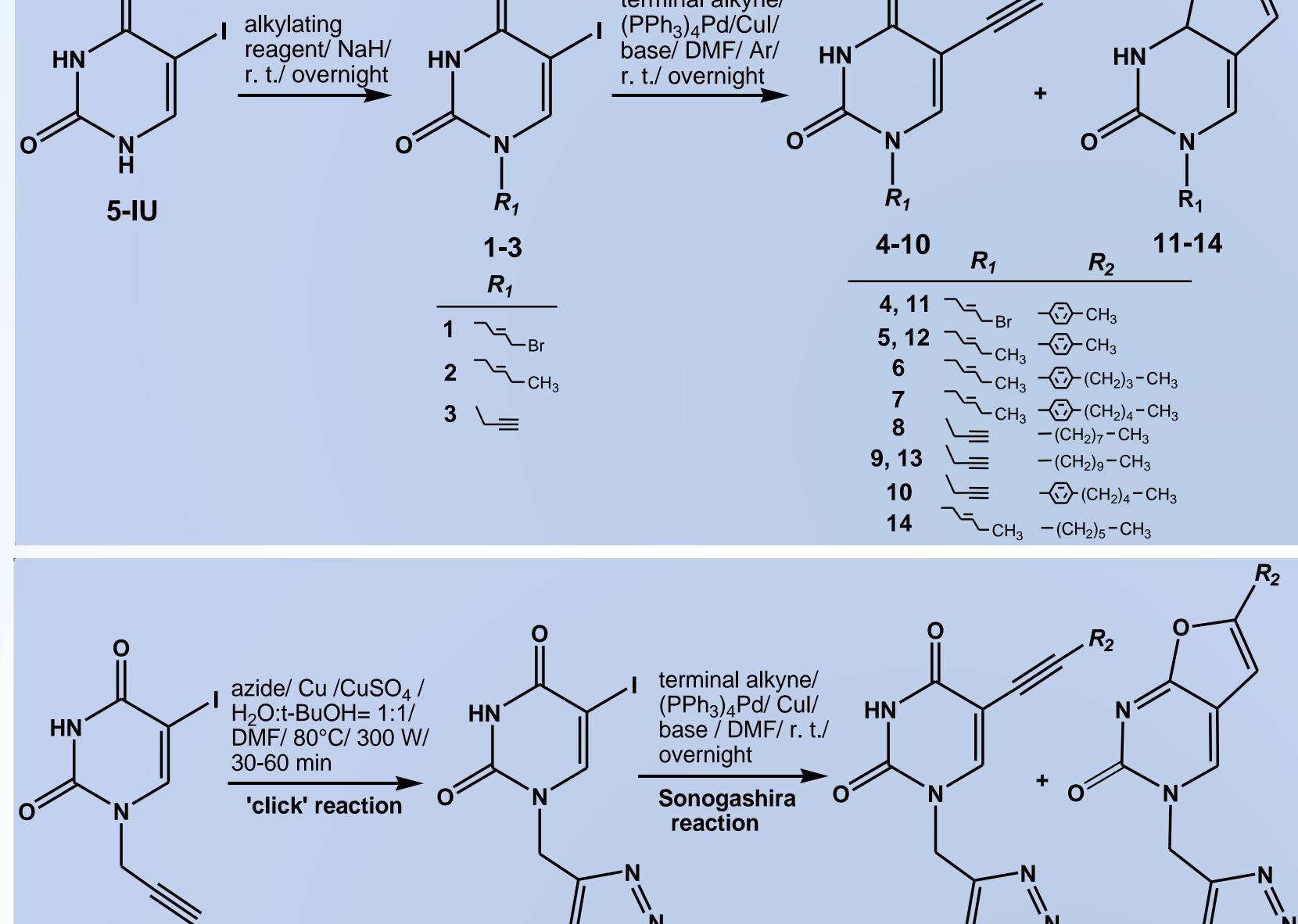
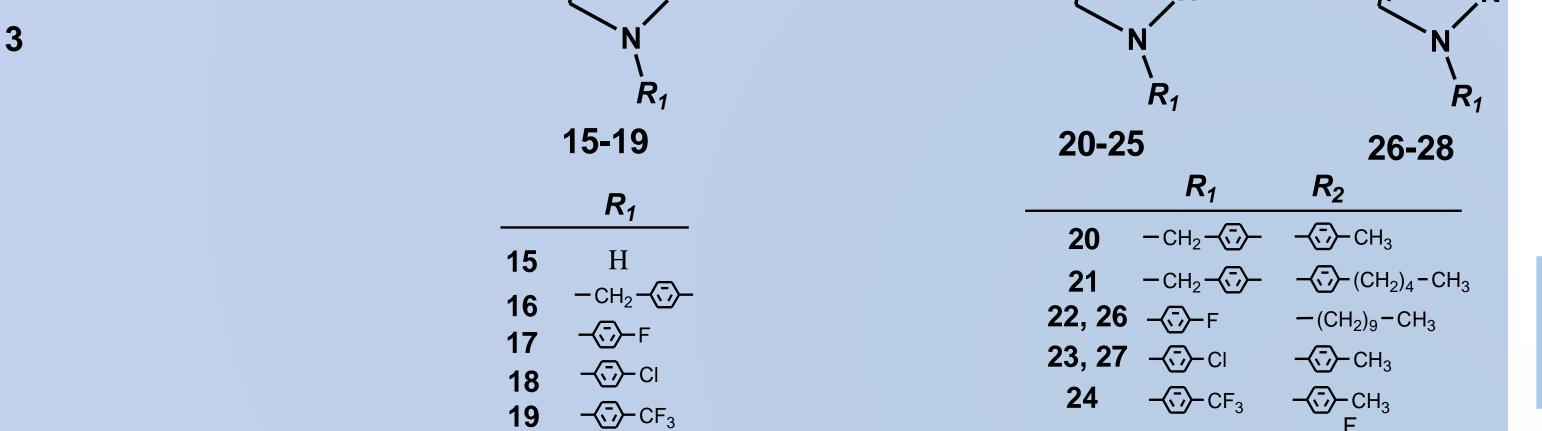

