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Abstract: Remote sensing provides invaluable insight into the dynamics of vegetation with global
coverage and reasonable temporal resolution. Normalized Difference Vegetation Index (NDVI) is
widely used to study vegetation greenness, production, phenology and the responses of ecosystems to
climate fluctuations. The extended global NDVI3g dataset created by Global Inventory Modeling and
Mapping Studies (GIMMS) has an exceptional 32 years temporal coverage. Due to the methodology
that was used to create NDVI3g inherent noise and uncertainty is present in the dataset. To evaluate
the accuracy and uncertainty of application of NDVI3g at regional scale we used Collection-6 data
from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor on board satellite Terra as
a reference. After noise filtering, statistical harmonization of the NDVI3g dataset was performed for
Central Europe based on MOD13 NDVI. Mean seasonal NDVI profiles, start, end and length of the
growing season, magnitude and timing of peak NDVI were calculated from NDVI3g (original, noise
filtered and harmonized) and MODIS NDVI and compared with each other. NDVI anomalies were
also compared and evaluated using simple climate sensitivity metrics. The results showed that (1) the
original NDVI3g has limited applicability in Central Europe, which was also implied by the significant
disagreement between the NDVI3g and MODIS NDVI datasets; (2) the harmonization of NDVI3g
with MODIS NDVI is promising since the newly created dataset showed improved quality for
diverse vegetation metrics. For NDVI anomaly detection NDVI3g showed limited applicability,
even after harmonization. Climate–NDVI relationships are not represented well by NDVI3g.
The presented results can help researchers to assess the expected quality of the NDVI3g-based
studies in Central Europe.
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1. Introduction

In recent years, climate research focused on plant production and the associated carbon balance
due to the recognized feedback between the climate system and the terrestrial carbon cycle [1–3].
Variability of plant growth and carbon balance in the semi-arid regions of the world was found
to be one of the main drivers of the interannual variability of atmospheric CO2 mixing ratio [4].
Tropical regions and other land areas (e.g., the boreal region in some studies) were recognized as
important players in the changing global terrestrial net primary production and carbon balance [5,6].
Changes in onset and cessation of the growing season are interacting with the carbon cycle [3,7,8], thus
accurate estimation of plant phenology is essential [9–13]. All of these studies clearly demonstrate the
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sensitivity of the terrestrial biosphere to climate fluctuations and the complexity of the relationship
between the environment and plant functioning [14].

Global or regional scale studies focusing on changes of plant growth and interaction between
climate fluctuations and plant functioning are thus essential to clarify the role and sensitivity of the
terrestrial biosphere under a changing climate [8]. Though regional-to-global scale studies are restricted
by the availability of in situ observations [13,15], satellite-based remote sensing provides a convenient
solution to study the plant functioning at large spatial extents. To study the vegetation, the most
commonly used quantity derived from remote sensing data is the Normalized Difference Vegetation
Index (NDVI) [16], which is a widely used proxy of land surface processes [14,17–19]. NDVI is defined
as (ρNIR − ρRED)/(ρNIR + ρRED), where ρNIR and ρRED are the surface reflectances in the near-infrared
(NIR) and visible red range of the spectra, respectively.

Since the beginning of the 1980s, the measurements of the Advanced Very High Resolution
Radiometer (AVHRR) sensor on board the meteorological satellites of the National Oceanic and
Atmospheric Administration (NOAA) provided data not only to study the properties of the atmosphere,
but also to quantify the vegetation greenness, production, and phenology (e.g., [17–22]). As there
is a high need for a continuous, consistent and inter-calibrated long-term NDVI dataset, different
AVHRR based global datasets were created, such as the NOAA Global Vegetation Index (GVI) [23],
the Pathfinder AVHRR Land (PAL) of National Aeronautics and Space Administration (NASA) [20], the
different versions of the Global Inventory Modeling and Mapping Studies (GIMMS) datasets [22,24,25],
the NDVI dataset of the Vegetation Index and Phenology Lab (VIP) [26], the datasets of the Land Long
Term Data Record (LTDR) [27], or the Fourier-Adjustment Solar zenith angle corrected Interpolated
Reconstruction (FASIR) dataset [28]. Datasets at regional scale do exist as well [29]. However, most
of the long-term datasets created from measurements of the series of AVHRR/2 and AVHRR/3 are
hampered by (1) the joint application of the individual AVHRR sensors (with different sensor and
orbit characteristics resulting in different spectral response functions, quantizing techniques, variable
illumination, and viewing geometry); (2) the post-launch calibration; (3) the missing or partially
applied atmospheric correction of tropospheric aerosols (except for the LTDR datasets) and water
vapor (except for the VIP and LTDR datasets); (4) the difficulties of the perfect cloud screening; and
(5) the sampling method of the measured data in case of using the Global Area Coverage (GAC)
data. Although several attempts were made for the inter-calibration of the measurements of various
AVHRR sensors with more advanced sensors on a global scale (e.g., [22,30,31]), the uncertainties can
be significant (especially on smaller scale) mainly due to the different sensor characteristics of the
AVHRR/2, AVHRR/3 and that of the newer sensors, and due to the lack of the appropriate atmospheric
correction [32,33].

Recently, Pinzon and Tucker [25] constructed the “third generation” GIMMS NDVI (NDVI3g)
dataset, with an even longer temporal coverage (1981–2013). Discontinuity caused by the different
features of the individual AVHRR/2 and AVHRR/3 sensors was attempted to be homogenized with
inter-calibration of the sensors performed by sophisticated Bayesian methods and with the utilization
of measurements of the Sea-Viewing Wide Field-of-view Sensor (SeaWIFS) [25]. As a result, the created
NDVI3g dataset has an overall good (but land cover dependent) quality and ability to capture the
seasonal and interannual variations. However, due to the difficulties of the construction of such a
long NDVI dataset, errors and discrepancies still remain [32–35]. Despite these errors, the created
consistent and non-stationary dataset can support the long-term monitoring of the vegetation and
characterization of its variability; therefore, it is invaluable and provides an irreplaceable archive of
long-term historical measurements. The dataset was used in numerous global or regional scale studies
for trend and sensitivity analysis, for phenology related studies or for quantification of the interannual
variability driven by climate anomalies (e.g., [35–41]). Smaller-scale evaluations of the dataset are
less frequent in the literature (e.g., [42–44]). Several studies investigated the accuracy of the different
versions of the GIMMS datasets relative to the data derived from advanced sensors [34–36,45–49] or
its performance compared to other datasets [33,49–51], concluding that the unique NDVI3g dataset
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describes the vegetation dynamics globally with a good quality but the regional scale differences and
disagreements with other datasets should be handled with caution.

The MODerate resolution Imaging Spectroradiometer (MODIS) on board satellites
EOS-AM1/Terra and EOS-PM1/Aqua provided a new sort of standard in multispectral remote sensing
of the land surface [52,53]. The advanced sensor characteristics, the sophisticated onboard calibration,
the geolocation accuracy and data processing algorithms with quality control ensured that the derived
products have the highest possible quality [53,54]. However, due to the recognition of different
issues, new Collections of the official MODIS products are continuously created. For example, in the
Collection 6 dataset of Terra, the previously known but not handled sensor degradation issue [55]
has been addressed based on improved calibration algorithms of the Level1B data [56], affecting the
derived vegetation indices as well.

Comparison of in situ and satellite-based observations corroborated the validity of the remote
sensing datasets [46,57–60] ensuring the applicability of the MODIS NDVI datasets. Due to the
well-recognized applicability of the MODIS data, several studies used these products to study plant
phenology [11,12,18,61,62], interannual variability of plant growth [33] and response of vegetation
state to climate anomalies [63]. The drawback of the MODIS data for long-term climatological studies
(covering at least 30 years) in contrast to the GIMMS NDVI3g dataset is its restricted temporal coverage.
Since Terra was launched in 1999 and Aqua in 2002, the length of the available, single-sensor based
data series in 2016 is 16 and 14 years, respectively. It should be mentioned that these time periods are
still remarkable when the designed 6 year long lifetime of the MODIS sensors is considered.

Due to the quality of the MODIS data, it may be appropriate to use it as a “state of the art”
standard dataset to evaluate the performance of the NDVI3g dataset as well as to adjust NDVI3g to
the MODIS NDVI. The measurements of MODIS are one of the most frequently used data sources for
inter-calibration or inter-comparison of the datasets [33–36].

