
 55

UML Based Object-oriented Development: Experience with Inexperienced
Developers

Mario Kušek Saša Dešić Darko Gvozdanović
Mario.Kusek@fer.hr Sasa.Desic@etk.ericsson.se Darko.Gvozdanovic@etk.ericsson.se

Department of Telecommunications Research & Development Centre Research & Development Centre
Faculty of Electrical Engineering and

Computing, University of Zagreb
Ericsson Nikola Tesla d.d. Ericsson Nikola Tesla d.d.

Zagreb, Croatia, HR-10000 Zagreb, Croatia, HR-10000 Zagreb, Croatia, HR-10000

Abstract

UML is becoming increasingly important in modern
software development. Many articles describe UML
features, but only very few of them discuss its
usability in real projects. This article discusses
features and usability of UML in software projects
based on experiments and pilot projects. In the
analysis some differences between UML and SDL
(Specification and Description Language) are
emphasized. This article deals with the impact of
UML on newcomers in the world of object-oriented
software development. The experiment with two
groups of students (one trained in UML) was carried
out. Their goal was to develop the solution for
particular software system. Advantages and
disadvantages of UML are also commented with
respect to user’s level of knowledge, application type
and requirements.

1. Introduction
World development and lifestyle increasingly depend
on software. Software-intensive systems, as
technological achievements, as well as social
demands, are growing in size, complexity,
distribution and importance. However expansion of
these systems changes the limits of software industry
know-how. As a result, building and maintenance of
software becoming increasingly complex.

Various software development projects fail in
different ways but they all share common symptoms.
Some of them are: inaccurate understanding of end-
user needs; inability to deal with changing
requirements; software that is not easy to maintain or
extend or late discovery of serious project flaws.
Analysis of the symptoms reveal that their root
causes are: ad hoc management of the requirements;
ambiguous and unambiguous communication;
overwhelming complexity; undetected
inconsistencies in the requirements, design and

implementation; uncontrolled change propagation or
insufficient testing.

Some of the problems and their causes can be
avoided by implementing more rigorous development
process. Deployment of notation language, like
UML, might facilitate communication between all
participants in the development process. These are
some of the reasons for UML utilization in software
development. Present article analyses the aspects of
UML use in the development process.

Second section explains UML roots, causes and
purpose. UML diagrams are explained in brief. The
third section describes one software development
process that utilizes UML. Examples and aspects of
UML utilization are shown in the fourth section. In
section five are described the experiments with UML
and inexperienced developers. Section six gives the
summary of the results.

2. UML
The unified modeling language (UML) is a graphical
language for visualizing, specifying, constructing,
and documenting software-intensive systems. UML
provides a standard way of writing system's
blueprints, covering conceptual things, classes
written in a specific programming language, database
schemes and reusable software components. It is a
standard notation, used by everyone involved in
software production, deployment and maintenance.

UML includes nine diagrams for describing the
system:

o Class diagram describes a set of classes,
interfaces and their relationships. It shows the
view of the system’s static design. This diagram
is very useful in modeling object-oriented
systems.

6th International Conference on Telecommunications
Maja Matijašević and Alen Bažant (eds.)
June 13–15, 2001, Zagreb, Croatia

ConTEL 2001

M. Kušek et al.: UML Based Object-oriented Development: Experience with Inexperienced Developers

 56

o Object diagram shows a set of objects and
snapshots of instances of the things found in
class diagrams.

o Use case diagram shows a set of the use cases,
actors and their relationships. This diagram is
especially important in organizing and modeling
behavior of a system.

Figure 1. Example of a use case diagram

o Sequence and collaboration diagrams are
interaction diagrams, which describe interaction
between the objects. They show their
relationships, including messages between the
objects. Interaction diagram explains dynamic
view of the system. Sequence diagram
emphasizes the time order of messages.
Collaboration diagram emphasizes structural
organization of the objects in interaction. Both
are isomorphic, meaning that a sequence
diagram can be transformed into collaboration
diagram and vice versa.

o Statechart diagram shows a state machine
consisting of states, transitions, events and
activities. It addresses dynamic view of the
system. This diagram is very important in
behavior modeling.

o Activity diagram is a special kind of statechart
diagram. It emphasizes flow from the activity to
the activity within the system. It is very useful
in tracing concurrent activities in the system.

o Component diagram describes organization and
dependencies among the components. It is
related to class diagrams with respect to
mapping the component to one or more classes,
interfaces, or collaboration.

o Deployment diagram explains configuration of
run-time processing nodes and of their
components. It shows static deployment view of
architecture.

3. Development process
 UML is a modeling language rather than a method.
For a successful project, however, modeling language
is not enough. There are several developing methods
(e.g. Extreme programming and Feature Driven
Programming). Creators of UML have developed
Rational Unified Process (RUP), which mostly
utilizes UML and incorporates best practices of
various projects. This section briefly explains
Rational Unified Process.

