML formalisms and reuse its execution
and code generation tool chain.

There are several important implications of the translational approach used by
executable software models. First, it is possible to separate functional and non-
functional requirements. The model is used to specify functional requirements in
the simplest possible way, while decisions about platform, language, robustness,
and speed are handled in the code generator. In this way, the software model
becomes independent of the platform on which the application will be executed
and of the target language of the generated source code. Besides obvious reuse
benefits, the separation of functional and non-functional requirements means that
models can become more abstract and therefore simpler and more approachable
to domain experts.

In general, cognitive simplicity and understandability of software is the result
of clear abstractions, i.e. clear links between formal concepts used to formalize the
software and actual domain concepts they represent [24]. Since functional and non-
functional requirements can be separated, executable software models no longer
have to be a compromise between simplicity and application implementation con-
straints. The focus of executable software models can be entirely moved to the
clarity of application’s functional specifications. This means that the understand-



Title Suppressed Due to Excessive Length 3

ability of a model becomes essential. Because of this, objectively measuring model
understandability is of paramount importance.

Approaches to measuring software understandability can be categorized into
two groups: i) linguistic, which focus on the similarity between software element
identifiers and domain concepts [24], and ii) metric-based which are concerned with
the relationship between different software metrics and software understandability
[18] [21].

The main contribution of this paper is a metric-based approach to measuring
software understandability centered on cyclomatic complexity. Cyclomatic com-
plexity is a metric based on the number of linearly independent execution paths
through an application. Traditionally, the majority of software metrics are applied
to source code, but in this case, since we are dealing with models, we adapted the
existing cyclomatic complexity measures to xtUML models. We present a way to
calculate the integrated cyclomatic complexity of a complete xtUML model and
different ways to distribute it across a model.

Next, we propose the following hypothesis: (H) The understandability of
xtUML models is influenced by the model’s distribution of cyclomatic
complexity. To validate this hypothesis we conducted an experiment with stu-
dent participants in which we evaluated the understandability of three semanti-
cally equivalent models with different complexity distributions. Experiment results
have shown that there exists a connection between the distribution of cyclomatic
complexity and model understandability.

Our study is motivated with problems that often occur with executable soft-
ware modeling. It is important to emphasize that merely using executable models
and software visualization does not guarantee that software will be better in any
aspect. In traditional software development abstractions are hidden in source code,
they are often neglected and are rarely systematically assessed. In our opinion, the
main benefit of executable software modeling is in the fact that it puts the quality
of abstractions, a key challenge of software development, in the focus of the soft-
ware development process. In other words, executable modeling has the power to
expose our abstractions visually, but it does not guarantee that those abstractions
are of high quality. It is very difficult to objectively measure the quality of abstrac-
tions and the quality of xtUML models. Having methods that enable developers
to assign a quality metric to a certain model can help guide design decisions and,
in turn increase the quality of model-driven software systems.

This paper is structured as follows: section 2 presents the background required
for understanding the paper and related work relevant to our research. Section 3
describes our adaptations of cyclomatic complexity metric to different xtUML
sub-models. In section 4 we present a way to calculate the integrated cyclomatic
complexity of an xtUML model and the different ways of calculating complexity
distribution. Section 5 describes the experiment setup, while section 6 presents the
results. Finally, section 7 concludes the paper.

2 Background and related work

In this section, we describe the xtUML model and the four sub-models compris-
ing the model. This is followed by an explanation of factors affecting software
understandability, along with a description of cyclomatic complexity.



4 Nenad Ukić et al.

2.1 xtUML

xtUML (eXecutable and Translatable Unified Modelling Language) [30] [62] is
an MDA methodology [31] and a successor to the Shlaer-Mellor object-oriented
methodology [55], [5] adapted to UML graphical notation. It is a software devel-
opment language that uses the graphical notation of the standard UML, but also
defines precise execution and timing rules. xtUML models are semantically com-
plete, and all information about software structure, behaviour, and processing is
integrated in such a way that xtUML models can be executed. Although intended
as a general-purpose language for executable software modelling, xtUML is prob-
ably best suited for embedded applications [33] [23]. In addition, as a graphical
software modelling methodology, it is not an optimal choice for highly algorith-
mic applications. Despite its simplicity and matureness, xtUML is still not widely
used in the software development community. One of the main reasons for this
was the fact that the main enabler of the language, the BridgePoint tool[40], was
not open source up until recently. This was also a reason why most of the exe-
cutable software modeling community has gathered around OMG’s fUML[38] and
Alf[37] languages, which are more generic and closer to mainstream object-oriented
languages, but are also less mature and more complex than xtUML.

A system designed with xtUML is composed out of four interconnected types of
models: i) component models, which define the overall system architecture; ii) class
models, which define concepts and relations within a component; iii) state machine
models, which define class instance life-cycle; and the iv) processing model which
specifies execution details. The component, class, and state machine models are
graphical models, while the processing model is textual.

2.1.1 Components

The foundational building block of xtUML models are components. Each compo-
nent is considered as a black-box that uses only interfaces to communicate with
other components. An xtUML interface is a definition of a message set that can
be used for inter-component communication. Interfaces are bidirectional and mes-
sages on a single interface can go in both directions.

Interfaces specify the types of component ports across which the actual com-
munication is performed. Two components may only be connected across ports
that are typed by the same interface, and where one component should provide
the interface, while the other should require it. While interfaces are merely a spec-
ification of possible messages described with names, parameters, and directions
relative to the “provider side”, ports can actually contain action code that spec-
ifies actions to be taken when a certain message is received. It is important to
emphasize that only incoming messages can be associated with action code.

The communication between two components can be either synchronous or
asynchronous. Synchronous inter-component communication is enabled with inter-
face operations, while asynchronous communication is achieved through interface
signals. Figure 1 shows an example of an xtUML component model.



Title Suppressed Due to Excessive Length 5

Fig. 1 An example of component model.

2.1.2 Classes

An xtUML class model describes domain concepts and the relationships between
instances of those concepts. Similarly as in other object-oriented languages, a
simple relation in xtUML is defined by two relation ends, each of them defined
with multiplicity and conditionality flags, as well as with a phrase describing its
semantics. Different combinations of multiplicity and conditionality flags specify
different runtime limitations that apply to the number of instances on a relation
end (see table 1)

Table 1 Different flag combinations and associated meaning.

Conditionality
flag

Multiplicity
flag

Symbol
Instance number

limitation
TRUE FALSE 0..1 at most one
FALSE FALSE 1 exactly one
TRUE TRUE * zero or more
FALSE TRUE 1..* at least one

Associative relations are used in cases where there is need to model details of a
simple relation. Typically this includes cases when a relation has some attributes or
a life-cycle of its own. In that case, a relation is represented as an associative class
which can have all typical class features: a state machine, attributes, operations, or
even relations towards other classes. Since an associative class is both a relation and
a class, the mere existence of an associative class instance implies the existence of
a pair of instances of related classes (non-associative classes involved in associative
relation) and a link between them.

Unlike some other object-oriented (OO) languages such as C++ or Java, a
generalization relation in xtUML assumes the existence of two separate instances
which should be created independently and related explicitly by the user, the same



6 Nenad Ukić et al.

way as it is done with simple relations. In addition, an xtUML subclass does not
inherit superclass operations and attributes. In the majority of OO languages,
generalization is mostly used as an extension mechanism, but this is not the case
with xtUML. The main purpose of such relation is to split an instance population
into complete and disjoint sets of subclass instances. Complete sets means that
there may be no other subclasses other than those stated initially, i.e. we cannot
easily add new subclasses to an existing generalization relation; we can only add
a new generalization relation and specify its complete and disjoint subclasses.
Disjoint subclass instance sets imply that a single superclass instance is only
related to a single subclass instance per generalization relation; a superclass is
related to as many subclass instances as the number of generalization relations
it defines. This semantics is very different from traditional OO semantics, but it
does not assume anything about the target language. Generalization relations in
xtUML do not rely on inheritance mechanism of traditional OO generalization
and may be applied easily to non-OO languages as well.

2.1.3 State machines

State machine models in xtUML can only be defined within a context of a class.
Typically, a state machine is used to visualize the life cycle of a class instance,
and is usually composed out of one or more numbered states. Figure 2 shows an
example state machine model.

Fig. 2 Graphical view of the state machine

At a certain point in time, an instance can only be in one state, and it can
move from one state to another only if there exists an explicit transition between
those states. A transition is triggered by a certain event and cannot be addition-



Title Suppressed Due to Excessive Length 7

ally guarded with extra conditions. In case where a transition does not have an
associated event, the transition cannot occur.

With each transition we can associate some action code which will be executed
when the instance moves from one state to another, following the transition. In
addition, action code can also be associated with state entries, which means that
we can execute additional action code, just after the execution of the transition
code. On the other hand, action code cannot be associated with state exits nor
with the fact that an instance resides in some state.

When a class instance, that has an associated state machine, is created, it
immediately starts in the initial state, the lowest numbered state. Even though
action code can be associated with state transition and state entries, in this case,
even if the initial state has associated entry code, no code is executed since the
instance is immediately placed in a state, without transitioning to it.

After being created, an instance waits for events that will move it to different
states. If no events occur, the instance will remain in the initial state until deleted.
If an event occurs, the corresponding transition action code (also called transition
effect behaviour) is executed. This is followed by target state entry behaviour. Note
that those two behaviours are always executed in a sequence, one after another,
as a single Request-To-Completion (RTC) step, without any interruptions. After
an event is processed, the instance resides in a new state and awaits for further
events. This is repeated until the instance reaches the end of its life-cycle, which
happens in the following situations:

– The instance reaches its final state. After executing the final-state entry be-
havior, the instance is deleted.

– The instance receives an event that it does not know how to handle; a runtime
error happens. The current execution is stopped and all available information
is logged for troubleshooting.

– The instance is explicitly deleted, if some other code request instance deletion.

An instance can process a certain event if its current state has exactly one
outgoing transition that is triggered by that event. For other cases, the developer
should specify a State-Event matrix (figure 3) which defines what action should be
performed for any state, event combination. Unlike the graphical view of the state
machine (figure 2), the state-event matrix represents a complete state machine
with all possible combinations of states and events.

Fig. 3 State-event matrix view of the state machine

Notice that for handling cases when a state is not ready to receive an event,
the modeller has two options: to simply ignore the event (Event Ignored, figure 3),
or to trigger an error handling procedure (Can’t Happen, figure 3). When an event
is ignored, nothing happens, an instance remains in its current state, ready to



8 Nenad Ukić et al.

receive new events. On the other hand, when an error case occurs, the execution is
stopped and the error details are logged. The act of deciding which action should
be taken in case an unexpected event occurs is not automated, and should be a
part of the modelling decisions done by the modeler.

2.1.4 Processing code

The processing code, written in Object Action Language (OAL), describes the
behavioural details of an xtUML model. It can be associated with port incoming
messages, functions, class and instance-based operations, derived attributes, state
machine transitions, and state entries.

Fig. 4 Statements affecting control flow execution in OAL language.

Code execution starts at the first statement of the action and proceeds se-
quentially through the succeeding lines as directed by program’s control logic.
The execution of an action terminates when the last statement is completed. The
control-flow is affected by synchronous invocations, asynchronous event handling,
conditional if branches and conditional loops (while and for), see figure 4.

Processing code is the only textual model in xtUML, because it is more effi-
cient to specify processing instructions in a textual than in a visual way. Behind
the scenes, processing models are represented with corresponding instances in the
xtUML meta-model, similarly to component, class, or state machine models. From
the perspective of execution and code generation tools, the processing code is han-
dled similarly as other three models.

2.2 Other executable software methodologies

This section will briefly cover the other executable software model methodologies
and standards.



Title Suppressed Due to Excessive Length 9

2.2.1 Real-time Object-Oriented Modeling (ROOM) methodology

UML-RT is a UML profile defined by IBM for the design of distributed event-based
applications. The profile is based on the Real-Time Object-Oriented Modeling
(ROOM) methodology [51] and was implemented in the RSA-RTE [28] product,
an extension of IBM’s Rational Software Architect (RSA) product.

The basis of UML-RT is the notion of capsules that at the same time can have
both the internal structure (via capsule parts) and behaviour (via a state machine).
Capsules can be nested, and can communicate synchronously and asynchronously
via messages that are sent and received through ports. The types of messages that
a port can transmit are defined by protocols. Unlike xtUML components, capsules
can be created both statically at design time and dynamically at run-time.