Since most of the quality evaluations of NDVI3g are focusing on a global scale, evaluation
on the regional scale might unveil interesting features related to land cover dependency or spatial
patterns [64]. Here, we provide a detailed analysis of NDVI3g focusing on regional scale in the densely
populated Central Europe. Regional scale is selected because the spatial variability of the derived
NDVI metrics is constrained by the local climate, land cover, and disturbance history. At the same
time, in the selected study area, a disproportionately high climatic and biological diversity is present,
compared to its size. This means that the results could be somewhat easier to interpret than in the case
of global scale studies (e.g., [37,41]). As studying the effect of climate variability on a vegetation state
is a research priority, a meteorological dataset was also used in our study [65].

In the present study, we utilized NDVI products derived from Terra/MODIS to evaluate the
original NDVI3g product. Additionally, in an attempt to improve NDVI3g, we used MODIS NDVI
to perform an adjustment of the NDVI3g dataset for the region of Central Europe, based on the
overlapping 14 years. The proposed adjustment (described in detail below) is not meant to be a
sophisticated inter-calibration, but instead, it was designed to be an easily reproducible, but still
powerful tool to improve the applicability of the dataset in the region.

The main aims of the present study are the followings: (1) to develop a smoothing and
harmonization method to improve the quality and applicability of NDVI3g in Central Europe; (2) to
calculate metrics for different aspects of plant growth and state using both NDVI3g and aggregated
MODIS; (3) to compare the performance of NDVI3g with different processing levels (original, smoothed,
and harmonized) against MODIS to assess the ability of NDVI3g to capture the mean phenological
events, the interannual variability of the NDVI characteristics and different aspects of plant greenness;
and (4) to provide spatially explicit information on the applicability of the NDVI3g dataset in Central
Europe from different aspects.
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2. Materials and Methods

2.1. Study Area

The target area of this study is the broader region of the Carpathian Basin, located in Central
Europe, which was selected to match the coverage of the applied meteorological dataset (see below).
The annual mean air temperature in this area is ~10 ◦C (with a ~−1.5 ◦C minimum and 16 ◦C
maximum value in the Alps and in Mediterranean area, respectively), while the mean annual
precipitation is 800 mm (with a ~430 mm minimum and ~2900 mm maximum value in Moldova
and in Western Slovenia, respectively). Due to the heterogeneous climate conditions, including
continental, Mediterranean and Alpine zones, the vegetation types of the region are quite diverse.

2.2. The NDVI3g Dataset

The latest version of the GIMMS NDVI3g dataset [25] was used in the present study, which was
derived from the measurements of the different AVHRR sensors on board the NOAA 7–19 satellites
and covers the period between July of 1981 and December of 2013. The NDVI3g dataset has a regular
1/12◦ × 1/12◦ spatial resolution and contains maximum NDVI values during the defined 15-day
intervals. The maximum value compositing (MVC) technique reduces the uncertainty in the dataset
by selecting data from the daily measurements that is characterized by the smallest atmospheric
contribution [66]. In addition to the fact that this procedure cannot completely remove the atmospheric
effects, it can also be misleading due to the effect of the varying viewing and illumination geometry.
The spatial resolution of NDVI3g directly determined the target grid applied in our study. From the
entire dataset, the period of January of 1982–December 2013 was used.

2.3. The Applied MODIS Dataset

We used the latest version (Collection 6) MODIS NDVI with 1 × 1 km2 spatial resolution [67],
as part of the MOD13A2 and MYD13A2 official MODIS product [68]. These products were derived
from atmospherically corrected surface reflectances using the constrained view angle maximum value
composite (CV-MVC) technique [53]. Due to the temporal extent of the NDVI3g dataset, MODIS NDVI
between 2000–2013 and 2003–2013 were used for Terra/MODIS and Aqua/MODIS, respectively, for
four MODIS tiles downloaded from the Reverb-Echo system [69]. Besides the spatial resampling to
the grid of NDVI3g, temporal resampling was also necessary, based on the Julian date information
included in the MOD13 and MYD13 datasets.

2.4. Creation of the Resampled MODIS Datasets

In order to produce the resampled MODIS NDVI datasets with 1/12◦ × 1/12◦ spatial and 15-day
temporal resolution, first we created daily NDVI values for each pixel separately at 1 km resolution,
then the daily values were converted to 15-day resolution, and finally these fields were resampled to
match the grid of the NDVI3g dataset.

As the first step of this pixel-based pre-processing, the quality flags included in the MOD13
and MYD13 datasets were taken into account as embedded in 16-bit fields. According to this quality
flag information, those pixels which had snow cover exceeding 50% of the studied time period were
rejected. For the rest of the pixels, we applied a simple correction to eliminate the unrealistic low
NDVI values caused by partial or full snow cover. Therefore, the NDVI values below 0.2 were replaced
with the lower 25th percentile of the quality filtered values (if the value of 25th percentile was greater
than 0.2), or it was replaced with the value of 0.2 (if the value of 25th percentile was equal or less
than 0.2). The NDVI value of 0.2 was selected as a threshold based on the frequency distribution
of NDVI values of all pixels during every 16-day composite period of the original MODIS dataset.
Use of the NDVI value of 0.2 as the threshold proved to be beneficial in avoiding the sudden decreases
and increases in the dataset caused by the undetected snow cover. After the above correction, only
those NDVI values were used where the quality flags were among the first four highest, based on
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the “usefulness” information of the quality assurance (QA), corresponding to the frequently used QA
screening approach [34,70]. Linear interpolation was then applied for the corrected data based on the
available Julian date information of every NDVI value (as a composite day of the year, included also in
the MOD13 and MYD13 datasets) to provide applicable value. The Best Index Slope Extraction (BISE)
method [71] was applied in a pixel-based level afterward to filter out unrealistic sudden increases and
decreases in the state of the vegetation. This filtering algorithm results in a smoother NDVI time series,
which is used for the generation of the daily NDVI dataset using linear interpolation based on the
Julian date information. From the created daily, 1 km resolution NDVI dataset, maximum composite
values were derived for the same 15-day periods defined by the NDVI3g dataset based on the selection
of the maximum value during every given period. Finally, these 15-day values were resampled into the
1/12◦ × 1/12◦ regular grid of the NDVI3g dataset by spatial averaging, where the spatial resampling
was performed only if more than half of the available pixels were good pixels (i.e., accepted based on
the quality flags) within a given NDVI3g grid-cell.

Since NDVI is a non-linear transformation of the derived surface reflectances, the spatial
resampling could also be performed based on the resampled reflectances. To address this issue,
we also derived a dataset using the red visible and NIR reflectances included in the MOD13A2 and
MYD13A2 products, with the same methodology described above. Differences between the two
MODIS NDVI datasets (the one based on the maximum value compositing of the MOD13 NDVI
data, and the one created from the MOD13 reflectance data) aggregated to the NDVI3g grid were
investigated to select the one which suits more to our purposes. We found that during the period of
2000–2013, the differences between the maximum NDVI and reflectance based MODIS dataset relative
to the NDVI3g was negligible (see Supplementary Material Table S1). Calculation of NDVI values
from the reflectance data aggregated on NDVI3g grid might introduce further uncertainties due to the
different handling and filtering of the reflectances in the two spectral ranges. Furthermore, if we take
into account the fact that the values of the NDVI3g are originating from GAC data [25], which does not
correspond to the real mean NDVI value of the given area and could lead to significant discrepancies
over a heterogeneous area, the choice of the MODIS NDVI calculated from maximum NDVI values
seemed preferable. Thus, we decided to use only the maximum NDVI based MODIS NDVI instead of
the one created from the reflectances (similarly to the work of Atzberger et al. [35]).

To assess the uncertainties between the two different MODIS sensors, we compared the resampled
datasets created from Terra and Aqua MODIS NDVI data. During their overlapping period (2003–2013),
the difference between Terra and Aqua was negligible (see Supplementary Material Table S2), thus
harmonization based on the longer Terra/MODIS dataset is reasonable.

2.5. Noise Filtering and Harmonization of the NDVI3g Dataset for Central Europe

In order to improve the quality of the original NDVI3g, two additional datasets were created.
Due to the inherent uncertainty characteristic of NDVI3g, we applied quality filtering and noise
reduction first. Then, we used the MODIS dataset to improve the quality of NDVI3g dataset for Central
Europe, based on the overlapping years (2000–2013).

To create the harmonized dataset from the original, un-filtered NDVI3g dataset (referred to as
NDVI3gO in the study), the first step was the elimination of the unrealistic low values by removing the
lower 10th percentile of the dataset. This means the replacement of the low values by the calculated
percentile value for every pixel, separately, during the whole time period. The 10% threshold was
selected based on careful evaluation and visual checking of the data, and it clearly supported the
application of the BISE smoothing [71]. Ten percent seems arbitrary, but in fact the resulting dataset
is rather insensitive to the selection of the percent threshold. The threshold was selected and used
uniformly for the entire domain for simplicity and repeatability of the method. The next step was the
data filtering according to the quality flags of the NDVI3g dataset. We kept data with quality flags of 1,
2, and 3 (referring to ‘good value’, ‘good value’ and ‘NDVI retrieved from spline interpolation’ respectively;
see Pinzon and Tucker [25]). Data with the other quality flags (representing data with lower quality;
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flags 4–7) were rejected and they were replaced by linear interpolation between the preserved data.
After this preliminary filtering, we applied the BISE method [71] on a pixel-based level, resulting in a
quality filtered and smoothed NDVI time series (referred to as BISE-filtered NDVI3gF) which was also
used in the study.