Rational Unified Process is an iterative and
incremental development process (Figure 2.).
Software is carefully being built up through the
process, step-by-step and functionality-by-
functionality. Subset of functionality is designed,
implemented and tested after every iteration,

 During inception, first meetings are held to define
project goal and scope and to make rough cost-
benefit estimate).

Figure 2. Rational Unified Process

 Elaboration specifies more details about
requirements and technologies involved, and
comprises high-level analyses and design for creating
baseline architecture. Plan for the construction phase
is worked out at this phase too.

 Construction phase consists of iterations; each
built, tested and integrated production-quality
software satisfying a subset of project requirements.
The delivery may be external, to early users, or
purely internal. Iterations comprise all usual life
cycle analytical steps, design, implementation and
testing.

 Transition includes beta testing, performance
tuning and user training. Optimization reduces clarity
and extensibility of the system in order to improve
performance.

4. UML in practice

4.1. Experimental
UML system modeling was tested experimentally.
Two software systems had to be designed using UML
and the appropriate tool. The results were supposed
to show UML usability in various types of systems
and required levels of detail. For that purpose, we
launched two projects.

In
ce

pt
io

n

E
la

bo
ra

tio
n

T
ra

ns
iti

on

Construction

1 2 3 ...

M. Kušek et al.: UML Based Object-oriented Development: Experience with Inexperienced Developers

 57

The first one, called JAMES, was the communication
program based on the specific protocol. The program
was divided into three main parts (Figure 3):

o USI (User Side Interface) - control procedures
for the user side,

o NSI (Network Side Interface) - control
procedures for the network side, and

o GUI (Graphical User Interface) - graphical
interface.

The user of that application had to be able perform
basic communication actions:

o initiate connection establishment;

o communicate through file transfer, sending and
receiving the messages and

o release the connection.

That kind of the application was not demanding in
architectural design, but required precisely defined
behavior. Exactly that situation was not suitable for
UML supported design, intentionally chosen to be the
part of our experiment.

network

N
SI

N
SI

User 1
USI

User 2
USI

Figure 3. James: Model of the system

The second project, called BOND, was expected to
result in a distributed processing simulator (Figure 4).
The distributed processing system could be, for
example, a Web site with the cluster of Web servers.
The main purpose of the project was aimed to create
functional prototype of the simulation system. All
nodes in the system received the requests. Those
from highly loaded nodes could be re-scheduled to
other nodes.

The prototype was extended by mobile agents
responsible for the system maintenance and
monitoring. The agents collected the data about
remote sites and saved them on the management site.

In order to run the simulation, network topology and
load distribution had to be defined. Load distribution
was specified as the incidence of job arrival per node.
All that could be done through GUI. During
simulation, the user could change simulation
parameters (network topology and load distribution),
view the system statistics and analyze overall system
performance in the course and after simulation.

Processing
Node

Mobile
Agent

Management
Node

Link
Agent’s way

Requests

Requests

Requests

Figure 4. Bond: Model of the system

Unlike JAMES project, BOND was architecturally
highly demanding, while behavior was left to the
implementers.

 It was not that these two kinds of projects enabled
the analysis of UML utilization only, but also of the
potential use of the whole chain of formal methods,
such as UML to SDL converter followed by SDL
design.

4.2. Results
 Having designed those two systems, we have arrived
to the following conclusions: UML is superior in
early phases of development. Requirement analysis is
heavily supported, but the two types of diagrams
differ. Use-case and sequence diagrams provide
everything needed for capturing all systems’ features,
yet simplicity must be preserved for the customer to
understand the designed behavior. Misunderstanding
between the designers and customers is avoided with
the use of UML, but misunderstanding itself usually
causes the projects fail. Negotiating practice with the
customers (who are frequently prone to changing
their mind) has not been very successful and should,
therefore, be adjusted to UML. Another good side of
having use-cases is that they are valuable source for
creating test-case scenarios in testing and validating
partly or fully implemented systems.

UML diagrams give the means to express ideas, but
ideas come from experience. Less experienced
designers may not understand the background of a
particular design of a senior designer, but they can
understand it and are definitely able to improve
themselves on it. UML helps in acquiring object-
oriented way of thinking. Less experienced designers
very often say: “I can’t express it with UML”, but in
most cases this means there is something wrong with
an object-oriented design. Hence, using UML is very
helpful to all categories of designers.

Unlike with SDL the developers find UML easy to
use in that it has no strict formal structure or
terminology, although some basic rules must be
respected. In SDL usage, the prerequisite is higher
level of expertise. As expected, experienced users
were more efficient in describing and designing the
system. Previous knowledge of the object-oriented
system development was very helpful in using UML.