RSA-RTE tool allows several languages to be used to specify actions (e.g. C,
C++ and Java). Model execution is only possible by translation to source code,
but no model-level interpreter is available, at least not in the sense provided by
the BridgePoint [42] tool.

2.2.2 Foundational Subset for Executable UML Models (FUML)

Realizing the importance of simplicity and clear semantics that are missing from
UML standards, the OMG defined the semantics of a foundational subset for ex-
ecutable UML models(fUML)[38]. The main goal of this standard is to act as an
intermediary language between surface subsets of UML used for modeling and
computational platform languages used as the target for model execution. fUML
is designed to be compact, in order to facilitate the definition of clear semantics
and the implementation of execution tools. In addition, it is supposed to be easily
translated from common surface subsets of UML to fUML and from fUML to com-
mon computational platform languages. However, if the feature to be translated
is excluded from fUML, the surface-to-fUML translator has to generate a coor-
dinated set of fUML elements that has the same effect as that feature. Then the
fUML-to-platform translator would need to recognize the pattern generated by the
surface-to-fUML generator, in order to map this back into the desired feature of
the target language. Compactness can therefore conflict with ease of translation.

One of the future directions of UML is executable modelling which assumes
simplicity and clear execution semantics. However, the problem with fUML is that
tool support is weak and whether it will be accepted by the community.

2.2.3 Action Language for FUML (ALF)

The Action Language for Foundational UML (or ALF ) [37] is a textual surface
representation for UML modeling elements. The execution semantics for ALF are
given by mapping the ALF concrete syntax to the abstract syntax of fUML. The
primary goal of an action language is to act as the surface notation for specifying
executable behaviors within a wider model. ALF also provides an extended nota-
tion that may be used to represent structural modelling elements. Therefore, it is
possible to represent an UML model entirely using ALF. However, ALF syntax
only directly covers the limited subset of UML structural modelling available in
the fUML subset.



10 Nenad Ukić et al.

ALF is important because it is an attempt to standardize the action language
for executable software models based on UML. In addition to that, a possibility to
completely specify an fUML model using textual notation also helps alleviate the
problem of poor tool support for resolving version conflicts in graphical models
[57]. Since ALF is actually a textual surface notation for fUML models, higher
level languages can be translated directly to ALF (instead to fUML). In such
form, higher level models will be able to use ALF virtual machines and translate
to target source code using ALF translators.

2.3 Software understandability

Software understandability or program understanding includes activities needed
to obtain a general knowledge of what a software product does and how the parts
work together [1]. In this section, we describe the factors influencing the under-
standability and related work.

2.3.1 Software understandability factors

There are several factors influencing software understandability:

– Functional size of software is the main factor influencing understandability.
It refers to the number and complexity of use cases that the software system
satisfies, and not the implementation size [3] [25] [39]. Unless we are interested
in the relation between functional size and the understandability of software,
comparing the understandability of software applications of various sizes is
problematic.

– Programming language used for implementing the software system. Different
implementation languages have different readability which influences source
code understandability.

– Consistency and quality of naming conventions. As indicated by Laitinen [24]
and Rajlich [48], the similarity between concepts used for software elements
identifiers and domain concepts used in application specification is one of the
key factors influencing the understandability of the application. The strength
of mapping between those two sets of concepts reflects the consistency and
intuitiveness of naming and coding conventions in the source code.

– Modularisation approach, choice of design alternative and complexity distribu-
tion. Different approaches to source code modularization [61] and the quality of
the modularization [50] have an impact on the comprehension of the software
source code. Notice that better modularization also implies better complexity
distribution.

Most empirical evaluations of software understandability are based on sub-
jective evaluation made by experts in which understandability of a number of
software applications of different sizes, domains, and authors is ranked [49]. The
main problem with such evaluations is precision, because the factors affecting soft-
ware comprehension are confounded. In order to precisely relate source code or
model understandability with some of the mentioned factors, it is necessary to
eliminate all other factors, and variate the remaining factor. In our work we are
focused on the relation between complexity distribution, introduced by different



Title Suppressed Due to Excessive Length 11

modularization techniques, and model understandability. In order to evaluate this
relationship, we need to minimize the effect of remaining three factors (functional
size of software, programming language, and the consistency and quality of naming
conventions).

2.3.2 Software understanding process and theories

The process of software comprehension usually starts by mapping domain concept
names with source code identifiers relying on programmers intuition and expe-
rience. If this technique fails, a more formal, string pattern matching process is
typically used. When these name-mapping techniques fail to locate the concepts,
programmers typically instrument the code with various logs and execute different
application features. This process of execution and trace-mapping is known as dy-
namic search or software reconnaissance [60] [13]. In addition to dynamic analysis,
static analysis can also be performed [7]. Starting from the program or test case
main function, top down control and/or data flow tracing can be used to find the
relevant part of the source code.

Rajlich et. al. [48] introduced the process of concept location which implies
a mapping between domain concepts and their code implementation. The first
and the most significant phase in the concept location process is based on the
similarity between names in software specification documents and identifiers used
in the software implementation. In order to measure this similarity, Laitinen [24]
considered that a language is a set of symbols with associated meanings. In this
sense, every person, article, or source code has a language of its own. Languages
are said to be related if they share the same symbol and its meaning. Smaller
and more closely related languages are easier to understand than larger and more
distantly related languages. With such definition of a language, only a relative
measure of understandability makes sense.

Since these techniques are based on naming similarities, they are often not
good enough at handling the problem of homonyms, synonyms, and polysemy. An
additional problem in maintenance is that the vocabulary used to describe the
software evolves and it may significantly differ from the initial vocabulary used for
implementation. In addition to that, some domain concepts are not represented
explicitly in the source code and cannot be found in this way.

There are also some more advanced approaches that are not based on naming
similarities. Latent Semantic Indexing(LSI)[19] [12] is based on the fact that words
with similar meaning appear close in the documents. The meaning of words in LSI
is derived from their usage rather than from a dictionary or thesaurus. LSI has
been shown to address problems of polysemy and synonymy [19] quite well which
makes it a good fit for source feature/concept search problem because developers
usually construct queries without precise knowledge about the target vocabulary
[46].

2.3.3 A relation between software metrics and understandability

Understandability of a software artefact is a key factor in software maintainabil-
ity. Problems with managing software projects and predicting maintenance efforts
indicate a need for objective prediction of software maintainability. The common
usage of software metrics is the creation of maintainability prediction models.



12 Nenad Ukić et al.

Welker [59] noticed a spiral of code degradation through maintenance and has
proposed an integrated maintainability measure. The benefit of such integrated
measure is the objective quantification of code degradation which could be used
in software management decision support. Zhou [63] empirically investigated the
relationship between 15 design metrics and the maintainability of 148 Java open
source software. The results indicate that size and complexity are strong predictors
of maintainability while cohesion and coupling metrics do not seem to have a
significant impact on maintainability.

Nazir [34], proposed a regression model for estimating the understandability of
OO software using the number of attributes, the number of associations, and the
maximum depth of inheritance as metrics. He evaluated the model by correlating
it with expert ratings on 28 programs, and reported the correlation of 0,948. Van
Koten [58] proposed a Bayesian network maintainability prediction model for an
object-oriented software system and has compared it with the prediction of tra-
ditional regression models. The model used Li and Henry’s set of object-oriented
metrics [26] collected from two different object-oriented systems. His results sug-
gest that the Bayesian network model can predict maintainability more accurately
than the regression-based models. Shibata et. al. [54] proposed a stochastic, queue-
ing model for predicting software reliability and maintainability. The model used
real software fault detection/correction data obtained from practice. Aggarwal et.
al. [2] proposed an integrated fuzzy-logic model of understandability which takes
into account the number of comments in the source code, the quality of documen-
tation calculated through the Gunnings Fog index [16], and the similarity between
the language of the specification and the one used in source code [24].

Riaz et. al. [49] made a systematic overview of software maintainability pre-
diction and metrics and concluded that there is no obvious model for prediction of
software maintainability. They have indicated that most of the metrics are based
on size, complexity, and coupling gathered on source code level. Maintainability
in most of the studies is based on experts judgment and is expressed on an ordinal
scale.

2.4 Cyclomatic complexity

Cyclomatic complexity, introduced by McCabe [29], is a software metric most
frequently used to estimate testing effort required to achieve complete branch cov-
erage. It is a quantitative measure of the number of linearly independent paths
through the program’s source code. The main approach when calculating Mc-
Cabe’s cyclomatic complexity is to represent software as a single-entry, single-exit
(SESE) control flow graph (CFG). Edges in such a graph represent the possi-
ble control flows between blocks of code that contain no control flow branches.
Regardless of the number of lines of code they actually contain, such blocks are
represented with a single node in the graph. The initial approach taken by Mc-
Cabe actually represented each software module (subroutine) as a separate, fully
connected single-entry and single-exit CFG [29]. This approach is useful to esti-
mate unit testing effort, because each subroutine is observed independently. An
alternative approach, proposed by Henderson-Sellers et. al. [17] proposed that
software should be observed as a single CFG with a single entry and a single exit
node. This approach is useful for estimating software integration testing and has



Title Suppressed Due to Excessive Length 13

shown that a single, big SESE graph can be constructed from multiple smaller
ones.

In Henderson-Sellers [17] approach multiple-entry, multiple-exit (MEME) graphs
are handled in the following way: multiple entries in multiple-entry, single-exit
(MESE) modules represent a module reuse mechanism and do not affect mod-
ule’s cyclomatic complexity. Generally, single-entry, multiple-exit (SEME) nodes
typically occur in branches of if structures where an immediate return (”early
exit”) to the calling module occurs. One way of handling such cases is to add an
additional, virtual node for each early exit and connect it with virtual edges to
early and normal exit nodes. This means we need to add one point to cyclomatic
complexity for each exit (+1 = 2 new edges - 1 new node). The formula is given
with:

CCseme = e− n + p + 1 +
p−1∑
j=1

(rj − 1) (1)

where rj is the number of exit points in the graph representation of the j-th
module and there are p-1 such modules (subroutines). This means that mod-
ules with multiple exit points increase the overall module complexity. In addition,
Henderson-Sellers noted that multiple entries can be considered as a reuse mech-
anism and that multiple-entry, multiple-exit (MEME) modules can be treated as
modules with multiple exit points. This implies that previous equation applies to
such modules as well.

Strongly connected graphs are those in which each node can reach any other
node. In our case, a CFG of a single method or complete software is not strongly
connected but it can be turned into one by adding a single, virtual edge from the
exit to the entry node.

3 Measuring cylcomatic complexity of xtUML models

xtUML builds applications from four different types of models: component models,
class models, state-machine models, and processing code. Component and class
models describe the structure, while state machines and action code describe the
runtime behavior of an application.

When calculating cyclomatic complexity of an application, we are interested in
application runtime behaviour, so the focus should be on the behavioural aspects
of the model: state machines and processing code. However, structural parts of
xtUML models only partially visualize model’s cyclomatic complexity. Because of
this, when discussing cyclomatic complexity of structural models, we discuss the
complexity of processing code visualized by those models.

In this section, we present our approach for calculating cyclomatic complexity
visualized by structural parts of the application (component and class models), as
well as the total cyclomatic complexity from the behavioural parts of the model
(state machines and processing code). Later, we will utilize these metrics to de-
termine the distribution of cyclomatic complexity across different model layers.



14 Nenad Ukić et al.

3.1 Cyclomatic complexity of components

Components are foundational building blocks of xtUML models. They are con-
sidered as black boxes that communicate though their interfaces. For this reason,
the cyclomatic complexity of xtUML components mostly depends on the inter-
faces that the component uses. Since the component model falls into the category
of structural models, we cannot calculate its cyclomatic complexity, but we can
calculate the complexity of visualized entry and exit points to the behaviours
wrapped within the component.

The basic approach for calculating cyclomatic complexity is constructing a
strongly connected single-entry, single-exit (SESE) control flow graph (CFG). Un-
fortunately, an xtUML component typically has many entry and exit points, and
it is not trivial to construct an SESE CFG from it.

The original Henderson-Seller’s approach states that multiple entries to a mod-
ule can be ignored because multiple entries are used as a reuse mechanism for parts
of the CFG already taken into account. If we apply this idea to xtUML compo-
nents, an estimation of cyclomatic complexity of an xtUML component should
be calculated by taking into account only exits on all component ports, while
entries to the component can be ignored. However, the issue when applying the
Henderson-Seller’s approach to xtUML components is dealing with multiple en-
tries. Henderson-Sellers considered only strongly connected CFGs with multiple
entries, because this is the limitation introduced in the original McCabe’s calcu-
lus [29]. This means that additional entry nodes in a MESE CFG are reachable
even when they are not used as entry nodes (the left graph in figure 5). In other
words, there is at least one incoming edge leading to each entry node, implying
that there exists at least one control flow path where those nodes are not entry
nodes. This justifies ignoring multiple entry nodes when calculating cyclomatic
complexity using the Henderson-Sellers approach.