After these filtering steps, the statistical harmonization of the NDVI3gF dataset (i.e., adjustment)
was performed using linear regression between the filtered NDVI3gF data and the resampled MODIS
dataset for each pixel and each 15-day time period, separately, based on the overlapping years
(between 2000–2013 and 2003–2013 for Terra/MODIS and Aqua/MODIS, respectively). According
to this procedure, the harmonized new dataset for all years (y) during the time period between 1982
and 2013 was produced by applying the derived slope and intercept values calculated from the linear
regression of the given 15-day period (t) for every pixel (i,j) separately in the following form:

NDVI3gH(i,j,t,y) = NDVI3gF(i,j,t,y) × SNDVI(i,j,t) + INDVI(i,j,t), (1)

where NDVI3gH(i,j,t,y) is the harmonized NDVI3g value, the NDVI3gF(i,j,t,y) is the BISE-filtered
NDVI3g value, while SNDVI(i,j,t) is the slope and INDVI(i,j,t) is the intercept derived from the linear
regression of the given 15-day period for every pixel separately. As a result of the above described
adjustment the multi-annual averages of the generated harmonized NDVI3gH dataset became
equivalent with the multi-annual averages of the resampled MODIS dataset. As the harmonization
is performed independently for the 15-day periods, the method implicitly accounts for the possible
seasonal variation of the difference between NDVI3g and MODIS NDVI.

The described statistical harmonization was based on the method applied by Reichstein et al. [63],
who used polynomial fitting based on the overall regression of their European study area during only
three overlapping years. Our method differs in the sense that we used the correction in a pixel-by-pixel
fashion, which was possible due to the availability of the long time series of MODIS/Terra. We would
like to stress that our harmonization method is only one of the possible ways to adjust (i.e., to improve)
the NDVI3g dataset.

2.6. The Applied Meteorological Database

To investigate the effects of weather variability on the vegetation activity and greenness, we used
the FORESEE (Open Database for Climate Change Related Impact Studies in Central Europe)
database [65]. This freely available meteorological database contains observed and projected daily
maximum/minimum temperature and precipitation fields for Central Europe on a regular grid with a
spatial resolution of 1/6◦ × 1/6◦, covering the 1951–2100 time period. For the past 1951–2014 period,
FORESEE provides observation-based interpolated meteorological fields for the wide region of the
Carpathian Basin.

2.7. Post-Processing of the Meteorological Dataset

In order to match the temporal and spatial resolution of the applied remote sensing datasets
and of the FORESEE, 15-day mean temperature values and precipitation sums were calculated first.
Then, spatial refinement of FORESEE was performed to 1/12◦ × 1/12◦ grid resolution defined
by NDVI3g. From the 15-day resolution dataset, we derived finer resolution fields to match the
target grid of the NDVI3g dataset using elevation information both for the grid of the coarser
spatial resolution FORSEE and finer resolution NDVI3g dataset. For this purpose, we used SRTM
elevation data (version 4.1 [72]) with 90 × 90 m spatial resolution downloaded from the website of the
CGIAR-Consortium for Spatial Information (CGIAR-CSI). The SRTM dataset represents top-of-canopy
elevation, but it is assumed that it has a negligible effect on the interpolated meteorological fields.
These elevation fields were created by averaging the elevation values of the SRTM grid inside all
FORESEE and NDVI3g grid-cells.
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In the case of the temperature fields, the spatial interpolation was based on the average adiabatic
lapse rate of the atmosphere in normal conditions (0.65 K/100 m). In this sense, the temperature at the
finer grid was calculated as:

TNDVI3g = TFORESEE + (hFORESEE − hNDVI3g) × 0.0065, (2)

where TNDVI3g is the calculated temperature at the grid of NDVI3g, TFORESEE is the original temperature
at the grid of the FORESEE dataset, hFORESEE is the mean elevation inside the given FORESEE grid-cell,
and hNDVI3g is the mean elevation (in meters) inside the given NDVI3g grid-cell.

Precipitation data were refined in the following way:

PNDVI3g = PFORESEE × (1 + (hNDVI3g − hFORESEE)/(hFORESEE + r)), (3)

where PNDVI3g is the calculated precipitation value at the grid of the finer NDVI3g, PFORESEE is the
original precipitation at the grid of FORESEE, and the r is the ratio of the intercept and slope values
derived from the linear regression between the elevation and mean precipitation amounts (during the
32 years between 1982 and 2013). If the absolute value of the slope derived from the linear regression
between the height and precipitation values of the 5 × 5 pixel area around the given FORESEE pixel is
greater or equal than 0.001, the r ratio was calculated as:

r = I5×5/S5×5, (4)

where S5×5 is the slope and I5×5 is the intercept derived from the linear regression between the
elevation and multiannual mean precipitation amounts during the 32 years, in a 5 × 5 pixel area
around the given FORESEE grid-point. Otherwise, the r ratio was calculated as the ratio of the intercept
and slope derived from the overall linear regression of the heights and mean precipitation amounts in
the whole FORESEE domain in the following way:

r = I(whole domain)/S(whole domain), (5)

where S(whole domain) is the slope and I(whole domain) is the intercept derived from the linear regression of the
elevation and the multiannual mean precipitation amounts using all land surface pixels in the domain
of the FORSEE dataset. This distinction was applied due to the large differences in the elevation
values within the applied 5 × 5 pixel area caused by variable topography that is not represented by the
precipitation field (probably due to the low number of stations used to construct the EOBS database,
that is the primary data source of FORESEE [73]), therefore in some cases there is no statistically
significant relationship between the heights and precipitation amounts.

2.8. Land Cover Database

In order to provide a deeper evaluation of the datasets land cover specific results were also
derived. To accomplish this task a land cover database was applied. Since the widely used IGBP land
cover classification (part of the official MCD12 datasets) suffers from uncertainties and errors [74,75]
with 75% overall accuracy [76], which includes misclassification of the mixed forest types [77], we used
the CORINE 2012 database (Coordination of information on the environment [78]) which represents
a higher reliability of 87.0% ± 0.7% [79]. The CORINE database covers our study area with the
exception of Ukraine. Using this vector-based classification, we derived for all the 44 land cover types
the percentages of their presence within every grid-cells of the NDVI3g dataset. We calculated the
coverage of the main land cover types from the CORINE database as a combination of the different
categories (see Supplementary Material Table S3): for arable land categories 211, 212, 213 and 242,
for grasslands 231 and 321, for all kinds of forests 311, 312, 313 and 324, for broadleaf forest 311 and
for coniferous forest 312. Pixels with dominant forest and arable land cover were selected using the
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criterion of at least 80% coverage based on CORINE. For grasslands, this criterion was 70% to increase
the number of pixels involved (80% threshold would result in a total of 5 pixels in the domain area).
See Supplementary Material Figure S1 for the location of the pixels with dominant coverage of the
given land cover type.

Based on information from the CORINE Land Use Change databases, that describe changes
between 2000–2006 and 2006–2012, the net area of change in each land use category was calculated.
Pixels for which net land use change area exceeded 20% of the total area were excluded from
the analysis.

2.9. Vegetation Characteristics and Metrics for Quality Evaluation

To evaluate the performance of the original NDVI3gO, the BISE-filtered NDVI3gF, and the
harmonized NDVI3gH datasets against MODIS NDVI from different aspects, the following
characteristics were calculated: mean seasonal NDVI profiles, start of the season (SOS), end of the
season (EOS), length of the season (LOS), and value and timing of the peak NDVI. Those characteristics
were selected based on a literature review of the most frequently used, NDVI based plant characteristics.
The metrics were calculated on pixel-by-pixel level for the whole target area, and for the main different
land cover types as well.