M. Kušek et al.: UML Based Object-oriented Development: Experience with Inexperienced Developers

 58

UML was helpful for understanding and developing
object-oriented thinking.

UML has tackled another important issue. Parallel
design of different parts of the system is almost
obligatory, except of the very simple ones.
Precondition for proper system division comprises
two things:

� definition of relatively independent subsystems,
having appropriate functionality, and

� ensuring full collaboration of these subsystems,
once they are designed.

UML addresses them by packages and interfaces.
There are no package diagrams, but a designer can
use class diagrams instead. By doing so, not only
implementation but also design is hidden behind the
interfaces, facilitating subsequent changes and
maintenance. It is even possible to develop particular
parts of the system using different tools (without any
UML), and than to make reverse engineering into
UML design (Figure 5). This particularly refers to
GUI design. Given that redesigning and adding new
functionality is often the case (not usual with a brand
new system), using legacy code can make substantial
savings.

Reverse
Engineering

name
fileName
selected

LBMethod

lbMethods

LBMethods

loadVector

LoadMatrix

startSimulation()
s topSimulation()
updateMatrixElements(matrix)
updateLBMethods()
updateTopology()

openNetworkStructureEditor()
openLoadMatrixEditor()
openLBMEditor()
openStatisticsWindow(stats)

GlobalManager

connectNode1
connectNode2
capacity

Link

nodes
links

addLink()
addNode()
removeNode()
removeLink()

Topology

updateStatistics()
getStatistics()

Database

name
physicalName

Node

1

1

1
1

1

1

1

11

*

1

1

1

*

nodes
links

addLink()
addNode()
removeNode()
removeLink()

Topology

analyseOverallNetworkPerformance()
setLBMethod()
moveToNextNode()

Agent

startModules()
stopModules()
startBalancer()
stopBalancer()
getLoadInfo()

LocalManager

1

1

1 1

Legacy
Code

Figure 5. Reverse engineering
(GUI and legacy code)

Obviously, UML handles architectural problems
well. Defining behavior is its weaker side. There is a
whole lot of diagrams (sequence, collaboration,
activity and state-chart diagrams), but the designers
can use them for their own needs only. They do not
contribute at all to automatic code generators.
Capturing behavior of the mentioned communication
application is worthless in automatic code generation,
but not in documenting the way it works. The
designers would definitely prefer the code to give
some reflection of the captured behavior.
Consequently, UML to SDL (Specification and
Description Language [4]) converter offered by some
vendors is a big step forward. SDL is suitable for the
in-depth system design and verification. Also, SDL is
also successful in expressing system dynamic
behavior. With the use of a translator, a lot of

information from UML is kept and transferred into
SDL. Consequently, visual design along with all the
possibility of system verification and validation
offered by the tools, remains available to designers.

System design with UML is very dependent on the
type of the system under development. The
experiments support the conclusions arrived at. UML
is much more appropriate for designing the systems
having complex static architecture (e.g. data and
GUI-related systems).

SDL, on the other hand, is more appropriate for the
systems with much internal communication. GUI
systems and all systems involving a lot of
communication with the outer world can be
developed with SDL, although it is more difficult
than with UML. The proposed solution is a
combination of UML and SDL. Figure 6 gives an
example of such a design process that utilizes this
approach (Figure 6).

The applied UML tool has code generators for
several most interesting programming languages.
Preconditions for code generation are completeness
and correctness of the model. Hence, prior to code
generation there is always an automatic check of the
system design.

Major disadvantage of UML design in code
generation is the loss of much information. Code
generators use only class diagrams. Complete
behavior has to be implemented manually. In some
cases, like in JAMES project, most of the work is
done through sequence and statechart diagrams. Class
diagrams are very simple, representing static relations
rather than dynamic behavior. In our case, code
generation is practically absent. However, it does not
mean that all other diagrams are worthless. They are
used in describing and documenting the system.

Otherwise generated code is very clean, readable,
well structured and documented. Notes added to
UML diagrams are included into generated code as
comments. Code is clearly classified into the sections
for attributes, constructors, and user defined methods.
Another practical feature is that the generated code
clearly reflects the system design (relationship
between classes, their associations, role names, etc.).

UML tools in the development and system analysis
help us to test the system manually. SDL tools,
though, have powerful capabilities for automatic
inspection of the newly created systems. UML tools
do not support processes of validation and
verification available by SDL tools. They merely
provide basic structural check. This is another good
reason for the use of UML and SDL approaches
(Figure 6).

M. Kušek et al.: UML Based Object-oriented Development: Experience with Inexperienced Developers

 59

5. Experiments with inexperienced
developers

5.1. Experimental
Many articles discuss great features of UML, but just
a few of them describe experimental results with
UML in real-life projects. It is hard to quantitatively
present the advantages of UML over common way of
software development. An experiment with a group
of students was carried out to demonstrate UML
usefulness. All students attended the courses (during
their university education) on C++, SDL basics, Java
basics and C.