However, an entry point into an xtUML component is an entry point to an im-
plementation of a port incoming message which cannot be invoked from behaviours
within a component. This means that entry nodes are not part of any existing path
in a CFG and that such graphs are not strongly connected (even when a single
virtual edge is added; the right graph in figure 5). Consequently, neither the origi-
nal, nor the adapted Henderson-Sellers calculation can be applied to such graphs.
To handle this, we will adapt an approach similar to what Henderson-Sellers used
for single-entry, multiple-exit modules. For n entry nodes, we will add one new
(virtual) node and n new edges to connect the new virtual node with all entry
nodes. The new virtual node will then act as a single entry for the CFG which
will make the graph an SESE. This effectively increases cyclomatic complexity by
n− 1. When we incorporate this with the existing Henderson-Sellers [17] formula
applied to MEME CFGs we get:

CCmeme = e− n + p + 1 +
p−1∑
j=1

(rj − 1) +
p−1∑
k=1

(ik − 1) (2)

where e is the number of edges, n is the number of nodes, p is the number
of (graph) components, rj is the number of exits from j-th connected component
and ik is the number of entries to the k-th component in the CFG. In case there
exists only a single connected graph component, the equation becomes:



Title Suppressed Due to Excessive Length 15

Fig. 5 MESE CFG considered by Henderson-Sellers [17] and the one created from xtUML
component.

CCmeme = e− n + 2 + (r − 1) + (i− 1) = e− n + r + i (3)

where r is the number of exits and i the number of entries to the CFG. Notice
that eq. 2 and eq. 3 assume the existence of at least one exit and at least one entry,
in which case we get the original Henderson-Seller equation. Applying this to eq.
3 results with:

CCcompFull = e− n + r + i = e− n + Nop + Nsig (4)

where Nsig denotes the number of signals and Nop the number of operations
on all ports of a given xtUML component. Since each operation and each signal
represents either an entry or an exit from an xtUML component, the sum of all
operations and all signals on all xtUML component ports (Nop +Nsig) is actually
equal to the sum of all entries and all exits from that component (r + i). Notice
that we did not differentiate between synchronous and asynchronous entries and
exits assuming that they equally contribute to cyclomatic complexity. For details
about this please refer to section 3.4.3 and figures 11 and 13.

Eq. 4 refers to the complete CFG of an xtUML component, including all of
its content. The part of overall xtUML model cyclomatic complexity visualized by
the component model can be calculated with the following equation:

CCcomp = Nop + Nsig (5)

The Henderson-Sellers approach (and our alteration for multiple entries) as-
sumes that a complete component CFG has at least one entry and at least one
exit node. However, in xtUML a component does not always need to have ports or



16 Nenad Ukić et al.

messages on ports. Such components do not communicate with other components,
their complete CFG is closed inside the component which is used only as a package.
In that case, entry and exit nodes still exist but they are not explicitly exposed in
the component model which, in that case, does not give us any information about
cyclomatic complexity.

Notice that semantically equivalent interfaces may expose different cyclomatic
complexities, depending on the level of abstraction used to create messages on the
interface. A more general interface will have fewer messages, but it will also have
a larger total number of parameters. For example, consider a simple calculator
component: instead of four messages add, subtract, divide, and multiply with two
parameters, we can have a single message (performCalculatorOperation) with three
parameters where the additional parameter encodes the calculator operation to
perform. The total cyclomatic complexity of the component remains the same
because the port message code in the case with single message will need to branch
according to the value of the third parameter. This implies that, although eq. 4
seems to depend on the number of operations and signals on component interfaces,
it actually does not, because its effect is compensated with the remainder of the
equation (the e− n part). At the same time, the cylomatic complexity visualized
by the component model is lower in case of a more general interface because only
one interface operation is used. Despite the functional and cyclomatic equivalence
of models, a model with a specific interface is obviously simpler to comprehend
because it states the interface functionality more clearly.

3.2 Cyclomatic complexity of classes

Similarly as the component model, the class model describes the structure, and not
the behaviour of an xtUML model. As with a component model, this implies that
a class model only partially visualizes the cyclomatic complexity of processing.

A class model visualizes the cyclomatic complexity of processing code with its
operations and with the relations it exposes. Similarly to port operations, each
class operation adds two edges and a single node to the CFG effectively increasing
the cyclomatic complexity visualized by the class model by one (see figure 11):

CCoper =
Ncl∑
n=1

Noper(n) (6)

where CCoper stands for cyclomatic complexity of class operations, Ncl is the
number of classes, and Noper(n) is the number of operations in the n− th class.

Class relations also have an influence on the processing model. The processing
code operates on class instances; it creates and relates them, selects them across re-
lations, reads or changes their values, unrelates them, and eventually deletes them.
Single- or multi-hop instance selections across relations are a very important part
of the processing model, because each relation (chain) exposes specific meaning
within an application. Depending on the multiplicity and the conditionality of a
relation traversed in a selection statement, it will be followed by a i) conditional
loop (iterating across selected instances), ii) a conditional if branch (checking
for emptiness of a selection variable), iii) both, a loop and an if branch (if the



Title Suppressed Due to Excessive Length 17

relation was conditional and multiple), or iv) neither, if the relation was uncondi-
tional and single. A loop for iteration across selected instances and/or a check for
result emptiness are needed in order to evade runtime errors. This is how selections
influence the cyclomatic complexity of processing code.

The general approach for calculating cyclomatic complexity visualized by a
relation in a class model relies on the assumption that all directions of all relations
in a class model are used in at least one selection statement in the processing code.
For simple relations there are only two possible selection directions: from one class
to another, and in reverse. The result of each of those selection directions may
be conditional and/or multiple, depending on the flags on the remote end of the
relation direction used in the selection. If the result of a selection can be empty,
a single if branch (required to check the emptiness of the result) will increase the
cyclomatic complexity by 1. If a selection can result in a set of instances, a for loop
that iterates through the instances will also increase the cyclomatic complexity by
1. In the worst case scenario, where both relation ends of a simple relation are
conditional and multiple, there are four additional control-flow paths added, or:

CCsr =
Nsr∑
i=1

[Nce(i) + Nme(i)] (7)

where CCsr stands for cyclomatic complexity of simple relations, Nsr the number
of simple relations, Nce(i) the number of conditional relation ends in the i-th
simple relation, and Nme(i) the number of multiple relation ends in the i-th simple
relation.

Before we can calculate complete cyclomatic complexity of a class model, we
need to define the cyclomatic complexity of two remaining relations in xtUML:
generalization and associative relation.

3.2.1 Generalization relation and cyclomatic complexity

Each generalization relation defines 2n selection directions: n directions towards n
subclasses and n in reverse direction. However, the n directions from subclasses to-
wards a general class are always unconditional and single and do not require a con-
ditional check or an iteration. The remaining n directions towards subclasses are
always conditional (they require an emptiness check with a conditional if branch)
and single (they do not require a conditional loop iteration). This means that each
generalization relation increases cyclomatic complexity by n additional control-
flow paths or:

CCgr =

Ngr∑
j=1

Nsub(j) (8)

where CCgr stands for the cyclomatic complexity of generalization relations, Ngr

is the number of generalization relations and Nsub(j) is the number of subclasses
in the j-th generalization relation.



18 Nenad Ukić et al.

3.2.2 The effect of associative relations on cyclomatic complexity

With associative relations there are three classes involved: two related classes and a
single associative class. Each of these classes may be involved in a selection in two
different ways, which means that there are six different selection directions, each
with a different meaning. However, the multiplicity and conditionality of some of
those directions is not trivial to detect. For this reason, we will use a replacement
model consisting of two simple relations, from each related class towards the as-
sociative class. We will refer to these two models as the original and replacement
class models.

Since the existence of an associative class instance assumes the existence of a
pair of related classes, all selections starting from an associative instance always
result with a single instance. This implies that relation ends towards related classes
are unconditional and single. A selection starting from one of the related classes
to another related class, and a selection from the same related class towards the
associative class share the same conditionality. This simply means that if there
is no associative class instance found, there should be no remote related class
instance found as well.

The same rule applies to the multiplicity flag, but only in case when the asso-
ciative link is single. In this case, the multiplicity flag at an associative class end in
the replacement class model is the same as the multiplicity of the direction towards
the remote related class in the original model. However, when the associative link
is multiple, the relation ends at the associative class on the replacement model are
always multiple, regardless of the multiplicity in the original class model.

Now that we know how to determine the multiplicity and conditionality of all
selection directions across an associative relation, we can determine its effect on
cyclomatic complexity. It is important to emphasized that, from the cyclomatic
complexity perspective, not all branches are independent. This is a consequence of
the fact that the conditionality flag of the selection direction towards an associative
class is always the same as the conditionality of the selection direction towards
a remote related class. This actually lowers the cyclomatic complexity because,
without any semantic change, one of the dependent branches can be eliminated and
their processing can be merged into a single branch. Table 2 and eq. 9 summarize
the associative relation effect to processing code cyclomatic complexity.

CCar =
Nar∑
k=1

[Nce(k) + Nme(k) + 2Nma] (9)

where CCar stands for the cyclomatic complexity of associative relations, Nar the
number of associative relations, Nce(k) the number of conditional relation ends,
Nme(k) the number of multiple relation ends, and Nma(k) the number of multiple
associative link ends in the k-th associative relation.

Finally, class model cyclomatic complexity is calculated as a sum of cyclomatic
complexities of all its operations and relations:

CCcls = CCoper + CCsr + CCgr + CCar (10)

where CCcls stands for the cyclomatic complexity of a class model, CCoper is
the cyclomatic complexity of class operations, CCsr is the cyclomatic complexity



Title Suppressed Due to Excessive Length 19

Table 2 Summary of associative relation effect to cyclomatic complexity

Flag
Adds to cyclomatic
complexity of CFG

Count
Maximal total

effect
Conditionality on
related class end

+1 2 +2

Multiplicity on
related class end

+1 2 +2

Multiplicity of
associative link

+2 1 +2

Total +6

of simple relations, CCgr is the cyclomatic complexity of generalization relations,
and CCar is the cyclomatic complexity of associative relations.

3.3 Cyclomatic complexity of state machines

An xtUML state machine describes runtime behaviour of a class instance. This
implies that, unlike component or class models, cyclomatic complexity of state
machines directly influences the overall xtUML model cyclomatic complexity. In
this section we describe two approaches for calculating cyclomatic complexity of
xtUML state machines.

Calculating cyclomatic complexity of UML-based state machines is relatively
straightforward. The basic formula is given with the following equation [10]:

CCsm1 = Nt −Ns + 2 (11)

where Nt is the number of transitions and Ns the number of states within a
state machine. Eq. 11 is obtained from the original McCabe’s formula by consid-
ering the state machine graph as a CFG: each state is represented by a node and
each state transition by an edge.

This is the most common way of constructing a CFG from an xtUML state
machine. The problem with this approach is that it does not consider the complete
xtUML state machine described by the state-event matrix.

When discussing cyclomatic complexity, a CFG describes possible paths of a
single, uninterrupted thread of execution. However, this is not how a state-machine
actually works. Each instance of a state machine runs in its own logical thread.
The execution of each instance state machine is independent of other state ma-
chines and is only affected by the events sent to this particular instance. From the
modeler’s perspective, each instance state machine gains execution control when
it receives an event, resulting in the execution of a corresponding transition effect
and state entry behaviour; an Request-To-Completion (RTC) step (see section 2.1.3
for details). After an RTC step execution finishes, the state machine execution is
paused until the next event is received. While waiting for the next event, the state
machine temporarily loses execution control.

Since state-machines communicate asynchronously, a new event may be re-
ceived while the instance is processing an RTC step. For this reason, there exists
an event pool that stores events that are waiting to be processed, along with a
dispatching mechanism that continuously checks for incoming events and triggers
the corresponding state machine RTC executions.



20 Nenad Ukić et al.

Fig. 6 State machine of the Shop class. Notice the Event Ignored case when event OPEN is
received in WORKING state and Can’t Happen case when event CLOSE is received in state
CLOSED.

Fig. 7 Simplified replacement state machine of Shop class.