Mean seasonal NDVI profiles (or multiannual NDVI curves [19]) were calculated as multiannual
means, which represent the overall greenness and plant functioning in the given area (see e.g., [41]).
These NDVI profiles provide a robust representation of the overall plant state in the study area and
are useful metrics of overall, land cover specific plant functioning. To determine the SOS and EOS,
we calculated the average SOS and EOS values derived from the 15-day NDVI values using three
different methods (partially following the work of Shen et al. [62]). Based on this SOS is the date when
(1) the NDVI curvature has the highest rate of change in the year; (2) the derivative of the wavelet
transformed function fitted to NDVI values reaches its first local maximum value (based on [61,80]);
(3) the NDVI first reaches the value that gives the highest rate of change of the multiannual NDVI
curves (serving as a predefined threshold). Length of growing season was calculated as the difference
between the EOS and the SOS. Peak NDVI (which is the highest NDVI value during the growing
season) was calculated from the daily resolution time series that was created by boxcar averaging
based smoothing of the 15-day dataset. This temporal refinement was performed to avoid results with
coarse, 15-day temporal resolution.

Both from the NDVI datasets and from the meteorological datasets, anomaly fields (seasonally
de-trended time series) were derived for every 15-day long periods separately as the difference
of the actual date and the mean value during the examined overlapping time period (2000–2013).
The relationship between NDVI and the ongoing weather conditions was studied in the form of
linear regression based correlation analysis between the vegetation index anomalies and selected
meteorological variables (note that no attempt was made to construct multiple linear regression
models, and the possible covariance between the meteorological elements is not addressed here).
To quantify their co-variance including both possible positive and negative interactions, Pearson’s R
values were calculated and compared. This metric is used to check the overall consistency between
NDVI3g and the MODIS-based results. For temperature it is hypothesized that it has a rapidly
detectable effect on overall plant greenness (e.g., spring bud-break and leaf unfolding; or due to
defoliation caused by excess heat). Therefore, monthly mean NDVI anomalies and temperature
anomalies for the same month were correlated for the study period. For precipitation, lagged effects
are expected [14,38], as in the case of a negative precipitation anomaly, the soil water reserve available
to the plants depletes gradually, hence we hypothesized that precipitation in the previous month
carries greater significance. In addition, increased precipitation is linked with a decrease in the
available light due to cloudiness, which can introduce false signal regarding the instantaneous effects
of precipitation. Thus, for precipitation anomalies, we calculated R values between the NDVI anomalies
of a given month and the mean precipitation anomalies of the previous month. Note that co-variation
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between temperature and precipitation anomalies is typical in the region, but their relationship and
its confounding effect on the R values was not addressed (in other words, we did not use partial
correlation analysis). We only studied the similarity or dissimilarity between R values derived from
NDVI3g(O,F,H) and MODIS, and for this purpose simple linear regression is appropriate.

Accuracy was evaluated by comparison of different metrics, such as bias, mean absolute deviation,
root mean square error (RMSE) and also using the linear correlation coefficient (R) and its square
which is usually referred to as the coefficient of determination (where R2 can be used to quantify
explained variance) analyzed for the whole study area. Relative frequency distribution plots and maps
of selected metrics were used to visualize the results.

Data processing and visualization was performed by using the Interactive Data Language (IDL).

3. Results

3.1. Comparison of the NDVI3g Datasets with MODIS NDVI

We evaluated the overall differences between the Terra/MODIS maximum NDVI based dataset
(Terra NDVIMODIS, aggregated to the NDVI3g grid resolution) and the NDVI3g datasets with different
processing levels. We found that during the period of 2000–2013, the overall relationship for the whole
study area between NDVI3gO and the NDVIMODIS dataset had an R2 of 0.721, an RMSE of 0.122,
a bias of −0.008 and a mean absolute deviation of 0.095. BISE-filtering slightly modified most of these
characteristics (except the bias) where R2 is 0.763, RMSE is 0.107, and bias is 0.02 and the mean absolute
deviation is 0.085. The relationships between the harmonized NDVI3gH and the Terra NDVIMODIS

datasets yielded a stronger R2 of 0.954, where RMSE was 0.034, bias was in the order of 10−4 and mean
absolute deviation was 0.024 (see Supplementary Material Table S1).

3.2. Mean Seasonal NDVI Profiles

Overall (covering the entire study area) and land cover type (forests, arable lands, and grasslands)
specific mean seasonal NDVI profiles calculated from NDVI3gO, NDVI3gF, and NDVIMODIS are
presented in Figure 1. Note that the mean seasonal NDVI profiles derived from NDVI3gH and
NDVIMODIS are virtually the same (but the datasets differ in any other sense), as the applied
harmonization creates a dataset that is equivalent with the NDVIMODIS in terms of multiannual
NDVI curves (see Section 2.5). Seasonal NDVI profiles were compared for the whole year, and also for
a subset covering the growing season only (from the second half of April to the first part of September).

Considering the whole year, the overall differences in the derived multiannual NDVI curves
between the NDVI3gO and NDVIMODIS datasets are relatively small with a median bias of −0.004
(standard deviation of the bias is 0.054), a median mean RMSE of 0.079 (standard deviation is
0.034), and a median R of 0.964 (standard deviation is 0.074). Disagreements between the profiles
are clearly visible in Figure 1, which means that NDVI3gO estimated somewhat different profiles
than NDVIMODIS. This is most pronounced during the growing season for herbaceous vegetation
(croplands and grasslands). NDVI3gO and NDVI3gF show lower NDVI than MODIS during the
dormant season (probably due to the applied snow filtering methods). Noise in the NDVI3gO dataset
is evident from the wider overall range of the individual curves.

Considering the whole year but treating land cover types separately, median RMSE between
NDVI3gO and NDVIMODIS is 0.076 for forests and arable lands, while it is 0.085 for grasslands.
Median R for forests, arable lands and grasslands are 0.961, 0.945 and 0.973, respectively. In the case of
median bias, the difference is larger with values of −0.035, 0.009, and 0.024 for forests, arable lands,
and grasslands, respectively.
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Figure 1. Mean NDVI cycles for the 14 year time period for different land cover types calculated
from NDVI3gO, NDVI3gF and NDVIMODIS. The light gray shaded area represents the area covered
by the individual pixels for NDVI3gO, while the light green area shows the same for NDVIMODIS

(area for NDVI3gF is not shown for clarity). The number of pixels (n) used to create the NDVI cycles
are also shown.

Given the large deviation between NDVI3gO and MODIS during the dormant season, we repeated
the calculations for the growing season only. Based on the multiannual NDVI curves the mean
difference between the NDVI values of NDVI3gO and NDVIMODIS was investigated also in a spatially
explicit manner for the whole study area. Figure 2 shows the map of biases for the growing season.
During this time period, a positive bias (with a median bias of 0.049) was observed in 88% of the
vegetated study area, while a negative difference (with a median bias of −0.017) was present at the
remaining 12% of the area, where the overall median bias was 0.044, the median RMSE was 0.063 and
the median R2 was 0.87. Seasonal bias maps are presented in the Supplementary Material (Figure S2).

Focusing only on the growing season, median RMSE between NDVI3gO and NDVIMODIS is
smaller (0.042 for forests, 0.069 for arable lands and 0.070 for grasslands, respectively). Median R is
slightly lower for the growing season (0.893, 0.900 and 0.922 for forests, arable lands, and grasslands,
respectively), while the median biases show better performance with a value of 0.001, 0.056 and
0.062 for forests, arable lands and grasslands, respectively.

During the growing season, we found a characteristic land cover dependency in some cases with
high positive biases (higher NDVI3gO compared to NDVIMODIS) for the pixels covered by bare rocks,
sparsely vegetated areas, artificial surfaces of discontinuous urban fabrics, grasslands and arable lands,
while negative high biases were typical mainly for forests, arable lands, and beaches.
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Figure 2. Bias map of the original NDVI3gO relative to NDVIMODIS during the overlapping 14 years,
calculated for the time period between the second half of April and the first part of September.
Positive bias means higher NDVI3gO.

3.3. Start of the Season and End of the Season

Figure 3a shows the frequency distribution of biases (∆) in the SOS between the three
NDVI3g-based datasets and NDVIMODIS (∆SOS = SOSNDVI3g − SOSMODIS) for the study area during
the overlapping years between 2000 and 2013. In Figure 3a and in the forthcoming histograms,
the frequency distribution of the error metrics represents spatial variability.
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Figure 3. Frequency distribution of (a) SOS bias; (b) EOS bias; (c) length of growing season bias during
the time period of 2000–2013 for NDVI3gO (black), NDVI3gF (light blue) and NDVI3gH (dark blue)
datasets relative to NDVIMODIS. Positive bias means earlier SOS, EOS and shorter LOS for MODIS
(n = 20191).
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We found significant variability between SOS estimated from NDVI3gO and from NDVIMODIS

(median bias is −3 days, which means earlier growing season start for NDVI3gO; standard deviation
of bias is 11.3 days). The 5th and 95th percentiles of the bias were −24.6 and 13 days, respectively.
In 18.4% of the target area, the absolute bias was less than 2 days. BISE-filtering had only slight and
not necessarily positive effect on the results (median bias is −3.3 days). MODIS-based harmonization
clearly improved the agreement of the NDVI3gH dataset with respect to SOS with a median bias of
0.5 days and a standard deviation of 3.9 days. According to Figure 3a, spread of the bias decreased
considerably, and in 67.8% of the area, the bias was less than 2 days. The 5th and 95th percentiles of
the bias for NDVI3gH were −3.8 and 4.2 days, respectively. Distributions of R values obtained from
the correlations between the pixel-level SOS estimated with NDVI3g(O,F,H) datasets with different level
of processing and NDVIMODIS show shifting toward higher values of R with each level of processing
(see Supplementary Material Figure S5). This implies that SOS estimates from different NDVI3g
datasets are getting closer to SOS from NDVIMODIS.