The students were divided in two groups. The UML
group attended UML presentation and the non-UML
group did not. Both groups were divided in three
subgroups. Each subgroup was told to design a small
system. The systems were: Web service for exam
appliance, cache machine and automatic door
opening system. The non-UML group, having no
information about UML, had to design the system
using previous knowledge and sense. The key issue
was that nobody was experienced in the object-
oriented system design and development.

5.2. Results
It is hard to quantitatively measure the design and to
compare the progress of two different groups. One of
the measurement parameters was the amount of
created diagrams and materials. The non-UML group
made a few rough descriptions of the system
operation and some flow diagrams (Figure 7). Most
of the time they were trying to understand the internal
structure and architecture of the system. The UML
group was better. It created mostly use case,
sequence (Figure 8) and activity diagrams, and even
class diagrams that show classes, methods and

attributes. Judging from the amount (quantity) of the
developed documents, UML was apparently
extremely supported in designing (especially in
meeting the requirements and understanding the
overall system architecture).

Figure 7. Flow diagram created by Non-UML group

Implementation as a final goal of every development
process requires that many details be defined. The
level of detail was a parameter in comparing two
groups and their work. The designs of the non-UML
group were on a very high level of abstraction and
with few details. The programmer, responsible for
implementation, could not build a system with such
input documents.

On the other hand, the UML group used class
diagrams containing many details and it prepared a
very good base for implementation. Other created
documents are also useful for system visualization
and understanding of its function.

Figure 6. Software design process supported by UML/SDL combination

M. Kušek et al.: UML Based Object-oriented Development: Experience with Inexperienced Developers

 60

Figure 8. Sequence diagram created by UML group

The non-UML documents clearly show that the group
was slightly confused and disoriented. Unlike them,
the UML students were lead by UML diagrams and
stayed more concentrated and effective. The logical
flow of diagram usage helped maintain the right
direction of design efforts.

The non-UML group failed to determine the system
classes, their methods and attributes. The UML group
succeeded by using powerful tools, such as sequence
and class diagrams (Figure 9). In that way, they were
driven to finding appropriate solution for system
classes and associations among them.

At the early stages of development, it is very
important to examine various scenarios and possible
irregularities in the system. The analysis employing
case and sequence diagrams can help find, develop
and explain the system states, where more then one
option is possible. Unfortunately, UML group payed
no attention to that. It was probably due to
participating in the UML project for the first time, or
time restriction.

Figure 9. Class diagram created with UML tool

The non-UML group used flow diagrams that helped
system visualization. It is known to be a very useful
method for facilitating development process. Like
flow diagrams, UML diagrams help visualize the
system. Flow diagrams visualize only behavior of the
system, whereas UML diagrams visualize all its
aspects.

Results of the experiment can be summarized in one
figure (Figure 10). The achievements of both groups

are shown with respect to several viewpoints of
development process. The results per areas are scored
1-10. Predicted results for full UML usage (UML by
definition) are added to the graph to emphases UML
superiority.

0

2

4

6

8

10
Requirements capture

Amount of materials

Level of provided details

Procedure and processSystem dividing

Visualization

Testing

UML by definition
UML group
Non-UML group

Figure 10. Summary of experimental results

6. Conclusions
UML offers many advantages. New projects have
better survival prospects with UML. The experiment
has shown that UML has a very strong impact on
newcomers and that it can markedly increase their
work and design capabilities.

Utilization of UML tools can additionally improve
software design process. With these tools,
documentation process can be included into
development process, because the documentation is
created during design time.

Practical application of UML proved to be
successful. Requirement analysis and architectural
design benefit from UML. Additionally, UML to
SDL translation will also strengthen the process of
the systems’ dynamic structure design.

References
[1] G. Booch, J.Rumbaugh, I. Jacobson, The Unified

Modeling Language Use Guide, Addison-Wesley,
1999.

[2] M. Fowler, Kendall Scott, UML Distilled, 2nd edition
Addison-Wesley, 2000.

[3] P. Kruchten, The Rational Unified Process, 2nd edition
Addison-Wesley, 2000.

[4] J. Ellsberger, D. Hogrefe, A. Sarma, SDL Formal
Object-oriented Language for Communicating
Systems, Prentice Hall 2000.

[5] O. Laitenberger, C. Atkinson, M. Sclich, K. El Amam,
An Experimental Comparison of Reading Techniques
for Defect Detection in UML Design Documentation,
Fraunhofer, Kaiserslautern, 1999.

	Introduction
	UML
	Development process
	UML in practice
	Experimental
	Results

	Experiments with inexperienced developers
	Experimental
	Results

	Conclusions