Figure 8 shows a snippet of pseudo-code that describes the execution semantics
of Shop instance state machines. In every while loop iteration, first the event pool
is checked for any waiting events (line 5). In case an event exists, its event type
is checked (lines 8, 15 and 19) and the corresponding RTC step (transition effect
and the state entry behaviour) is executed. In case of an Event Ignored, the loop
simply skips an iteration without doing any work (line 13), while in case of a Can’t
Happen (lines 19 – 22), the loop is stopped, and the state machine is terminated.

By using this execution semantics, a complete CFG with a single entry and
a single exit node can be constructed. A concrete example that shows a state
machine CFG obtained through this execution semantics is shown in figure 9. The
part of the graph outside the rectangle does not depend on the state machine and
will be the same for any state machine because it represents the state machine
infrastructure code. This implies that, for smaller state machines such as this



Title Suppressed Due to Excessive Length 21

Fig. 8 A pseudo-code description of the execution semantics of Shop instance state machines.

one, cyclomatic complexity introduced by state machine execution infrastructure
is comparable to the cyclomatic complexity of the state machine itself. However,
for larger state machines this will not be the case.

In figure 9, the part within the dashed rectangle actually depends on the struc-
ture of the state machine. For each state in the state machine we have two state
nodes in the CFG (2Nst in eq. 14), which are connected to infrastructure nodes
with two edges (2Nst in eq. 13). For each non-ignored event in the state, we have

an event node connected to the state nodes with two edges (
Nst∑
s=1

[Nev−Nei(s)] part

in both equations, in eq. 13 multiplied with 2). An event node actually contains
RTC execution as a synchronous invocation of transition effect and state entry
actions (2Nt in eq. 13). In case a state ignores any number of events it will also
have a single direct edge between the two state nodes, regardless of the number
of ignored events (Nstei in eq. 13). We will use this rule and figure 9 to induce
the general rule for calculating strict cyclomatic complexity of an xtUML state
machine:

CCsm2 = Nedge −Nnode + 2 (12)



22 Nenad Ukić et al.

Fig. 9 A CFG created from the execution semantics of the Shop class instance state machine.

where the number of edges Nedge and the number of nodes Nnode is defined
with the following equations:

Nedge = 12 + 2Nst + 2
Nst∑
s=1

[Nev −Nei(s)] + Nstei + 2Nt (13)

Nnode = 8 + 2Nst +
Nst∑
s=1

[Nev −Nei(s)] (14)

where Nst is the number of states, Nev the number of events, Nei(s) the number
of Event Ignored records the state s has in the matching row of the state machine
matrix, Nstei the number of states that have at least one Event Ignored record in
the matching row of the state machine matrix, and Nt the number of transitions.
Since the number of transitions is actually the number of RTC steps and each
RTC step contains (invocations of) exactly two bodies, each RTC step adds 2 to
the overall cyclomatic complexity of a state machine (therefore the 2Nt in the
equation). Notice that, if a state has more than one Event Ignored record in the
matching row, it will still have only one “event ignored” edge in a CFG (see
figure 9). This explains the Nstei part of the equation.



Title Suppressed Due to Excessive Length 23

When we substitute the expressions for Nedge and Nnode into eq. 12, we end
up with the following equation:

CCsm2 = Nedge −Nnode + 2

CCsm2 = 12 + 2Nst + 2
Nst∑
s=1

[Nev −Nei(s)] + Nstei + 2Nt−

(8 + 2Nst +
Nst∑
s=1

[Nev −Nei(s)]) + 2

CCsm2 = 6 +
Nst∑
s=1

[Nev −Nei(s)] + Nstei + 2Nt (15)

Since the number of events is the same for each state (row) we have the fol-
lowing equation:

Nst∑
s=1

[Nev −Nei(s)] = Nst ∗Nev −
Nst∑
s=1

Nei(s) (16)

Furthermore, if each state has at most one Event Ignored record, Nstei is equal to
the total number of Event Ignored cases in the state machine, i.e.:

Nst ∗Nei(s) −
Nst∑
s=1

Nev = Nst ∗Nev −Nstei (17)

When applied to equation 15 we get:

CCsm2 = 6 +
Nst∑
s=1

Nev −
Nst∑
s=1

Nei(s) + Nstei + 2Nt

= 6 +
Nst∑
s=1

Nev −Nstei + Nstei + 2Nt = 6 + Nst ∗Nev + 2Nt

(18)

In eq. 18, we can observe that the state machine execution infrastructure
adds a constant amount (6) to cyclomatic complexity. This constant becomes less
significant as the state machine grows. In addition, such calculus for cyclomatic
complexity is inline with the intuition because the product of the number of states
and the number of events actually represents the number of possible linearly in-
dependent paths through the state machine, while the 2Nt actually denotes the
number of actions we actually invoke in those paths.

Note also that the constant amount of 6 is introduced by the state machine in-
frastructure and does not describe complexity directly visible in the state machine
model. Therefore, if we are trying to calculate the visible state machine complexity
we can ignore the constant in our calculus:

CCsm2vis =
Nst∑
s=1

[Nev −Nei(s)] + Nstei + 2Nt ≈ Nst ∗Nev + 2Nt (19)



24 Nenad Ukić et al.

Fig. 10 McCabe’s approach to cyclomatic complexity.

3.4 Cyclomatic complexity of processing code

An xtUML processing model represents textual processing instructions and is sim-
ilar to more traditional programming languages. For this reason, from the cyclo-
matic complexity point of view, the processing model follows similar control- and
data-flow rules as other traditional programming languages. This implies that stan-
dard, source-code level complexity metrics can easily be applied to the processing
model.

In xtUML, code is organized into OAL actions (often called bodies), and there
are several ways to calculate their cyclomatic complexity. But first, several con-
siderations have to be made.

3.4.1 Choosing the basic approach

When choosing the basic approach for measuring cyclomatic complexity of pro-
cessing code there are two options: the original McCabe’s approach [29] which con-
siders each subroutine separately, and the Henderson-Sellers approach [17] which
creates a single connected component from all subroutines. In order to make this
decision, we have to consider their effects on cyclomatic complexity.

In the original McCabe’s approach, the CFG of each subroutine has to be
strongly connected. This means that each subroutine should have its single entry
and single exit node connected with an additional virtual edge. The resulting equa-
tion for McCabe’s cyclomatic complexity of a CFG with p connected components
is:

CCMcCabe =
p∑

i=1

[Nedge(i) −Nnode(i) + 1 + 1] = Nedge −Nnode + 2p (20)

In Henderson-Sellers approach, a single CFG is created from all subroutines.
To achieve this, a node containing a call to the subroutine is split into two nodes:
one used to connect to the subroutine entry node and one used to connect back
from the subroutine exit node. This means that, for each subroutine except the one



Title Suppressed Due to Excessive Length 25

Fig. 11 Henderson-Sellers approach to cyclomatic complexity. Compare this graph with the
one on figure 10

we are merging into, we have to add a single additional node and two additional
edges, and each subroutine increases cyclomatic complexity by 1. For this reason
eq. 21 contains (p− 1). In order to make this complete CFG strongly connected,
a single edge from the exit node to the entry node has to be added (thus the +1
in eq. 21).

CCHS = Nedge −Nnode + 1 + (p− 1) + 1 = Nedge −Nnode + p + 1 (21)

CCHS =
p∑

i=1

(di + 1) = D + 1 (22)

where di represents the number of decisions (branching places) in i-th subrou-
tine, while D represents the total number of decisions in all subroutines. Expressing
the Henderson-Sellers equation [17] using edges and nodes requires an integrated
CFG of an application to be created. Using the number of decisions instead, sim-
plifies practical usage of the equation.

It is important to emphasize that modularization has no effect on the Henderson-
Sellers cyclomatic complexity (see figure 11). As the number of components (p)
is reduced by merging them back into the caller’s graph (eq. 21), the number
of nodes Nnode is also reduced by the same amount (figure 11). This is not the
case with the original McCabe’s approach. Also notice that, since there is only a
single control flow graph, Henderson-Sellers cyclomatic complexity can be easily
calculated by counting the number of decisions in all subroutines (see eq. 22). For
these reasons, in our approach, we use Henderson-Sellers’s approach as a base for
calculating cyclomatic complexity.



26 Nenad Ukić et al.

3.4.2 Handling multiple synchronous calls of the same subroutine

The standard Henderson-Seller’s approach (as well as the original McCabe’s ap-
proach) ignores multiple synchronous calls of the same subroutine. The reason for
this is that its standard usage is to estimate application testing effort which is not
affected by the number of times a subroutine is called. Since our goal is to use cy-
clomatic complexity to estimate cognitive complexity or understandability, this is
not good enough, because multiple calls to the same subroutine influence the pro-
gram’s cognitive complexity and understandability. For this reason, we modify the
Henderson-Seller’s approach to also take into account the number of subroutine
calls.

We modify eq. 21 in the following way: the expression p−1 should be replaced
with the total number of subroutine calls Ncall, because cyclomatic complexity will
be increased by 1 for each subroutine call, and not for each subroutine definition
(see figure 12). This leads to the following equation:

CCallBodies = Nedge −Nnode + 1 + Ncall + 1 = Nedge −Nnode + Ncall + 2 (23)

Eq. 23 assumes the existence of a CFG and is not suitable for practical uses.
For this reason, we have to adapt eq. 22 as well. Since eq. 22 assumes that each
subroutine (except the main one that calls all others) is called exactly once, we
need to increase the cyclomatic complexity by Ncall − (p − 1) (because p − 1 of
them are already included). This results with the following equation:

CCallBodies = D + 1 + (Ncall − (p− 1)) = D + Ncall − p + 2 (24)

where D represents the number of decisions in all components (subroutines),
Ncall the number of calls in all subroutines and p the number of components
(subroutines).

With this, we have replaced the original assumption that each subroutine is
called exactly once with the assumption that a subroutine is called for each occur-
rence of a call expression (implying Ncall ≥ p in the equation).

This approach takes into account multiple subroutine calls similarly to Shep-
perd’s approach [53]. The difference is that Shepperd extends the original Mc-
Cabe’s approach, which makes the calculus somewhat more complex. In this ap-
proach we are using Henderson-Sellers approach as a base, but instead for each
subroutine definition, we are incrementing the overall complexity by 1 for each
subroutine call. This difference can be clearly seen on figure 12.

In case a subroutine is called only once, modularization is done only for abstrac-
tion sake and our approach is equivalent to Henderson-Sellers approach. However,
if there are multiple calls to the same subroutine (in case modularization is done
because of reuse), cyclomatic complexity increases, but not as much as it would
increase if modularization is not done at all (in which case the calling CFG would
contain as many subroutine CFGs as there are calls to the subroutine). This is
different from the Henderson-Sellers approach in which cyclomatic complexity re-
mains the same regardless of the reasons for modularization. We consider that our
approach is inline with the intuition that cognitive complexity does not increase
with modularization itself, but does reduce overall complexity if there are multiple
calls to the same subroutine.



Title Suppressed Due to Excessive Length 27

Fig. 12 Different approaches for handling multiple calls when calculating cyclomatic com-
plexity.

3.4.3 Handling asynchronous calls

When dealing with components ports, we have already seen that communication
can be both synchronous and asynchronous. In that case, we decided to treat asyn-
chronous communication as synchronous communication where it is not necessary
to wait for the execution control to return. This means that the effects on the CFG
for those two types of communications is somewhat different (figure 13). Notice
however that, despite the different effect on the CFG, they equally contribute to
the cyclomatic complexity: synchronous calls introduce two edges but also add
one additional node, unlike asynchronous calls. Practically, this means that we
can reuse eq. 23 (and 24) for both synchronous and asynchronous calls.

Asynchronous calls (invocations) in OAL language are represented by the event
and signal sending statements. In addition to that, upon the creation of a class
instance that defines the state machine, the state machine will be started. This will
be treated as the third type of asynchronous invocation. Notice that the creation of
class instance that does not have a state machine will not count as an asynchronous
invocation.

3.4.4 Handling compound branching conditions

A single branch with a compound condition can be split into multiple branches
with simple conditions. This effectively increases the cyclomatic complexity. How-
ever, the initial complex condition can also be abstracted away into a single boolean
flag which will have the same cyclomatic complexity as a single conditional branch.
Since we are observing cyclomatic complexity from the modelling perspective, we
assume the modeller will use the most abstract alternative for presenting com-
pound conditions. Practically, this means we will use the number of decision points
as D in the equation for calculating cyclomatic complexity and not the number of
conditions.