The frequency distribution of EOS bias between the three NDVI3g and NDVIMODIS datasets
(∆EOS = EOSNDVI3g − EOSMODIS) is shown in Figure 3b. End of the season estimation from the
NDVI3gO is mostly biased and varies within a wide range of about 120 days (i.e., 4 months).
The median bias is −4 days, while the standard deviation of bias is 19.3 days. The 5th and
95th percentiles of the bias are also rather large (−36.6 and 29.5 days, respectively). The absolute
difference was less than 2 days only in 10.7% of the target area. BISE-filtering had a detectable
effect on the bias (median value of 0.6 days) though the large variability decrease is only marginal.
MODIS-based harmonization clearly improved the quality of the NDVI3gH dataset respect to EOS as
well (median bias of 0.6 days, and standard deviation of 5.7 days) and the resulting dataset showed
a bias that scattered within ~40 days. The harmonization resulted in a dataset with bias <2 days in
37.4% of the total area studied. The 5th and 95th percentiles of the bias for NDVI3gH were −7.5 and
11.4 days, respectively.

Considering correlations between EOS estimated from the NDVI3g(O,F,H) datasets and EOS
from NDVIMODIS (see Supplementary Material Figure S9), the results are similar to the case of SOS.
Corrections improved correlations to some extent. Supplementary Material contains additional figures
on the spatial pattern of SOS, EOS bias and their R values (Figures S3, S4, S7 and S8), where the maps
of R are showing only the pixels where R is statistically (p < 0.01) significant.

Land cover dependency was found in the biases of SOS and EOS (see Supplementary Material
Figures S6 and S10). In case of SOS values derived from the NDVI3g(O,F) datasets, arable lands and
coniferous forests showed the highest variability of SOS and the weakest agreement with the SOS
derived from MODIS data, and the harmonization modified the results to a lesser extent. For all kinds
of forests generally (and especially for broadleaf forests), the agreement was considerably stronger,
and the SOS values were markedly improved due to harmonization. The situation was similar in case
of EOS, where arable lands showed a strong positive bias before the harmonization, which means that
the NDVI3g(O,F) datasets significantly overestimated the EOS. Land cover specific results of grasslands
(and to a lesser extent of coniferous forests) should be handled with caution due to the low number
of pixels.

3.4. Length of the Growing Season

In case of the length of growing season, the frequency distribution of the bias between NDVI3gO,
NDVI3gF, NDVI3gH and NDVIMODIS (∆LOS = LOSNDVI3g − LOSMODIS) is shown in Figure 3c.
Considerable variability is present in NDVI3gO and NDVI3gF, and the distribution of bias is similar to
that of SOS (Figure 3a). The median bias is 0.26 days, which is in fact small, but the spread of bias is large
(the 5th and 95th percentile of the bias are −43.8 and 39.4 days, respectively). After BISE-filtering the
median bias increases to 5.6 days, while the standard deviation of bias hardly changes (decreases from
24.1 to 23.8 days, with similar 5th and 95th percentiles). Harmonized NDVI3gH shows better
performance (similarly to the EOS case) with close-to-zero median bias, 6.4 days standard deviation
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of bias, and −8.9 days 5th percentile, and 11.7 days 95th percentile values. The correlation between
LOS estimated from NDVI3g(O,F,H) and NDVIMODIS datasets show similarities with the one of SOS
and EOS (Supplementary Material Figure S13), however, the spatial pattern of biases resembles only to
EOS and while it differs from SOS (Supplementary Material Figure S11).

The land cover dependency of LOS’s error (Supplementary Material Figure S14) is similar to that
of the EOS’s error, which means a strong overestimation by the NDVI3gO datasets in the case of arable
lands. The highest improvement is due to harmonization in the case of forests.

3.5. Value and Timing of Peak NDVI

During the overlapping 14 year period, annual maximum NDVI was systematically higher for
NDVI3gO and NDVI3gF than for NDVIMODIS (Figure 4a). The median bias (∆peak = peakNDVI3g –
peakMODIS) was 0.096 for NDVI3gO and 0.089 for NDVI3gF, while the standard deviation of bias was
around 0.046 for both cases. MODIS-based harmonization substantially improved the multiannual
mean maximum NDVI compared to NDVIMODIS (Figure 4a): NDVI3gH approached NDVIMODIS with
a median bias of −0.003 and standard deviation of bias of 0.004. The 5th and 95th percentiles of the
maximum NDVI bias were −0.011 and 0.015, respectively.Remote Sens. 2016, 8, 955 13 of 30 
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(dark blue) relative to NDVIMODIS. Positive NDVI bias means higher maximum NDVI for NDVI3g,
while the positive bias of peak NDVI dates means earlier maximum NDVI for MODIS (n = 20191).

Figure 4a shows that the frequency distribution of maximum NDVI bias for NDVI3gO and
NDVI3gF are similar. This is also the case for the correlation coefficients between maximum NDVIMODIS

and the original and BISE-filtered NDVI3gF (Supplementary Material Figure S17). The median R for
NDVI3gO (0.25) and NDVI3gF (0.27) are small, which indicate a low ability for explaining interannual
variability in maximum NDVI. MODIS harmonization improved R in such a way that the number of
pixels with negative R decreased and the peak of the distribution shifted towards higher positive values.

Bias of timing in peak NDVI (∆timing = timingNDVI3g – timingMODIS) was comparable to that of
EOS and LOS bias (Figure 4b cf. Figure 3b,c). Median bias was −7.4 days for both NDVI3gO and
NDVI3gF, which means an earlier NDVI maximum estimation by the NDVI3gO dataset by one week.
The 5th and 95th percentile bias covered 71.5 days for NDVI3gO, and it covers 55.2 days for NDVI3gF.
MODIS harmonization improved the quality of the estimation (Figure 4b), as the median bias of timing
for maximum NDVI for NDVI3gH is −1.3 days for the target area. The standard deviation of bias
decreased to 7.5 days, while the time period covered by the 5th and 95th percentiles decreased to
21.6 days (cca. 3 weeks). Correlation between the timing of maximum NDVI between the reference
NDVIMODIS and the NDVI3g with different processing levels is presented in Supplementary Material
Figure S21. Neither BISE-filtering nor MODIS harmonization changed the overall distribution of R
within the target area.

Land cover specific results (Supplementary Material Figure S18) in case of value of the maximum
NDVI reveal significant differences between arable lands and broadleaf forests, where maximum
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NDVI derived from NDVI3gO dataset is considerably higher for arable lands (with a median difference
of 0.094) than for broadleaf forests (with a median value of 0.039). These results are in accordance
with the observed differences between the mean seasonal profiles discussed in Section 3.1. Land cover
dependency for the timing of the maximum NDVI again shows considerable differences between
arable lands and forests (Supplementary Material Figure S22), where maximum NDVI for arable
lands occurs earlier, while for forests (especially for broadleaf forests) it occurs later based on the
NDVI3gO data.

3.6. Anomaly Fields

Figure 5 shows example anomaly maps for the beginning of September 2003, after a
well-documented and widely studied severe heatwave and drought spell in Europe [63,81,82].
The maps show that the original NDVI3g depicts large areas with a positive anomaly which is
not realistic in comparison with NDVIMODIS (see also maps in [82]). MODIS-based harmonization
improves the overall quality of the anomaly map in terms of sign of anomaly and its spatial pattern.

NDVIMODIS anomalies in the whole region during the overlapping 14 years were characterized
by 5th and 95th percentiles of –0.071 and 0.066, respectively, while for NDV3gO and NDV3gH by a
−0.143 and 0.128, and a −0.039 and 0.040, respectively. It means that the wide scatter of the NDV3gO

anomalies decreased for NDV3gH.
In order to check the consistency between MODIS and NDVI3g(O,F,H) anomalies correlation

coefficients were determined. The correlation coefficients between the anomalies of NDVIMODIS and
the harmonized NDVI3gH datasets show obvious improvement compared to the original dataset
during the overlapping 14 years (Supplementary Material Figure S23). Note that in case of the
NDVI3gO and NDVI3gF the significance level is less than 0.01 if |R| > 0.14, while all R values between
NDVIMODIS and the harmonized NDVI3gH have lower significance level than 0.01, therefore they can
be handled as a statistically significant relationship.

