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Uniform exponential dichotomy

We first recall the notion of a (uniform) exponential dichotomy.

Let (Am)m∈Z be a sequence of bounded operators on a Banach

space X = (X , ‖·‖). For each m, n ∈ Z such that m ≥ n, we define

A(m, n) =

Am−1 · · ·An if m > n,

Id if m = n.

We say that the sequence (Am)m∈Z admits a uniform exponential

dichotomy if there exist projections Pm for m ∈ Z satisfying

Pm+1Am = AmPm for m ∈ Z (1)

such that each map Am| ker Pm : ker Pm → ker Pm+1 is invertible

and constants λ,D > 0 such that:
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‖A(m, n)Pn‖ ≤ De−λ(m−n) for m ≥ n

and

‖A(m, n)Qn‖ ≤ De−λ(n−m) for m ≤ n,

where Qn = Id− Pn and

A(m, n) = (A(n,m)| ker Pm)−1 : ker Pn → ker Pm for m < n.

Some consequences of the existence of uniform exponential

dichotomy:

1 existence and regularity of invariant stable and unstable

manifolds;

2 linearization of dynamics;

3 center manifold theory.

Davor Dragičević, UNSW Spectral characterization



Nonuniform exponential dichotomy

We say that (Am)m∈Z admits a nonuniform exponential dichotomy

if there exist projections Pm for m ∈ Z satisfying (1) such that

each map Am| ker Pm : ker Pm → ker Pm+1 is invertible and there

exist constants λ,D > 0 and ε ≥ 0 such that

‖A(m, n)Pn‖ ≤ De−λ(m−n)+ε|n| for m ≥ n

and

‖A(m, n)Qm‖ ≤ De−λ(n−m)+ε|n| for m ≤ n,

where Qn = Id− Pn.
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Example

Let A be a cocycle with generator A over ergodic measure

preserving dynamical system (X ,B, µ, f ) whose all Lyapunov

exponents are nonzero. Then, for a.e. x ∈ X , the sequence

(An)n∈Z defined by An = A(f n(x)), n ∈ Z admits a nonuniform

exponential dichotomy.

We refer to:

L. Barreira and C. Valls, Stability of Nonautonomous Differential

Equations, Springer, 2008,

for a detailed descriptions of consequences of the notion of

nonuniform exponential dichotomy.
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Exponential dichotomies for a sequence of norms

Let ‖·‖m, m ∈ Z be a sequence of norms on X . We say that

(Am)m∈Z in B(X ) admits an exponential dichotomy with respect

to the sequence of norms ‖·‖m if: there exist projections

Pm : X → X for each m ∈ Z satisfying (1) and such that each map

Am| ker Pm : ker Pm → ker Pm+1 is invertible and there exist

constants λ,D > 0 such that for each x ∈ X we have

‖A(m, n)Pnx‖m ≤ De−λ(m−n)‖x‖n for m ≥ n

and

‖A(m, n)Qnx‖m ≤ De−λ(n−m)‖x‖n for m ≤ n,

where Qn = Id− Pn.
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Connection

Proposition

The following properties are equivalent:

1 (Am)m∈Z admits a nonuniform exponential dichotomy;

2 (Am)m∈Z admits an exponential dichotomy with respect to a

sequence of norms ‖·‖m satisfying

‖x‖ ≤ ‖x‖m ≤ Ceε|m|‖x‖, m ∈ Z, x ∈ X

for some constants C > 0 and ε ≥ 0.
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Admissibility

Let

l∞ = {x = (xm)m∈Z ⊂ X : ‖x‖∞ := sup
m∈Z
‖xm‖m <∞}.

Theorem

The following properties are equivalent:

1 the sequence (Am)m∈Z admits an exponential dichotomy with

respect to the sequence of norms ‖·‖m;

2 for each y = (ym)m∈Z ∈ l∞, there exists a unique

x = (xm)m∈Z ∈ l∞ such that

xm+1 − Amxm = ym+1, m ∈ Z.
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Corresponding operator

We define a linear operator T : D(T ) ⊂ l∞ → l∞ by

(Tx)m+1 = xm+1 − Amxm, m ∈ Z,

where

D(T ) = {x ∈ l∞ : Tx ∈ l∞}.