28 Nenad Ukić et al.

Fig. 13 Handling of asynchronous communication and its effect on cyclomatic complexity.
The overall cyclomatic complexity remains the same as if the call was synchronous, because
we have reduced both the number of edges and the number of nodes equally, by 1 for each call.

4 Measuring complexity distribution

A complete xtUML model is obtained by semantically integrating four different
models: component, class, state machine, and processing models. So far, we have
been analysing the cyclomatic complexity of each of those models separately, with
minimal considerations towards other models or the xtUML model as a whole. In
this section, we will describe our approach to i) calculating cyclomatic complexity
of a complete xtUML model, and ii) calculating the distribution of the model
complexity across different model layers.

4.1 Calculating the overall cyclomatic complexity

The first step in calculating cyclomatic complexity is constructing a CFG. In
case of complete xtUML models, the CFG construction starts with components,
since they are the basic building blocks of xtUML systems. Components contain
classes, which contain operations and act as wrappers around state machines. For
this reason, constructing a CFG graph of the whole model starts with constructing
a CFG of a single xtUML component.

An incoming port message, whether it is synchronous or asynchronous, has its
implementation on a port. Component ports are static constructs that do not have
to be created, while most of the component functionality is distributed across class
instances. This means that the main task of a port message implementation is to
find the correct class instance (or create a new one) and forward the message to it.
Typically, but not mandatory, if the incoming port message is asynchronous, an
asynchronous message (an event) is passed to the instance state machine. Similarly,
if the incoming port message is synchronous, usually a synchronous operation on
the selected instance is invoked.

In any case, a class instance represents a context (i.e. provides contextual data)
used by behaviors in operations and state machines. This implies that, in order
to create a CFG of an xtUML component, we can observe operations and state



Title Suppressed Due to Excessive Length 29

machines as standalone entities, without their container classes. From cyclomatic
complexity perspective, which is not concerned with data complexity, classes, their
instances, and the data context they provide, are not relevant. They are only
used to logically organize those behaviours and they have no effect on cyclomatic
complexity of an xtUML component. Practically, this means that class model
cyclomatic complexity can be ignored when calculating complexity of a complete
xtUML component. This is inline with the fact that cyclomatic complexity of a
class model is included in the cyclomatic complexity of processing code and does
not need to be explicitly taken into account.

As a base for calculating cyclomatic complexity wrapped within a component,
we use eq. 4, where an xtUML component is considered as an MEME CFG con-
structed from a set of synchronously communicating bodies and asynchronously
communicating state machines. Except with asynchronous invocation (event and
signal sending) statements, the synchronous and asynchronous part of a compo-
nent’s CFG are connected with edges introduced by instance creation statements.
In case a class defines an instance state machine, the instance creation statements
start the execution of a state machine. The total number of edges and nodes within
a component in eq. 4 is therefore determined as a sum of all edges and nodes in
all bodies and state machines wrapped in a component. While eq. 24 provides
this number for all bodies within a component, eq. 15 gives cyclomatic complexity
for a single state machine. This means that we need to sum the number of edges
and nodes for all state machines within a component. However, when observing
state machines in the context of a component, they become integrated in a single
component CFG. For this reason, a virtual edge connecting each exit and each
entry node of a CFG is not needed. Therefore, we need to decrement the overall
component cyclomatic complexity by 1 for each state machine in a component.
Applying this to eq. 4 results with the following equation:

CCcomp = CCallBodies + CCallSm + Nop + Nsig

= CCallBodies +
Nsm∑
i=1

CCsm(i) −Nsm + Nop + Nsig

(25)

where CCallBodies represents cyclomatic complexity of all bodies within an
xtUML component (given with eq. 24), CCallSm represents the cyclomatic com-
plexity of all state machines within an xtUML component, CCsm(i) is the cyclo-
matic complexity of the i-th state machine (given with eq. 15), Nsm is the number
of state machines within a component, and Nop, Nsig are the number of operations
and signals on all component ports, respectively. In the rest of the paper we use
eq. 25 for calculating the total cyclomatic complexity of an xtUML component.

4.2 Calculating the distribution of cyclomatic complexity

Complexity in an xtUML model can be distributed: i) horizontally, between the
elements of the same type, and ii) vertically, between different types of models. An
example of horizontal complexity distribution is determining how complexity is dis-
tributed across different components of a system, or among different classes within
a single component. Vertical complexity, on the other hand, compares complexi-
ties exposed on component, class, state machine, and processing model levels. This



30 Nenad Ukić et al.

separation between vertical and horizontal complexity is specific for model-driven
technologies, and does not have an equivalent in traditional software development
metrics.

In our approach, for calculating vertical distribution of cyclomatic complex-
ity across different xtUML sub-models (i.e. component, class, state machine and
processing models), we will use cyclomatic complexity of a sub-model relative to
the complexity of the complete xtUML model. In order to calculate the cyclomatic
complexity of a component, class, state machine and processing model, we will use
equations 5, 10, 19 and 24 respectively. To calculate the complete xtUML model
cyclomatic complexity, we will use eq. 25 from the previous section. Although
eq. 25 contains the number of operations and signals on all component ports, the
cyclomatic complexity of the component layer does not influence the overall cy-
clomatic complexity (as is already explained in the last paragraph of section 3.1).
Similar is true for class model complexity because a class and component model
complexity only visualize a subset of procedural model complexity and that they
do not influence the total xtUML model cyclomatic complexity. There is, however,
a value in analysing the degree of visually exposed complexity, so we include those
complexities in the process. Since cyclomatic complexity depends on the number
of execution (control) paths, we expect that processing model cyclomatic com-
plexity will dominate over cyclomatic complexities of other layers. In addition,
we can also compare the cyclomatic complexity expressed through graphical mod-
els (components, classes, and state machines) with the complexity of the textual
model expressed in the processing model.

Horizontal complexity can be calculated on several layers. On system level, hor-
izontal complexity distribution can be calculated between different components of
a system, including all complexities of all state machines and bodies within a com-
ponent. This provides information about the distribution of cyclomatic complexity
among different components. Inside a single component, complexity distribution
can be analyzed across different classes, by taking into account the complexity
of their state machines and bodies. Although component complexity may also be
located outside its classes (ports, functions, bridges), the majority of cyclomatic
complexity will be wrapped within classes. The distribution of complexity among
classes will provide useful information about key classes within a component and
their relative complexity. The contribution of a single class can be calculated by
using the following equation:

CC(c) = CCbody(c) + CCsm(c) = D(c) + Ncall(c) − p(c) + CCsm(c) (26)

where D(c) is the total number of decisions in all bodies of class c, Ncall(c) the
total number of synchronous and asynchronous calls in all bodies contained in the
class, and p(c) the number of bodies defined in the class.

On the lowest level, we will analyse the distribution of processing complexity
across different bodies, taking into account the number of decisions (D) and calls
(Ncall) contained within each body (b).

CC(b) = D(b) + Ncall(b) (27)



Title Suppressed Due to Excessive Length 31

Fig. 14 Horizontal and vertical complexity distribution.

5 Hypothesis and experiment setup

The goal of our experiment is to test the influence of xtUML model complexity dis-
tribution on the understandability of software models. For this reason, we specify
our hypothesis in the following way:

– Null hypothesis (H0): The distribution of cyclomatic complexity does not
affect the understandability of xtUML models.

– Alternative hypothesis (Ha): The distribution of cyclomatic complexity
significantly affects the understandability of xtUML models.

In order to test this hypothesis, we have used three different versions of the
same application. All test applications implement the same set of requirements;
they have the same interface and functionality, and they pass a common test suite.
The only difference is in their internal implementation, which results with the fact
that every application has a significantly different distribution of complexity. Our
goal was to study the effect of complexity distribution on the understandability of
xtUML models. For this we have used students, by measuring the quality of their
understanding for each test application.

5.1 Study objects

The experiment objects were three functionally equivalent calculator applications
developed with xtUML by an xtUML expert. Because of the practical limitations
of the study, three versions of the application are developed specially for this ex-
periment. Each application is composed out of a single xtUML component, the
SimpleCalculator component. Each application has its own version of the Simple-
Calculator component, but all component versions have the same interface and



32 Nenad Ukić et al.

pass the same set of tests (meaning they are functionally equivalent). The three
components are intentionally modelled differently, in order to demonstrate differ-
ent ways to distribute application complexity:

A. Model 1 uses the structured programming paradigm which relies on functional
decomposition and data structures. It makes no use of object-oriented concepts
such as classes, nor does it use state machines.

B. Model 2 heavily relies on classes, but it does not use state machines.
C. Model 3 uses both classes and state-machines.

All three applications, each with a model and a test suite, can be found at the
xtUMLProjects directory at the public git repository available at [56].

In the following sections, we will compare the three models according to various
dimensions.

5.1.1 Comparing the models in terms of LOC

The difference in internal structure resulted in the fact that three models also
differ in their total LOC (shown in Table 3 and figure 15). Model 1 implements the
desired functionality in only 333 LOC, while Model 3 uses 518 LOC (a difference
of 36%). In addition, the total number of non-empty bodies in Model 3 is more
than twice the number in Model 1 (78 compared to 32). In comparison, Model 2
has a similar (but somewhat lower) number of non-empty bodies. Model 3 has the
lowest average LOC per body, while all three have comparable standard deviation.

Table 3 Horizontal distribution of lines-of-code (LOC) across bodies

Model 1 Model 2 Model 3
Total non-empty bodies 32 67 78
Total LOC 333 479 518
Average 10,41 7,15 6,64
Standard deviation 6,72 6,02 6,37
Min value 1 1 1
First quartile 6 2 2
Median 9 5 4
Third quartile 14 9 9
Max value 29 28 29

If we observe LOC distribution across classes in table 4 and figure 16, we can
see that Model 3 has lower average and standard deviation than Model 2. This is
a consequence of the fact that Model 2 has almost 50% of the total LOC (237 out
of total 479) within a single class. Note that Model 1 contains only a single class,
which means that it makes no sense to compare it with the other two models,
since it obviously has the worst LOC distribution across classes. It is obvious that
Model 3 has the best distribution across classes as well.

5.1.2 Comparing the naming conventions used by models

One of the most important factors influencing software understandability is consis-
tency and quality of naming conventions. Since in this work we are not interested



Title Suppressed Due to Excessive Length 33

Fig. 15 Horizontal distribution of LOC across bodies.

Table 4 Horizontal distribution of lines-of-code (LOC) across classes

Model 1 Model 2 Model 3
LOC within classes 279 418 456
Total classes 1 5 6
Average 279 83,60 76,00
Standard Deviation 0 90,88 49,25
Min value 279 5 27
Max Value 279 237 153
Total model LOC 333 479 518
Class-Total LOC ratio 84% 87% 88%

in the relation between naming conventions and software understandability, we
need to minimize its effect as a factor. To verify that our models do not differ
considerably in that sense, we used Laitinen’s language theory idea [24], in which
the notion of a language refers to the set of symbols and identifiers used in some
(software) document. He identified two main rules for comparing such languages:

– Smaller languages, in terms of number of elements, are easier to understand
than larger ones. The main idea here is that each symbol has associated se-
mantics in the context of the language, which needs to be understood.

– It is easier to understand closely related languages than more distantly re-
lated languages. The closeness of two languages is determined by the number
of common symbols (and semantics) they share. This implies that no abso-
lute measure of language understandability exists, only relative measures are
possible.

Our idea was to extract the languages of the three models and compare it with the
language of the specification, with regard to these two rules. In order to be able
to do this, we used individual words from the names of the model elements as the
language symbols of the models. We first extracted all string attributes from all



34 Nenad Ukić et al.

Fig. 16 Horizontal distribution of LOC across classes.

model elements (meta-class instances) for all three models. Since the populated
meta-model contains all semantic information of the model, we actually extracted
all string information from the models. Some of those string attributes were single
character strings, while some of them contained a complete OAL implementation
of a body. String attributes from each model were written in a dedicated file, one
string attribute per line. This file is then used as input for further processing.
Each non-alphabetic character in those files was then replaced with a space and
multiple spaces are replaced with a single one. Each line is then split to tokens
using space as a delimiter. Complex identifiers in all three models are obtained by
concatenating capitalized words (Java naming convention). This implies that we
also had to split complex tokens according to capital letters in order to get words
from it. Before adding a word to a dictionary, each word is converted to lower case
and then the Porter stemming algorithm [44] [45] is used to reduce it to the root
English form (also known as stem). Note that we did not eliminate OAL keywords
from the language because they contribute to the language of the models equally
and there is only a limited number of them.