As the non-growing season NDVI might be noisy because of the presence of snow or cloud, we
investigated these correlations for the time period between the second half of April and the first part
of September. The distribution of the R values is presented in Supplementary Material Figure S24.
It was found that the range of the distribution was wider for the growing season, and contained
more negative R values, indicating an even weaker relationship between the anomaly values for all
land cover types. In case of all three NDVI3g derived datasets (NDVI3gO, NDVI3gF, and NDVI3gH)
|R| > 0.21 means lower significance level than 0.01. Note that there are no negative R values for the
harmonized NDVI3gH datasets.

We found large differences in the R values for the different land cover types. Weaker agreement
was evident for the forested pixels (relationship was the weakest for coniferous forests with a median
R of 0.25 and 0.40 for NDV3gO and NDV3gH, respectively), and a stronger agreement for arable lands
(with median R of 0.58 and 0.67 for NDV3gO and NDV3gH, respectively). These results are summarized
in Table 1. The table shows that although BISE-filtering improves the quality of the NDVI3g dataset
with shifting the original median R value (0.39) towards higher values, the harmonization shifts the
total distribution in a way that it becomes narrower with an overall median R of 0.52. Maps of the
R values are presented in Figure 6.

3.7. Anomalies and Their Relationship with the Climate Fluctuations

Statistical evaluation of the ability of the NDVI3g(O,F,H) datasets to capture the magnitude and
direction of the NDVI anomalies was conducted also based on the effects of climate variables, such
as temperature and precipitation. The relationship between NDVI anomalies and the anomalies of
the meteorological elements (expressed by the R values at pixel-level) was visualized in the form of
box-whisker plots for all four datasets. This study is restricted to the growing season (from April to
September) in monthly resolution.
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Table 1. Statistics of the R values between the anomaly fields of NDVIMODIS and the NDV3gO,
NDV3gF and NDV3gH datasets during the second half of April - the first part of September period,
for all vegetated pixels and for the different land cover types. (Std. dev. of R is the standard deviation
of R values).

Land Cover Type N Median R 5th Percentile R 95th Percentile R Std. dev. of R

MODIS vs. NDVI3gO

All pixels 20191 0.39 0.14 0.67 0.16
Arable lands 1662 0.58 0.24 0.76 0.16
Grasslands 21 0.43 0.17 0.64 0.17

Forests 1454 0.36 0.17 0.53 0.11
Broadleaf forests 184 0.39 0.23 0.58 0.11

Coniferous forests 56 0.25 0.01 0.40 0.10

MODIS vs. NDVI3gF

All pixels 20191 0.45 0.16 0.72 0.17
Arable lands 1662 0.62 0.28 0.79 0.15
Grasslands 21 0.49 0.06 0.76 0.19

Forests 1454 0.40 0.14 0.60 0.14
Broadleaf forests 184 0.41 0.20 0.62 0.13

Coniferous forests 56 0.33 0.09 0.53 0.14

MODIS vs. NDVI3gH

All pixels 20191 0.52 0.28 0.76 0.14
Arable lands 1662 0.67 0.39 0.81 0.13
Grasslands 21 0.57 0.22 0.71 0.17

Forests 1454 0.46 0.26 0.67 0.12
Broadleaf forests 184 0.47 0.28 0.67 0.12

Coniferous forests 56 0.40 0.20 0.59 0.11

3.7.1. Relationship between the NDVI and Temperature Anomalies

Figure 7 shows the relationship between the NDVI and temperature anomalies for August, for
the entire study area, and also for the selected land cover specific pixels as well. Map of R values
for the selected month are presented in Figure 8. Supplementary Material (Figure S25) contains
box-whisker plots for the other months. Considering all vegetated pixels, the plot shows that the
distribution of R values differ among the NDVI3g datasets with certain processing levels and from the
MODIS-based data as well. Correction (BISE-filtering and harmonization) typically shifts the peak of
the R distribution towards lower values (where the median R values become negative in summer),
which means that the distribution gets closer to the one represented by MODIS (the latter provided the
lowest, i.e., most negative R values). The scatter of R values (represented by maximum and minimum
in the box-whisker plots) differ only slightly between the datasets.
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Figure 7. Box-whisker plots of the correlation coefficients between the temperature anomaly and the
NDVI anomaly in August derived from the NDVI3gO (dark blue, the first column in every LC group),
NDVI3gF (purple, the second column in every LC group), NDVI3gH (light blue, the third column in
every LC group) and NDVIMODIS (green, the fourth column in every group) datasets for all vegetated
pixels of the study area, and for different land cover types. (Box-whisker plots are indicating maximum,
upper quartile, median, lower quartile, and minimum values.)
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with dots inside indicate statistically significant R (p < 0.01).
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Considering the specific land cover types, the gradual shift toward lower values from NDVI3gO

to NDVI3gH is typical of all LC types. In some cases, (e.g., in May and June; see Supplementary
Material Figure S25) NDVI3gF and NDVI3gH are very similar in terms of R distribution, which means
that harmonization did not shift the R distribution toward lower values. Similarly to the case when all
vegetated pixels (land cover types) were taken into account, MODIS mostly gave the lowest R alues
that are gradually approximated by NDVI3gF and NDVI3gH but are never reached. In May and
June, forests exhibit different behavior, as in these two months correlation coefficients between the
temperature anomaly and NDVI anomaly for MODIS show the largest R values. In May and June,
BISE-filtering shifts the R distribution toward lower values, but interestingly harmonization has an
opposite effect so as it shifts the distribution to higher R values (exception is coniferous forests in June),
though the shift is only marginal. During this time period, distribution of R based on MODIS is more
similar to the original NDVI3gO.

3.7.2. Relationship between the NDVI and Precipitation Anomalies

Figure 9 shows the lagged relationship between the NDVI and precipitation anomalies for all LC
types for September (where the effect of precipitation anomaly of August is considered), and for the
specific LC types that are studied separately. Map of R values for the selected month are presented in
Figure 10. Figure S26 in the Supplementary Material contains results for the other months. If the entire
study area is handled as one dataset, the R values are the largest in case of MODIS. NDVI3g with
different corrections are characterized by smaller R values (as shown by the 25th and 75th percentile
values; note that there are exceptions), and the correction methods do not improve the result in terms
of similarity with MODIS. BISE-filtering typically shifts R to lower values, where harmonization shifts
them to a bit higher values. In some months (e.g., in August and September; Supplementary Material
Figure S26), MODIS gives substantially different distribution.

If the different LC types are studied separately, the results show a rather heterogeneous picture.
Arable lands exhibit a pattern similar to all LCs, likely due to the dominance of croplands in the
study area. None of the NDVI3g based distributions provide R distribution that matches the
MODIS based result. It is interesting to note the scatter among the R distributions of grasslands
in June (see Supplementary Material Figure S25). In August and in September, the MODIS-based R
distributions markedly differ from those represented by the NDVI3g datasets.

Remote Sens. 2016, 8, 955 19 of 30 

 

Figure 8. Map of R values between the temperature anomaly in August and the NDVI anomaly in 
August derived from (a) the NDVI3gO; (b) NDVI3gF; (c) NDVI3gH and (d) NDVIMODIS datasets. Pixels 
with dots inside indicate statistically significant R (p < 0.01). 

3.7.2. Relationship between the NDVI and Precipitation Anomalies 

Figure 9 shows the lagged relationship between the NDVI and precipitation anomalies for all 
LC types for September (where the effect of precipitation anomaly of August is considered), and for 
the specific LC types that are studied separately. Map of R values for the selected month are 
presented in Figure 10. Figure S26 in the Supplementary Material contains results for the other 
months. If the entire study area is handled as one dataset, the R values are the largest in case of 
MODIS. NDVI3g with different corrections are characterized by smaller R values (as shown by the 
25th and 75th percentile values; note that there are exceptions), and the correction methods do not 
improve the result in terms of similarity with MODIS. BISE-filtering typically shifts R to lower 
values, where harmonization shifts them to a bit higher values. In some months (e.g., in August and 
September; Supplementary Material Figure S26), MODIS gives substantially different distribution.  

If the different LC types are studied separately, the results show a rather heterogeneous picture. 
Arable lands exhibit a pattern similar to all LCs, likely due to the dominance of croplands in the 
study area. None of the NDVI3g based distributions provide R distribution that matches the MODIS 
based result. It is interesting to note the scatter among the R distributions of grasslands in June (see 
Supplementary Material Figure S25). In August and in September, the MODIS-based R distributions 
markedly differ from those represented by the NDVI3g datasets. 