Then, T is closed and thus D(T ) is a Banach space with respect

to the norm

‖x‖T := ‖x‖∞ + ‖Tx‖∞

and T : (D(T ), ‖·‖T )→ l∞ is a bounded operator. Then,

exponential dichotomy with respect to a sequence of norms ‖·‖m is

equivalent to the invertibility of T .
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Admissibility II

Instead of spaces (l∞, l∞) we could also use the following pairs:

Y1 = lp and Y2 = lq for 1 ≤ q ≤ p < +∞,

Y1 = l∞ and Y2 = c0,

Y1 = c0 and Y2 = lp for 1 < p < +∞,

Y1 = c0 and Y2 = c0,

Y1 = l∞ and Y2 = lp for 1 < p < +∞,

where

c0 := {x = (xm)m∈Z ⊂ X : lim
|m|→∞

‖xm‖m = 0}.
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Dynamics on the half-line

Theorem

The following properties are equivalent:

1 the sequence (Am)m≥0 admits an exponential dichotomy with

respect to the sequence of norms ‖·‖m;

2 there exists a closed subspace Z ⊂ X such for each

y = (ym)m≥0 ∈ l∞ with y0 = 0, there exists a unique

x = (xm)m≥0 ∈ l∞ such that x0 ∈ Z and

xm+1 − Amxm = ym+1, m ≥ 0.
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Robustness

Theorem

Let (Am)m∈Z and (Bm)m∈Z be two sequences in B(X ) such that:

1 the sequence (Am)m∈Z admits a nonuniform exponential

dichotomy;

2 there exists c > 0 such that

‖Am − Bm‖ ≤ ce−ε|m|, m ∈ Z.

If c > 0 is sufficiently small, then the sequence (Bm)m∈Z admits a

nonuniform exponential dichotomy.
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Parametrized robustness

Assume that the sequence (Am)m∈Z admits a nonuniform

exponential dichotomy. Let I be a Banach space and assume that

Bn : I → B(X ), n ∈ Z is a sequence of maps. Then, if Bn are

small, for each λ ∈ I the sequence (An + Bn(λ))n∈Z admits a

nonuniform exponential dichotomy. Moreover, if:

1 Bn are Lipschitz, then the associated projections are also

Lipschitz;

2 Bn are smooth, then the associated projections are also

smooth.
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Trichotomy

Theorem

The following properties are equivalent:

1 (a) the sequence (Am)m≥0 admits an exponential dichotomy on

Z+ with respect to the sequence of norms ‖·‖m, m ≥ 0 and

projections P+
m , m ≥ 0;

(b) the sequence (Am)m≤0 admits an exponential dichotomy on

Z− with respect to the sequence of norms ‖·‖m, m ≤ 0 and

projections P−
m , m ≤ 0;

(c) X = Im P+
0 + Ker P−

0 ;

2 for each y = (ym)m∈Z ∈ l∞, there exists x = (xm)m∈Z ∈ l∞

such that

xm+1 − Amxm = ym+1, m ∈ Z.
Davor Dragičević, UNSW Spectral characterization



Shadowing

Let f be a C 1-diffeomorphism of a compact Riemannian manifold

M. We say that f has a Lipschitz shadowing property if there exist

d0 > 0 and L > 0 such that for any sequence (xn)n∈Z ⊂ M such

that d(f (xn), xn+1) ≤ d ≤ d0 for every n ∈ Z, there exists x ∈ M

such that d(f n(x), xn) ≤ Ld for every n ∈ Z.

Example

1 Anosov diffeomorphism has Lipschitz shadowing property;

2 every structurally stable diffeomorphism has Lipschitz

shadowing property.
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Shadowing II

Theorem (Pilyugin-Tikhomirov, 2010)

Every diffeomorphism that has Lipschitz shadowing property is

structurally stable.

Idea of the proof: We need to verify that for any x ∈ M,

TxM = S(x) + U(x),

where

S(x) = {v ∈ TxM : lim
n→∞
‖Df n(x)v‖ = 0}

and

U(x) = {v ∈ TxM : lim
n→∞
‖Df −n(x)v‖ = 0}.
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Then, using Lipschitz shadowing one varifies that for each

y = (yn)n∈Z ∈ l∞, there exists x = (xn)n∈Z ∈ l∞ such that

xn+1 − Anxn = yn+1, n ∈ Z,

where An = Df (f n(x)), n ∈ Z. Using the theorem on the

trichotomy slide, we obtain the desired conclusion.

Some geneneralizations: Todorov, D.
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