Table 5 shows the number of common words between the languages. Notice
that the numbers on the diagonal of the table represent the size of the corre-
sponding language. If we observe the size of those languages, we can see that they
are almost the same in size: models 1, 2 and 3 have in total 274, 283 and 286
words, respectively. If we now compare the languages of the models and the spec-
ification language (the last row or column), we can see that there is almost no
difference between the models: models 1, 2 and 3 have 121, 123 and 124 words
in common with the specification language, respectively. By applying Laitinen’s
language theory rules[24] regarding size and similarity between the languages, we
can conclude that there is no considerable difference in consistency and quality of
naming conventions in three models we used in our experiment.



Title Suppressed Due to Excessive Length 35

Table 5 Number of common words in the languages of three models and the language of the
specification

Model 1
language

Model 2
language

Model 3
language

Specification
language

Model 1
language

274 230 232 121

Model 2
language

230 283 264 123

Model 3
language

232 264 286 124

Specification
language

121 123 124 235

By minimizing the effect of other factors, we are able to examine the effect
complexity distribution (modularization) has on the understandability of xtUML
models. We will determine this by the experiment described in the following sec-
tions.

5.1.3 Comparing the models in terms of cyclomatic complexity

In addition to LOC, we can also compare the cyclomatic complexity distribution
across bodies (table 6 and figure 17). To be able to judge cyclomatic complexity
distribution across bodies we used the sum of decisions and calls within a single
body (see section 4.2 for details).

Model 3 has the largest total number of decisions and calls, but it also has
the best distribution (the lowest average value and standard deviation) of those
decision and calls across bodies. It is interesting to note that Model 2 and Model 3
have a relatively large number of bodies without any decisions or calls. Partially,
this can be explained by a large number of getter methods which are used to
abstract away selections across relations in a class model.

Table 6 Horizontal distribution of cyclomatic complexity across bodies

Model 1 Model 2 Model 3
Total non-empty
bodies

32 67 78

Total decisions
and calls

161 221 239

Average 5,03 3,30 3,06
Standard deviation 4,79 4,56 4,18
First quartile 2 0 0
Median 4 2 2
Third quartile 6,5 5 4
Max value 20 25 23
Bodies with zero
decisions and calls

4 21 25

We can also analyze cyclomatic complexity distribution across classes, as shown
in table 7 and figure 18. In this case, Model 2 has the lowest average cyclomatic
complexity, but its distribution is worse than in Model 3 which has lower standard



36 Nenad Ukić et al.

Fig. 17 Horizontal distribution of cyclomatic complexity across bodies.

Table 7 Horizontal distribution of cyclomatic complexities across classes

Model 1 Model 2 Model 3
Complexity within
classes (body + SM)

93 110 159

Total classes 1 5 6
Average 93 22 26,5
Standard deviation 0 26,34 17,47
Max value 93 65 51
Min value 93 0 1
Total complexity 136 161 208
Class-total ratio 68% 68% 76%

deviation. Model 1 has only one class and has all its complexity in one class so it
obviously has the worst per-class distribution.

In addition to determining how certain model metrics are distributed among
the elements of the same type – horizontal distribution, we can also analyze the
distribution of complexity metrics across different modelling layers – vertical dis-
tribution of complexity. Table 8 shows how cyclomatic complexity is distributed
among the four modeling layers (components, classes, state machines, and pro-
cessing code) for all three model versions.

Note that all three models have the same absolute component model complex-
ity because all three versions of the component use the same interface. Model 1
and Model 2 have low or no complexities at certain layers because they are inten-
tionally modelled without them: Model 1 uses a single class as a wrapper for its
functionality, while both Model 1 and Model 2 do not use the state machines.

The metric that best reflects the difference between vertical complexity distri-
bution among the models is the relative cyclomatic complexity of Graphical models
that expresses how much of the total cyclomatic complexity is visualized. It in-



Title Suppressed Due to Excessive Length 37

Fig. 18 Horizontal distribution of cyclomatic complexity across classes.

Table 8 Metrics for vertical complexity distribution

Model 1 Model 2 Model 3
absolute relative absolute relative absolute relative

Component
model

5 3,68% 5 3,11% 5 2,40%

Class
model

27 19,85% 77 47,83% 74 35,58%

State machine
model (complete)

0 0% 0 0,00% 40 19,23%

State machine
model (graphical)

0 0% 0 0% 30 14,42%

Processing
model

131 96,32% 156 96,89% 163 78,37%

Graphical
models

32 23,53% 82 50,93% 109 52,40%

TOTAL 136 100% 161 100% 208 100%

cludes cyclomatic complexity visually expressed by component, class, and state
machine models. As expected, Model 3 has the largest value for this metric which
indicates the best cyclomatic complexity vertical distribution.

To summarize, according to the horizontal and vertical complexity metric dis-
tributions, Model 3 has the best distribution, while Model 1 has the worst. This is
done intentionally in order to observe the effect that complexity distribution has
on model understandability in our experiment. This means that we intentionally
limited the usage of certain types of models in a certain version. With this, we
have directly affected vertical complexity distribution.

As for horizontal distribution, we strictly followed the rule of 30 [27] for the
number of LOC in action bodies for all model versions. Still, we were mildly
surprised with the fact that, despite the difference in LOC, more abstract versions



38 Nenad Ukić et al.

of model had better per-body horizontal complexity distribution. It seems that
new levels of abstraction affect, not only vertical complexity distribution (as is
expected), but also horizontal distribution, to the extent that it compensates for
the greater number of LOC. For example, in xtUML models that use class relations,
it is trivial to abstract relation navigations to getter operations, at least in cases
when we navigate over single-hop chains. The same getter abstraction can actually
be implemented without classes, but not as easy. In addition, an xtUML state
machine introduces two additional types of bodies (states and transition bodies)
which also improves the horizontal, per-body, distribution.

5.2 Study subjects

The subjects of the experiment were 66 third-year, undergraduate computer sci-
ence students enrolled in the Systems Analysis and Design course at the University
of Split, Croatia, during the spring semester of 2015. This was their first exposure
to MDE, but it is important to note that they already finished courses Software
Engineering and Object-Oriented programming, in which they gained experience
with the general ideas and techniques behind software modeling. In addition, be-
fore participating in the experiments, the students were exposed to the following
treatment:

A. Theoretical lecture: the students were given a two-hour theoretical course ex-
plaining the basic ideas, principles, and assumptions behind MDE and xtUML
in particular. In the end, student knowledge was tested with a short test com-
prised out of 20 multiple-choice, multiple-answer questions.

B. Practical lab assignments: in the following three weeks, the students have par-
ticipated in three two-hour lab assignments which were designed to reinforce
the theoretical concepts, as well as to provide the students with practical ex-
perience of creating and understanding models. They also gained practical
experience working with an open-source xtUML tool – Bridgepoint1

In addition, during the lab assignments the students were introduced to the
main requirements and the common test suite (domain knowledge), which were
used for all three applications.

Since we used three structurally different applications, we have divided the
students into three groups, where each student group was assigned to one appli-
cation. When creating these groups, we had to assess student abilities, in order to
create groups with equal student abilities. For this reason, each student was tested
with a:

A. Theoretical test : After the theoretical lecture, each student was given a short
test with 20 multiple-choice questions.

B. Domain test : After completing all the labs, each student was given a short
domain-knowledge test with 11 multiple-choice questions.

After ordering students according to their success on the tests and their average
grade, the students were randomly distributed into three groups in a way that the
total ability of each group is approximately the same. The first, the second, and

1 https://xtuml.org/download/



Title Suppressed Due to Excessive Length 39

Table 9 Average ability and standard deviation of students in each group as measured by
the tests and average grade. None of the groups show significant difference at 0.05 confidence
level.

Theory
correct
answers
(TCA)

Theory
points
(TP)

Domain
correct
answers
(DCA)

Domain
points
(DP)

Average
mark
(AM)

avg std avg std avg std avg std avg std
G1 21,71 4,341 14,24 5,562 10,53 2,611 8,00 4,749 3,24 1,254
G2 21,10 4,833 14,65 7,147 12,11 1,487 10,79 2,275 3,46 0,826
G3 21,05 3,845 14,40 7,344 11,50 2,066 9,36 3,522 2,85 0,708

df bg 2 2 2 2 2
df wg 54 54 49 49 45

F 0,126 0,018 2,700 2,743 1,729
p 0,882 0,983 0,077 0,074 0,189

SGN
(0,05)

NO NO NO NO NO

the third group had 21, 20, and 25 students, respectively. The groups were not
equal in size because group membership was influenced by student availability at
the time slot of the experiment. To verify that there is no significant difference
between the mean ability within the groups, we performed the ANOVA variance
analysis for each of the ability indicators:

– Theory Correct Answers (TCA) – The number of total correct answers achieved
in the theoretical xtUML exam.

– Theory Points (TP) – The number of total correct answers minus the number
of incorrect answers achieved in the theoretical xtUML exam.

– Domain Correct Answers (DCA) – The number of total correct answers achieved
in the domain exam.

– Domain Points (TP) – The number of total correct answers minus the number
of incorrect answers achieved in the domain xtUML exam.

Table 9 shows the average ability and standard deviation of students in each
group as measured by the tests and average grade. None of the ability indicators
showed significant difference between the groups at p = 0.05 significance level.

5.2.1 Data collection

Data collection was done through online questionnaires, one per group. Questions
in all three questionnaires were the same and in the same order, while the answers
differed depending on the model explored by the group. Most of the questions were
multiple-choice questions with multiple correct answers. Each question indicated
whether there is a single or multiple correct answers. Although having different
answers, questions in all three questionnaires had exactly the same number of
correct answers, in exactly the same order (for example a, d and e answers were
correct answers for the 6th question in all 3 questionnaires). This was done in
order to minimize the differences between the questionnaires. Each questionnaire
had exactly 20 questions separated in three groups:

– Model browsing: First five question are intended to get information on the ease
of finding certain information in a model. For example, one of the questions



40 Nenad Ukić et al.

in this group required students to locate a body that needs to be altered if
rounding has to be changed from 3 to 4 decimal places.

– Model understanding: The following five questions tested general understand-
ing of the application. For example, one of the questions asked students to
specify screen content after the sequence of buttons “12+=” is entered into
the calculator.

– Visualized difference: The final ten questions targeted areas of application logic
that are intentionally modelled differently in different models. For example, one
of the questions required of students to find a body where a printout command
can be added when a negative power digit is entered. Such question is relevant
because the third model visualizes the process of adding digits using a state
machine while the other two versions do not use state machines at all.

Table 10 shows a couple of example questions. The complete set of questions
for all three groups is available at course materials/experiment directory at the
publicly available git repository [56].

Table 10 Example questions

(I) How does your implementation of calculator represent numbers (operands and results)?
(Single correct answer)

a Each number is represented by one instance of class Number and one instance of any of the
two sub-classes: CalculatedNumber or EnteredNumber.

b Each number is represented by an attribute value and power in class Digit.
c Each number is represented by a set of all instances of the class Digit.
d Each number is represented by an attribute absoluteDigitalValue in class Number.

(II) We wish to change the screen printout so that the decimal point is printed as a comma,
not as a dot. Which OAL code (body) do we need to change? (Single correct answer)

a The absoluteDigitalValue derived attribute in class Number.
b The decimalDotPressed derived attribute in class Screen.
c The decimalDotPressed() operation in class Screen.
d The content derived attribute in class Screen.

(III) Which statements about numbers are correct? (Multiple correct answer)

A. If the number (an instance of class Number) is related to an instance of class EnteredNumber

and is related to an operation across R4, then that number is the first operand of an
operation.

B. If the number (an instance of the class Number) is related to an instance of class
CalculatedNumber than it was created as a result of an operation.

C. The result of an operation cannot become the first operand of the next operation.
D. The same number (instance of the class Number) can be both the first and the second

operand of the same operation.

(IV) We wish to print out the message each time we enter the digit of negative power. Where
do we need to add a printout command? (Single correct answer)

A. In the state machine of class EnteredNumber, in the OAL code of the reflexive transition in
state 1 (Entering non-negative power digits) with the EnteredNumber6:addDigit(value) event.

B. In the state machine of class EnteredNumber in OAL code of state 1 (Entering non-negative
power digits)

C. In the state machine of class EnteredNumber in OAL code of state 2 (Entering negative power
digits).

D. In the state machine of class EnteredNumber in OAL code of reflexive transition in state 2
(Entering negative power digits) which has assigned EnteredNumber6:addDigit(value) event.