 
Figure 9. Box-whisker plots of the correlation coefficients between the precipitation anomaly in 
August and the NDVI anomaly in September derived from the NDVI3gO (dark blue, the first column 
in every LC group), NDVI3gF (purple, the second column in every LC group), NDVI3gH (light blue, 
the third column in every LC group) and NDVIMODIS (green, the fourth column in every group) 
datasets for all vegetated pixels of the study area, and for different land cover types. (Box-whisker 
plots are indicating maximum, upper quartile, median, lower quartile, and minimum values.) 

Figure 9. Box-whisker plots of the correlation coefficients between the precipitation anomaly in August
and the NDVI anomaly in September derived from the NDVI3gO (dark blue, the first column in every
LC group), NDVI3gF (purple, the second column in every LC group), NDVI3gH (light blue, the third
column in every LC group) and NDVIMODIS (green, the fourth column in every group) datasets for all
vegetated pixels of the study area, and for different land cover types. (Box-whisker plots are indicating
maximum, upper quartile, median, lower quartile, and minimum values.)
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4. Discussion

4.1. MODIS NDVI as Reference Dataset for NDVI3g Evaluation

In our approach, the state-of-the-art Collection 6 MODIS-based NDVI dataset from satellite
Terra was used as a reference to investigate the quality of the NDVI3g dataset over Central
Europe. Global scale studies demonstrated the applicability of the NDVI3g, the longest available
remote sensing dataset [25], in trend detection of the phenological cycle and sensitivity studies
(e.g., [34,36–38,40–42,83–85]). Nevertheless, evaluation of NDVI3g for regional application is necessary
due to known issues and uncertainties [32–35]. We chose NDVI dataset derived from the measurements
of Terra/MODIS for reference because of its longer overlap with the NDVI3g dataset, relative to the
one provided by Aqua/MODIS. We executed the calculations using Aqua/MODIS data (not shown
here) as well, but the outcomes were similar to those from Terra/MODIS which are presented here.
This corroborates the robustness and wider applicability of our results, while the selection of the
MODIS NDVI dataset (between Terra and Aqua) has only marginal effect on the results, and does not
influence the applied methodology.

It is important to emphasize that we do not claim that the MODIS-based NDVI is of perfect quality,
as there are several other remote sensing alternatives as well for NDVI calculations (measurements
of SeaWIFS, or the sensors onboard SPOT, Landsat and recently Suomi-NPP or Sentinel satellites).
We only state that due to the sophisticated calibration method and quality assurance included in
MODIS data processing, the derived products are of high quality. The quality of MODIS NDVI is also
confirmed by results showing its consistency with ground observations [46,57,60], however, its ability
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to describe the phenology is dependent on land cover types [59]. Moreover, it is clear by today that
MODIS NDVI became, to a certain degree, a standard with remarkable length and commonly used for
inter-calibration and inter-comparison [33–36]. Researchers already use MODIS for harmonizing other
datasets [63,86], and they will inevitably continue to use it as a reference.

We used maximum value compositing for the construction of our spatial and temporal resampled
NDVIMODIS dataset since this method matched best the construction of the NDVI3g data. There are
other alternatives for spatial aggregation of the data (e.g., simple spatial mean or calculation from the
original reflectances), but they gave similar results (not shown here). This suggests that our results are
robust enough for the quality evaluation of NDVI3g. Our correction method for NDVI3g was based
on quality filtering, BISE correction [71,80], and also using the so-called MODIS based harmonization.
Our results should only be interpreted for these corrections. Alternative filtering and reconstruction
methods are also possible (e.g., Savitzky-Golay filter, etc.; see [87]) which would inevitably provide
somewhat different corrected datasets.

Collection 6 MODIS data were also used to create a novel, corrected dataset that we refer
to as harmonized NDVI3g. The main reason for the creation of the harmonized dataset was
to support phenology related researches in Central Europe with MODIS compatible information.
Our harmonization method was implemented based on simple linear regression between NDVI3g and
MODIS on pixel level for each 15-day time steps separately. This means that the seasonal variability
of the difference between NDVI3g and MODIS NDVI was implicitly accounted for. In this sense,
harmonization resulted in a dataset that provided the same multiannual mean NDVI seasonal profiles
as MODIS/Terra did. This feature might be useful for the pre-MODIS time period (1982–1999) as we
can assume that those NDVI profiles are MODIS equivalent. Mean seasonal NDVI profiles for the past
might be constructed to sub-regions so that e.g., decadal changes on plant greenness can be studied
based on harmonized NDVI3gH. This feature might be useful for the detection of natural disturbance
or human activity at the regional scale. MODIS comparability is emphasized here as remote sensing
data users will continue to handle MODIS as the primary reference for other studies.

4.2. Phenology and NDVI Variability

Major advancement in remote sensing allows the quantification of dates of major phenological
events using space-borne instruments [11,13,41,44,57,88]. It was demonstrated that in spite of their
different spatial scales satellite based SOS and EOS estimations roughly match the in situ phenology
observations [7,11,41,57,59,60]. Clearly, estimates based on different datasets will end up giving
different dates and values for phenology events [64]. Here, we used MODIS NDVI which is one of
the most popular, freely available datasets. We applied MODIS NDVI and NDVI3g with different
corrections to test the applicability of NDVI3g for the detection of the beginning and cessation of the
growing season, and for the estimation of the length of the vegetative period. We also studied the
magnitude of annual NDVI maximum, which is an indicator of the maximum performance of the
vegetation, and its timing.

The original NDVI3g-based SOS and EOS detection showed poor performance as the difference
between MODIS-based and NDVI3g-based results differed by 20–30 days in the majority of the cases
(EOS error was larger), without any systematic fashion. BISE-filtering [71] (see Sections 2.4 and 2.5)
did not change the overall quality of phenology timing detection. MODIS harmonization improves
substantially the applicability of NDVI3g, mainly in terms of multiannual mean SOS and EOS detection.
Quantification of interannual variability of spring greening and autumn senescence (i.e., year-to-year
change in SOS and EOS) is somewhat problematic with NDVI3g, as even the improved dataset still
shows somewhat poor performance (expressed by the correlation between the reference and the other
datasets). This indicates that the harmonized NDVI3gH is more appropriate for estimation of means
but not for variability.

We used an ensemble of three methods for SOS and EOS detection, which is a common practice
in the literature [62]. This means that our results can be considered as robust but inevitably depend on
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the choice of SOS and EOS calculation methodology. Note that the individual methods (see Section 2.9)
showed similar pattern (not shown here) which corroborates that the findings are robust. Alternative
methods for SOS and EOS detections are used in the literature (see e.g., [18,35,40,64]) which were not
tested here due to the heterogeneity of the methods. Further studies might focus on these techniques.
Our finding with earlier SOS derived from the GIMMS NDVI3g dataset corresponds to the results of
Atzberger et al. [35].

Estimation of LOS with the original and BISE-filtered NDVI3g is problematic, as it provides
inconsistent results in comparison to MODIS. As SOS and EOS determine LOS, errors in SOS and EOS
affect the overall quality of LOS. MODIS harmonization improves the predictive ability of NDVI3g
to estimate LOS. Final applicability of harmonized NDVI3gH of the LOS is similar to that of the EOS,
where both are of lower quality than the SOS. The final NDVI3gH still has relatively large uncertainty
in terms of the spread of bias. Explained variance for LOS is similar to that of SOS and EOS, and is
relatively poor (R2 is still typically lower than 0.5 in the whole study area).

Peak NDVI magnitude is overestimated by NDVI3gO even with BISE-filtering, while after
harmonization it gives results which are consistent with MODIS. The correlation between MODIS
and NDVI3g with different corrections is still low, although MODIS harmonization causes larger
improvement in terms of R with respect to SOS, EOS, and LOS.

Error in the estimation of the timing of peak NDVI is similar to the errors in the estimation of
EOS and LOS. MODIS harmonization improves the ability of NDVI3g to estimate the peak NDVI
timing quite well, though the time range of timing difference in the target area can span more than
3 weeks. Interestingly, R between MODIS and NDVI3g in terms of timing of maximum NDVI is
unaffected by the corrections and generally shows performance which is typical for the phenology
metrics already discussed.

The reliability maps presented in the Supplementary Material can support decision making on
the applicability of NDVI3g for specific purposes. If the question is the estimation of the multiannual
mean SOS or EOS based on NDVI3g, bias maps (Supplementary Material Figures S3, S7, S11, S15 and
S19) can be useful. If the annually varying timing is to be determined with reasonable accuracy and
precision, then the R-maps are good guides (Supplementary Materials Figures S4, S8, S12, S16 and
S20). These reliability maps can be directly used if the entire NDVI3g dataset is evaluated in terms of
phenology change or trend for specific vegetation characteristics.

4.3. NDVI Anomalies and Their Relationships with Meteorological Variables

Elucidation of the relationship between unusual plant state and climate anomalies is the subject
of several ongoing research activities [14,36,62,63,89–94]. Climate effect on plant state and vigor was
studied in many cases. These studies range from relatively simple regression analysis between climate
variables and vegetation index anomalies [95,96] to more complex studies focusing on resilience
and resistance of ecosystems [14,90]. These studies are also useful to identify sensitivity of plant
communities to precipitation and temperature anomalies [93,97].

Obviously, the first step of this kind of activity is the detection of anomalies. This can be done
via different remote sensing datasets and proxy variables but the quality of the retrieved anomaly
fields might remain unaddressed. Therefore, a comparison of the anomaly fields is always desired,
preferably with a dataset that is widely tested and verified in terms of its ability to detect anomalies.

Attribution of the detected signal is another major challenge. Understanding the response of
plant production to meteorological anomalies might help project plant physiology and vulnerability
under changing environmental conditions [89]. Plants growing under different climates might have
different sensitivity to the same anomaly (e.g., drought or heat) due to acclimation and plasticity [90,98].
Therefore, the plant responses on large spatial scales, where a mixture of species is present, cannot be
estimated easily from simple ecological considerations. Remote sensing can overcome this limitation
as it provides observation based information about larger regions [90].
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Well-documented anomaly cases can be used to evaluate the ability of NDVI3g to detect
NDVI deviations from the long term means. The 2003 heatwave and drought caused widely
recognized decline in plant production (including crop yield) and reduced carbon uptake [63,81,92].
We demonstrated that in major parts of Central Europe NDVI3g was not able to reproduce the
anomaly pattern during the 2003 heat wave even after filtering, BISE correction and harmonization.
Further case studies should be performed to evaluate the ability of NDVI3g to correctly detect
individual anomaly fields. Statistical evaluation of the pixel based anomalies also revealed problems
with the anomaly evaluation.

Our results reveal that in Central Europe positive temperature anomalies during the growing
season typically negatively impact plant greenness and thus most likely foliage production
(not considering of course the relationship between the temperature and SOS). If we hypothesize that
MODIS captures correctly a response of plants to the heat, based on our findings, we can conclude
that NDVI3g gives somewhat different results even after correction. The result implies that NDVI3g,
even after harmonization, still shows weaker correlation with the temperature than MODIS. This is
something one should be aware of when using NDVI3g, particularly for the period before MODIS.

The same is true in the case of precipitation anomalies where excess precipitation causes overall
greening in the region and likely associated increase in the leaf production. NDVI3g users should
keep in mind that their results might be distorted. Interestingly, in case of the anomaly detection and
attribution BISE-filtering and harmonization do not result with a closer match to MODIS, like in the
case of SOS.

4.4. Implications for Long-Term Calculations with NDVI3g in Central Europe

As it was emphasized in the Introduction, the NDVI3g dataset is a result of a combination
of several NDVI datasets originating from different AVHRR sensors onboard the NOAA satellites
(see Supplementary Material Table S4 for a list of NOAA satellites and their contribution to the NDVI3g
dataset). Differences in satellites raise a question of how well the harmonization between NDVI3g
and MODIS NDVI might be extended to the period before MODIS era. To estimate the limitations of
harmonization with MODIS NDVI, a test was conducted. We performed harmonization using only
part of the NDVI3g dataset originating from NOAA-17 (period 2004–2008) and compared the goodness
of harmonization with MODIS NDVI for the overlapping (2004–2008) and non-overlapping (2001–2003
and 2009–2013) periods. The goodness of harmonization between NDVI3g and MODIS NDVI was
quantified with RMSE, handling MODIS NDVI as a reference. Using only data of NOAA-17, the
harmonization in the applied period (2004–2008) resulted in RMSE decreasing from 0.097 (NDVR3gO)
to 0.023 (NDVI3gH), while outside of the era of NOAA-17 (non-overlapping period of 2001–2003
and 2009–2013) RMSE dropped from 0.109 (NDVR3gO) to 0.046 (NDVI3gH). For comparison, overall
harmonization (performed by using the NDVI3g dataset for the entire MODIS era (2000–2013)) resulted
in RMSE reduction from 0.122 for NDVR3gO to 0.034 for NDVI3gH. As expected, harmonization
between NDVI3g and MODIS NDVI yields best results when it is made in a satellite-to-satellite
fashion for instruments orbiting simultaneously. However, reduction in RMSE—even in the case when
harmonization was performed based on different satellites and non-overlapping periods—indicates
that the implementation of harmonization might be sensible also for the part of the NDVI3g dataset
prior to MODIS era.

5. Conclusions

In this study, we presented an in-depth analysis of the quality and suitability of the NDVI3g
dataset for the estimation of different vegetation characteristics in Central Europe. The target region
covers countries with transitional economies, where the vulnerability of the ecosystems to climate
change [99] is related to the ongoing management practices [100]. This means that monitoring of
vegetation activity is of priority both for scientific and economic reasons.



Remote Sens. 2016, 8, 955 24 of 30

Our results showed that the original NDVI3g has limited applicability in Central Europe. This was
revealed by the significant disagreement between different vegetation state metrics (related to spatially
averaged NDVI profiles, phenology and maximum greenness) derived from the original NDVI3g and
MODIS NDVI datasets. This finding points to the need for further noise filtering and adjustment of
the original NDVI3g dataset.

Noise reduction with the BISE method slightly improved the results but the accuracy of NDVI3gF

is still low. The harmonization of NDVI3g with MODIS NDVI is promising since the created
dataset shows improved quality for phenology timing detection and the other vegetation metrics.
This finding suggests that it is not the noise of NDVI3g that limits the applicability of NDVI3g for the
characterization of plant state.

Anomaly detection with NDVI3g should be handled with caution in Central Europe. The ability of
other datasets should be checked for alternatives. NDVI3g has some applicability in attributing NDVI
anomalies to meteorological anomalies, where harmonization helps to improve the covariance between
NDVI and temperature/precipitation anomalies. Still, MODIS-based results are not reproduced well,
even by NDVI3gH which warns us that results derived from NDVI3g(O,F,H) should also be interpreted
with caution.

The presented results can help researchers to assess the expected quality of the NDVI3g(O,F,H)
based studies in Central Europe. Spatially explicit reliability maps presented in the Supplementary
Material can support the selection of target regions for further studies with NDVI3g where the
results are in better accordance with those retrieved by MODIS. Though the present study has
limited spatial extent, it was intentionally designed to focus on the size of an area that would be
most interesting from a national and/or regional aspect (e.g., to policymakers, local climate change
analysis/awareness raising campaigns, etc.). Nevertheless, described methods and quality metrics are
generic and can be used for other geographic regions as well without modification. The applicability
of our results is likely restricted to the mid-latitudes with similar climatic conditions and land cover.
For other regions (e.g., the tropics or the boreal regions) similar studies can be conducted based on the
presented methodology.

The quality and BISE-filtered NDVI3g and the harmonized datasets for the studied domain are
available from the corresponding author. The harmonized dataset is also available at Zenodo [101].

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/11/955/s1,
1. Basic Statistics between the Different NDVI Datasets (Tables S1 and S2); 2. Locations of the Selected Pixels with
High Share of a Single Land Cover Type (Table S3 and Figure S1); 3. Additional Maps and Figures Related to the
Mean Seasonal Profile Comparison (Figure S2); 4. Additional Maps and Figures Related to the SOS Comparison
(Figures S4–S6); 5. Additional Maps and Figures Related to the EOS Comparison (Figures S7–S10); 6. Additional
Maps and Figures related to the Length of Season Comparison (Figures S11–S14); 7. Additional Maps and
Figures related to the Maximum NDVI Comparison (Figures S15–S18); 8. Additional Maps and Figures related
to the Comparison of Timing of Maximum NDVI (Figures S19–S22); 9. Additional Maps and Figures related to
the Comparison of NDVI Anomalies (Figures S23 and S24); 10. Additional Figures related to Quantifying the
Relationship between Climate and NDVI Anomalies (Figures S25 and S26); 11. Additional Information on the
Construction of NDVI3g (Table S4).
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100. Šimić Milas, A.; Rupasinghe, P.; Balenović, I.; Grosevski, P. Assessment of forest damage in Croatia using
Landsat-8 OLI Images. South-East Eur. For. 2015, 6, 159–169. [CrossRef]
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