Title Suppressed Due to Excessive Length 41

Students were presented one question at a time, and were instructed to keep
the questionnaire on the question whose answer they were trying to answer, while
exploring the code base. We have collected the following data:

– Correct answers (CA): The total number of correct answers. If a question has
multiple correct answers, each correct answer is taken into account.

– Incorrect answers (IA): The total number of incorrect answers. If a question is
a multiple-choice question, each incorrect answer is taken into account.

– Total number of points (P): The total number of correct answers reduced by
the total number of incorrect answers: P = CA− IA.

– Total Time (TT ): The total time for completing the whole questionnaire.
– Correct answers per minute (CAPM ): The ratio between the total number of

correct answers and the total time, expressed in minutes.
– Points per minute (PPM ): The ratio between the total number of points and

the total time, expressed in minutes.

5.3 Experiment design summary

We have performed the experiment guided by the following research question:

– RQ: Is the understandability of xtUML models influenced by the distribution
of cyclomatic complexity in the model?

The understandability of the three models is measured through time-relative
success of the three student groups using online questionnaires. In particular, we
used the number of correct answers per minute (CAPM) and the number of points
per minute (PPM) to evaluate success of each student group (and understandabil-
ity of corresponding version of a model). Those data indicators are selected as they
consider both dimensions of model understandability: absolute success as well as
the time required to finish the questionnaire.

To check for any significant differences between the groups, we performed the
ANOVA variance analysis [14] [20] [9]. In order to verify the normality of the re-
sults and the applicability of ANOVA variance analysis, we used the Wilk-Shapiro
normality test [52]. Since ANOVA analysis does not determine exactly between
which two sets of data the difference exists, we have also performed a series of t-
tests between each pair of result samples. In addition, we also calculated Cohen’s
d value [8] between each group pair in order to evaluate the effect size (the order
of magnitude) of observed differences between the groups.

6 Experiment results

The goal of our experiment was to measure the understandability of xtUML mod-
els and to check whether there exists a relationship between the distribution of
complexity of an xtUML model and its understandability. For this reason, we have
set up an experiment that measures the understandability of three different models
by testing students divided into three groups.

Table 11 summarizes the results of the experiment. For each group and for each
data indicator the average value with the standard deviation is given. The table



42 Nenad Ukić et al.

Table 11 Summary of experiment results with ANOVA single factor analysis

CA P IA TT CAPM PPM
avg std avg std avg std avg std avg std avg std

G1 20,10 4,15 13,10 7,08 7,00 3,15 36,77 6,32 0,57 0,18 0,38 0,22
G2 21,80 4,99 17,10 6,34 4,70 2,18 36,07 3,64 0,62 0,17 0,49 0,21
G3 19,36 4,22 11,92 7,45 7,44 3,57 27,20 8,56 0,78 0,28 0,46 0,35
F

(2,63)
1,718 3,215 4,88 14,869 5,687 0,947

p 0,188 0,046 0,011 0,00001 0,005 0,393
SGN
(0.05)

NO YES YES YES YES NO

Table 12 Cohen’s d factor indicating the effect size of observed differences (S = small, M =
medium and L = large effect size)

CA P IA TT CAPM PPM
G1G2 -0,38 S -0,61 M 0,87 L 0,14 S -0,29 S -0,52 M
G2G3 0,55 M 0,76 M -0,92 L 1,33 L -0,69 M 0,10 S
G1G3 0,18 S 0,17 S -0,13 S 1,28 L -0,90 L -0,27 S

also provides the results of ANOVA statistical test for each indicator. In addition,
table 12 shows the Cohen’s d value calculated on each group pair for all indicators.

The results show that there is no statistically significant difference in Correct
Answers (CA) between any of the groups. Although statistically insignificant, the
average value is the highest in the second group, while the first and the third group
have almost the same average and standard deviation value.

Regarding the number of Incorrect Answers (IA), the second group has a sig-
nificantly lower average number of incorrect answers t other two groups. The dif-
ference between the first and the third group is of small effect.

As expected from CA and IA results, the second group had a significantly
higher average value for Points (P) and large effect size when compared to the
first and the third group. The difference is significant at p = 0.05 level when
compared to the third group, and only at p = 0.1 level when compared to the
first group. The difference between results of the first and the third group are not
significant and are of small effect size.

When we consider the average total time, we can see that students in the
third group had a surprisingly shorter (25%) average total time (27 minutes when
compared to 36 minutes in the other two groups). These results are significant
even on p ≤ 0.01 level and are of large effect. The difference between the first and
the second group is not significant and of is small effect size.

The last two results are calculated and take into account both dimensions
of the experiment results, time and absolute success. Similarly as for the total
time, the third group had the highest average value of correct answers per minute
(CAPM). This result is significantly different (p ≤ 0.05) from the results of the
first two groups. When compared to the first group, the effect size of the observed
difference is large, and only moderate when compared to the second group. The
CAPM result for the second group is not significantly greater than from the first
group.

The points per minute (PPM) results do not significantly differ. However, the
second and the third group have a somewhat greater average value than the first
group.



Title Suppressed Due to Excessive Length 43

To summarize the experiment results, the second group had the best absolute
results of the experiment (P , IA), while the third group had the best time (TT )
and time-relative results (CAPM). The first group was not the best (not even
insignificantly) in any of the categories that we observed. Since CAPM results
take into account both dimensions of the model understandability (the absolute
success and the time), we can conclude that students from the third group had
the best overall success in the experiment.

6.1 The relation between experiment results and complexity distribution

If we compare the experiment results with the complexity distribution across mod-
els, we can conclude that the complexity metric distribution indeed has a signifi-
cant effect on model understandability.

Group 1, which worked with Model 1 (the model with the worst complexity
distribution) also had the worst results in the experiment. The difference in com-
plexity distribution between Models 2 and 3 was not that emphasized, even though
Model 3 had better complexity distribution. This was reflected in the results of
the second and the third group. Because of these results we reject the null hy-
pothesis and accept the alternative one: “Distribution of cyclomatic complexity
significantly affects the understandability of xtUML models”.

While the experiment results indicate that there exists a dependency between
model understandability and model’s complexity distribution, the experiment itself
was not designed to reveal more details about that dependency. In order to do this,
a much larger set of xtUML models is required. Traditionally, experimenters use
expert opinion to order software applications of different requirements and sizes on
an ordinal scale. Such experiment setup is problematic for testing our hypothesis
because the functional size and complexity distribution effects are confounded.
In our experiment we used only three models but, since semantically equivalent,
we were able to minimize the effect of all other factors and focus on the effect
of complexity distribution. Because of the low number of observed models, such
experiment design prevents us to come up with any prediction model, but it enables
us to reliably detect the existence of the dependency.

6.2 Threats to validity

In this section we discuss different threats to validity: internal validity, external
validity, and construct validity.

6.2.1 Internal validity

The main threat to internal validity of the experiment is related to the matu-
ration effect [6] [15]. The three groups have participated in their experiments in
dedicated time slots: the first group from 8:00 to 9:30 in the morning, the sec-
ond one from 9:30 and 11:00, and the third one from 11:00 till 12:30 (just before
lunch). Unfortunately, such experiment setup is generally not ideal, because of
potential hunger/fatigue effect [11] that the students of the last group may have
experienced. This probably resulted in lower accuracy and shorter total time of



44 Nenad Ukić et al.

participants in the group. This systematic error could have been eliminated by
equally distributing students from different groups in different time slots. This er-
ror is, to some extent, compensated with the fact that time is taken into account
by the experiment results.

The second internal validity threat is related to the selection effect [4]. Al-
though we tried to equally distribute student ability across different groups (see
table 9), it was not possible to perfectly align student’s availability with experi-
ment time slots.

The third internal validity threat is related to experimental mortality [6]. Ta-
ble 9 shows a satisfactory distribution of ability across groups, but does not take
into account students that were absent from theory or domain classes (and tests)
but still participated in the final experiment. It was necessary that these students
participate in the experiment because the experiment was conducted in the scope
of a university class, so it would be unfair to deny the learning experience to stu-
dents that were not able to attend all lectures. The absence distribution is shown
in table 6.2.1. When compared to other groups, we can see that group 3 had a
significantly larger share of students that did not participate in the domain exer-
cise. To check for any negative effects, we performed an additional ANOVA and
t-Test analysis, this time excluding the students that did not attend the domain
exercise. The results of the analysis show that this did not have any effect on the
experiment results.

It is important to emphasize that all mentioned internal validity threats had a
negative effect on the third group. Despite this, the third group achieved the best
overall results in the experiment.

Table 13 Distribution of absence between the groups

Absent from\Group G1 G2 G3 TOTAL
Theory 4 0 5 9
Domain 2 1 11 14
Both 1 0 3 4
Total students 21 20 25 66

It is also important to mention the co-founding effect of other understandability
factors. In this research, we have measured model understandability through the
number of correct answers per minute (CAPM), a metric which depends on sev-
eral factors: i) student ability, ii) model’s functional size, iii) quality of naming
conventions, and according to our hypothesis, iv) vertical and horizontal cyclo-
matic complexity distribution (which depend on the used modelling approach).
Since our hypothesis is dealing with cyclomatic complexity distribution, we had
to make sure that the first three factors do not differ across our three case-study
models. We have minimized the student ability factor by equally distributing stu-
dents across groups, as described in Section 5.2. The effect of the second factor,
functional size, has been minimized by taking into account the actual functional
requirements that are implemented in each of the models. A test suite consisting
of 30 modeled tests is used to confirm that all three versions of the model sat-
isfy the same set of functional requirements. Except the required functionality,
neither model includes any other functionality that might increase its functional
size. This can be verified by downloading the models from a publicly available



Title Suppressed Due to Excessive Length 45

repository [56]. With this we have also eliminated functional size as a factor that
influences the understandability of our models. The size of the models can also be
measured through LOC. However, in our opinion, in model-driven systems, this is
not a good metric for measuring understandability. Our experiment shows that,
out of three functionally equivalent models, the smallest one in terms of LOC has
the smallest average CAPM (the worst understandability). This directly contra-
dicts the premise that it could be used as a factor for model understandability. The
third factor, the quality of naming conventions, used Laitinen’s language theory
work to compare the languages of all three models. As explained in Section 5.1.2,
the results indicate no considerable difference between the models. We can con-
clude that, although the experiment is designed to minimize co-founding effects,
we cannot be sure that we completely eliminated them between the models. Even
with all this we do not claim that we have completely eliminated the co-founding
effects, but we have made an effort to minimise them.

6.2.2 External validity

There are several concerns regarding external validity. First, the experiment sub-
jects were third year computer science students, so the results may not be the
same if the subjects were trained professionals with experience in xtUML mod-
elling. During their previous education, students were trained in the structured
programming approach (mostly used in Model 1) and class modeling approach
(used in Model 2 and Model 3). However, students had little previous exposure to
state machines, which were used only in the third model.

The second concern is the representativeness of models used as experiment
objects. All three models are relatively simple and do not represent typical real
world examples. The main reason for such model selection was the limited time
required to understand the application requirements and the limited time of the
experiment. The simple calculator application used in the experiment was suitable
as the experiment object because it was relatively easy to add as much complexity
as necessary. Since this was a relatively small application, we consider that the full
abstraction potential of the xtUML methodology was not taken advantage of.

6.2.3 Construct validity

The results of the experiment show that complexity distribution affects the xtUML
model understandability. However, we should be careful with the possible implica-
tions of that conclusion. In terms of vertical and horizontal complexity distribution,
the three models can be ordered: Model 1, Model 2, Model 3, where Model 1 has
the worst and Model 3 the best horizontal and vertical complexity distribution.
However, since those models differ in horizontal as well as in vertical complexity
distribution, we cannot attribute the increased understandability only to better
vertical complexity distribution. This means that in our case, the horizontal and
vertical complexity distribution are confounded and no definite conclusion can be
made if we observe them separately. In other words, we do not know if Model 3 has
the best understandability because of the new abstraction layers or simply because
the largest number of bodies (subroutines) we used to modularize the processing
code into. Both of those approaches are forms of abstractions, but with new layers
we are introducing new types of abstractions (such as classes and state machines)



46 Nenad Ukić et al.

while with code modularization we are using subroutines as the only abstraction.
We should also keep in mind the possibility that horizontal and vertical complexity
distributions are not fully independent. As stated in the conclusion of section 5.1.3,
it seems that new levels of abstraction make it easier to make abstractions on sub-
routine level, i.e. to detect new subroutines. A separate study and an experiment
with different set of models is required to investigate isolated effects of vertical
and horizontal complexity distribution to xtUMl model understandability.

7 Conclusion

In this paper we have investigated the influence of cyclomatic complexity distri-
bution on the understandability of xtUML models. We first adapted traditional
cyclomatic complexity metrics to component, class, state machine, and processing
models that constitute an xtUML model. We followed this by specifying equa-
tions that calculate the integrated cyclomatic complexity of an xtUML model.
We have also presented two different ways of measuring the complexity distribu-
tion: horizontally, among the elements of the same type, and vertically, among the
elements of different types. In order to verify our hypothesis that cyclomatic com-
plexity distribution has an influence on the understandability of xtUML models,
we performed an experiment with student participants in which we evaluated the
understandability of three semantically equivalent xtUML models with different
complexity distributions. The results indicate that better distribution of cyclo-
matic complexity positively influences model understandability. However, since
models with better understandability have better horizontal and vertical complex-
ity distributions, the effect cannot be attributed to either of them. We speculate
that horizontal and vertical distributions are not independent and that new layers
of abstraction introduce and ease detection of new subroutines which reflects on
the horizontal distribution of complexity.

In our opinion, there are three interesting directions for future work. The first
direction is related to the problem of experiment external validity. In the research
presented in this paper, we have investigated the relationship between cyclomatic
complexity distribution and understandability through experiments with student
participants who have interacted with relatively simple model applications. For
this reason, one possible direction of future work is to perform additional experi-
ments, but this time focused on professional developers interacting with real-world
applications. The second direction for future work is related to the effects of hor-
izontal and vertical complexity distributions on model understandability. As we
already mentioned, in our current experiment models that students were able to
understand better also have better horizontal and vertical distribution. For this
reason, a possible direction for future work is to isolate the effects of horizontal
and the effects of vertical complexity distribution on model understandability. The
third direction for future work is related to deriving a regression model between
cyclomatic complexity distribution and model understandability. Currently, our
experiments were only able to confirm the existence of a relationship between
cyclomatic complexity distribution and model understandability. By performing
more experiments and deriving a regression model between these two variables,
we could develop tools that could help developers develop models with higher
understandability.



Title Suppressed Due to Excessive Length 47

References

1. Abran, A., Bourque, P., Dupuis, R., Moore, J.W.: Guide to the software engineering body
of knowledge-SWEBOK. IEEE Press (2001)

2. Aggarwal, K.K., Singh, Y., Chhabra, J.K.: An integrated measure of software maintain-
ability. In: Reliability and maintainability symposium, 2002. Proceedings. Annual, pp.
235–241. IEEE (2002)

3. Albrecht, A.J.: Measuring application development productivity. In: Proceedings of the
Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83–92 (1979)

4. Berk, R.A.: An introduction to sample selection bias in sociological data. American Soci-
ological Review pp. 386–398 (1983)

5. Burden, H., Heldal, R., Siljamaki, T.: Executable and translatable uml–how difficult can
it be? In: 2011 18th Asia-Pacific Software Engineering Conference, pp. 114–121. IEEE
(2011)

6. Campbell, D.T.: Factors relevant to the validity of experiments in social settings. Psycho-
logical bulletin 54(4), 297 (1957)

7. Chen, K., Rajlich, V.: Case study of feature location using dependence graph. In: IWPC,
p. 241. Citeseer (2000)

8. Cohen, J.: Statistical power analysis for the behavioral sciences (revised ed.) (1977)
9. Cohen, Y., Cohen, J.Y.: Analysis of variance. Statistics and Data with R: An applied

approach through examples pp. 463–509 (1988)
10. Cruz-Lemus, J.A., Maes, A., Genero, M., Poels, G., Piattini, M.: The impact of structural

complexity on the understandability of uml statechart diagrams. Information Sciences
(2010)

11. Danziger, S., Levav, J., Avnaim-Pesso, L.: Extraneous factors in judicial decisions. Pro-
ceedings of the National Academy of Sciences 108(17), 6889–6892 (2011)

12. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by
latent semantic analysis. Journal of the American society for information science 41(6),
391 (1990)

13. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code: a
taxonomy and survey. Journal of Software: Evolution and Process 25(1), 53–95 (2013)

14. Fisher, R.A.: Statistical methods for research workers. Genesis Publishing Pvt Ltd (1925)
15. Fraenkel, J.R., Wallen, N.E., Hyun, H.H.: How to design and evaluate research in educa-

tion, vol. 7. McGraw-Hill New York (1993)
16. Gunning, R.: The fog index after twenty years. Journal of Business Communication 6(2),

3–13 (1969)
17. Henderson-Sellers, B., Tegarden, D.: The theoretical extension of two versions of cyclo-

matic complexity to multiple entrylexit modules. Software Quality Journal 3(4), 253–269
(1994)

18. Henry, S., Kafura, D., Harris, K.: On the relationships among three software metrics. ACM
SIGMETRICS Performance Evaluation Review 10(1), 81–88 (1981)

19. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd an-
nual international ACM SIGIR conference on Research and development in information
retrieval, pp. 50–57. ACM (1999)

20. Iversen, G.R., Norpoth, H.: Analysis of variance. 1. Sage (1987)
21. Khoshgoftaar, T.M., Munson, J.C.: Predicting software development errors using software

complexity metrics. Selected Areas in Communications, IEEE Journal on (1990)
22. Kleppe, A.G., Warmer, J., Bast, W., Explained, M.: The model driven architecture: prac-

tice and promise (2003)
23. Labrosse, J.: Embedded software. Elsevier/Newnes, Amsterdam Boston (2008)
24. Laitinen, K.: Estimating understandability of software documents. ACM SIGSOFT Soft-

ware Engineering Notes 21(4), 81–92 (1996)
25. Lavazza, L., Robiolo, G.: Introducing the evaluation of complexity in functional size mea-

surement: a uml-based approach. In: Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement (2010)

26. Li, W., Henry, S.: Object-oriented metrics that predict maintainability. Journal of systems
and software (1993)

27. Lippert, M., Roock, S.: Refactoring in large software projects: performing complex restruc-
turings successfully. John Wiley & Sons (2006)

28. Mattias Mohlin, I.: Modeling real-time applications in rsarte (2013). URL
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/
W0c4a14ff363e_436c_9962_2254bb5cbc60/page/RSARTEConcepts

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W0c4a14ff363e_436c_9962_2254bb5cbc60/page/RSARTE Concepts
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W0c4a14ff363e_436c_9962_2254bb5cbc60/page/RSARTE Concepts


48 Nenad Ukić et al.

29. McCabe, T.J.: A complexity measure. Software Engineering, IEEE Transactions on (1976)
30. Mellor, S.: Introduction to executable and translatable uml. Application Development

Toolkit, Whitepapers CNET Networks (2005)
31. Mellor, S.J.: MDA distilled: principles of model-driven architecture. Addison-Wesley Pro-

fessional (2004)
32. Mellor, S.J., Balcer, M., Foreword By-Jacoboson, I.: Executable UML: A foundation for

model-driven architectures. Addison-Wesley Longman Publishing Co., Inc. (2002)
33. Mellor, S.J., Wolfe, J.R., McCausland, C.: Why systems-on-chip needs more uml like a

hole in the head. In: UML for SOC Design, pp. 17–36. Springer (2005)
34. Nazir, M., Khan, R.A., Mustafa, K.: A metrics based model for understandability quan-

tification. arXiv preprint arXiv:1004.4463 (2010)
35. Object Management Group, O.: Mda guide version 1.0 (2003). URL http://www.omg.

org/mda/mda_files/MDA_Guide_Version1-0.pdf
36. Object Management Group, O.: Model driven architecture (2016). URL http://www.omg.

org/mda/
37. OMG: Omg alf standard (2013). URL http://www.omg.org/spec/ALF/
38. OMG: Semantics of a foundational subset for executable uml models (fuml) (2016). URL

http://www.omg.org/spec/FUML/
39. (OMG), O.M.G.: Automated function points. http://www.omg.org/spec/AFP/1.0/ (2014)
40. OneFact: Bridgepoint tool. https://xtuml.org/download/ (2015)
41. OneFact: Bridgepoint faq (2016). URL https://github.com/xtuml/bridgepoint/blob/

master/doc-bridgepoint/process/FAQ.md
42. OneFact: Bridgepoint xtuml tool (2016). URL https://www.xtuml.org/download/
43. Perisic, B.: Model driven software development-state of the art and perspectives. Invited

Paper, INFOTEH pp. 1237–1248 (2014)
44. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
45. Porter, M.F.: The porter stemming algorithm (2006). URL https://tartarus.org/

martin/PorterStemmer/
46. Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., Rajlich, V.C.: Feature loca-

tion using probabilistic ranking of methods based on execution scenarios and information
retrieval. Software Engineering, IEEE Transactions on 33(6), 420–432 (2007)

47. Raistrick, C.: Model driven architecture with executable UML, Chapter 2.7, Mapping of
models,. Cambridge University Press (2004)

48. Rajlich, V., Wilde, N.: The role of concepts in program comprehension. In: Program
Comprehension, 2002. Proceedings. 10th International Workshop on, pp. 271–278. IEEE
(2002)

49. Riaz, M., Mendes, E., Tempero, E.: A systematic review of software maintainability predic-
tion and metrics. In: Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, pp. 367–377. IEEE Computer Society (2009)

50. Sarkar, S., Rama, G., Siddaramappa, N., Kak, A., Ramachandran, S.: Measuring quality
of software modularization (2012). URL https://www.google.com/patents/US8146058.
US Patent 8,146,058

51. Selic, B., Gullekson, G., Ward, P.T.: Real-time object-oriented modeling, vol. 2. John
Wiley & Sons New York (1994)

52. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 52(3/4), 591–611 (1965)

53. Shepperd, M.: A critique of cyclomatic complexity as a software metric. Software Engi-
neering Journal 3(2), 30–36 (1988)

54. Shibata, K., Rinsaka, K., Dohi, T., Okamura, H.: Quantifying software maintainability
based on a fault-detection/correction model. In: Dependable Computing, 2007. PRDC
2007. 13th Pacific Rim International Symposium on, pp. 35–42. IEEE (2007)

55. Shlaer, S.: The shlaer-mellor method. Project Technology white paper (1996)
56. Ukić, N.: Bitbucket public repository. https://bitbucket.org/nukic/phd (2016)
57. Ukić, N., Pályi, P.L., Zemljić, M., Asztalos, D., Markota, I.: Evaluation of bridgepoint

model-driven development tool in distributed environment. In: Workshop on Information
and Communication Technologies conjoint with 19th International Conference on Soft-
ware, Telecommunications and Computer Networks, SoftCOM 2011 (2011)

58. Van Koten, C., Gray, A.: An application of bayesian network for predicting object-oriented
software maintainability. Information and Software Technology 48(1), 59–67 (2006)

59. Welker, K.D., Oman, P.W., Atkinson, G.G.: Development and application of an auto-
mated source code maintainability index. Journal of Software Maintenance: Research and
Practice 9(3), 127–159 (1997)

http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.omg.org/spec/ALF/
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/AFP/1.0/
https://xtuml.org/download/
https://github.com/xtuml/bridgepoint/blob/master/doc-bridgepoint/process/FAQ.md
https://github.com/xtuml/bridgepoint/blob/master/doc-bridgepoint/process/FAQ.md
https://www.xtuml.org/download/
https://tartarus.org/martin/PorterStemmer/
https://tartarus.org/martin/PorterStemmer/
https://www.google.com/patents/US8146058
https://bitbucket.org/nukic/phd


Title Suppressed Due to Excessive Length 49

60. Wilde, N., Scully, M.C.: Software reconnaissance: mapping program features to code. Jour-
nal of Software Maintenance: Research and Practice 7(1), 49–62 (1995)

61. Woodfield, S.N., Dunsmore, H.E., Shen, V.Y.: The effect of modularization and comments
on program comprehension. In: Proceedings of the 5th international conference on Software
engineering, pp. 215–223. IEEE Press (1981)

62. XTUML: Executable and translatable uml (2016). URL http://xtuml.org/
63. Zhou, Y., Xu, B.: Predicting the maintainability of open source software using design

metrics. Wuhan University Journal of Natural Sciences 13(1), 14–20 (2008)

http://xtuml.org/

	Introduction
	Background and related work
	Measuring cylcomatic complexity of xtUML models
	Measuring complexity distribution
	Hypothesis and experiment setup
	Experiment results
	Conclusion