PYRIMIDINE AND FURO[2,3-d]PYRIMIDINE DERIVATIVES: SYNTHESIS, CYTOSTATIC AND ANTIBACTERIAL EVALUATIONS

Maja Stipković Babić,¹ Ana Ratković,¹ Mateja Lužar,¹ Marijana Jukić,² Ljubica Glavaš-Obrovac,² Domagoj Drenjančević,^{3,4} Silvana Raić-Malić¹, <u>Tatjana Gazivoda Kraljević</u>¹


¹ Department of Organic Chemistry, Faculty of Chemical Engeneering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia ² Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Huttlerova 4, HR-31000 Osijek, Croatia ³ Department of Microbiology and Parasitology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Huttlerova 4, HR-31000 Osijek, Croatia ⁴ Department of Transfusion Medicine, University Hospital Centre Osijek, Huttlerova 4, HR-31000 Osijek, Croatia

INTRODUCTION Furo[2,3-*d*]pyrimidines are purinomimetics which were subjected to biological investigations to assess their potential therapeutic usefulness. Furopyrimidines attract considerable attention due to their great practical significance through exerting pharmacological potential as antiviral, antimicrobial, and antitumor agents, and is one of the most recently explored scaffolds to have potential anticancer activity through inhibition of various protein kinases.[1] Furthermore, it was found that some 1,2,3-triazole tethered pyrimidines and furopyrimidines showed pronounced antiviral and cytostatic activity.[2] In continuation of our efforts towards the fused pyrimidines [3,4] we prepared C-5 alkynylated pyrimidines and C-6-alkylated furo[2,3-*d*]pyrimidines substituted at *N*-1 or *N*-3 with butenyl, propargyl and 1,2,3-triazolyl substituents.


Cytostatic evaluations of N-1-butenyl, propargy or 1,2,3-triazolyl and/or C-5

substituted uracil and C-6 alkylated furo[2,3-*d*]pyrimidine derivatives were performed on the growth of human cervix adenocarcinoma (HeLa), colon adenocarcinoma (CaCo-2), chronic myeloid leukemia in blast crisis (K562), Burkitt lymphoma (Raji), and on the normal Madin Darby canine kidney (MDCK I) cells as well.

compd.	^a IC ₅₀ (μmol dm ⁻³)								
	HeLa	CaCo-2	MDCK1	K562	Raji				
1	> 100	> 100	> 100	> 100	> 100				
2	> 100	> 100	> 100	> 100	77				
8	> 100	> 100	> 100	100	72				
9	> 100	> 100	> 100	> 100	95				
10	> 100	> 100	> 100	> 100	81				
11	> 100	> 100	100	100	100				
12	> 100	> 100	> 100	> 100	71				
15	> 100	> 100	-	42	100				
16	> 100	> 100	-	100	> 100				
20	37	-	-	-	39				
21	100	> 100	> 100	13	15				
23	> 100	> 100	-	> 100	>100				
24	> 100	> 100	99	46	85				
25	> 100	> 100	> 100	8.4	61				
26	> 100	> 100	-	65	87				
27	> 100	> 100	_	100	>100				
28	> 100	> 100	> 100	64	7.9				

 ${}^{a}IC_{50}$ –Concentration that inhibited cell growth by 50%. Exponentially growing cells were treated with substances during 72-hrs period. Cytotoxicity was analysed using MTT survival assay.

CONCLUSION

C-5 alkynylated pyrimidines (4-10) substituted at N-1 with butenyl or

25, 28 -√→−CF₃

-(...)

propargyl were synthesised by Sonogashira cross-coupling reaction of *N*-1 substituted pyrimidines (1-3) with corresponding alkynes under both conventional and microwave conditions, in good to excellent yields. The 5-*endo-dig* cyclisation of C-5-alkynylpyrimidine derivatives (4-10) afforded the corresponding furo[2,3-*d*]pyrimidines (11-14) in good yields. Cu(l)-catalyzed 'click' reaction under microwave irradiation was adopted in the synthesis of regioselective 1,4- disubstituted 1,2,3-triazole pyrimidine derivatives (15-19) while post-Sonogashira reaction with terminal alkynes afforded both C-5 alkynylated (20-25) and furo[2,3-*d*]pyrimidine (26-28) derivatives. Of all evaluated compounds pyrimidine (25) and furo[2,3-d]pyrimidine (28) derivatives with 3,5-difluorophenyl at C-5 and *p*-trifluoromethylphenyl at 1,2,3-triazole showed the strongest effect at micromolar concentrations on the growth of K562 and Raji tumor cells, respectively.

ANTIBACTERIAL EVALUATION

Inhibitory effects of uracil and furo[2,3-*d*]pyrimidine derivatives were investigated on the growth of gram positive and gram negative bacterial strains.

	MIC (µg/ ml)										
compd.	Gram positive bacterial strains				Gram negative bacterial strains						
	Staphylococcus aureus ATCC 25923	Enterococcus faecalis	Staphylococcus aureus	VRE ^a	Pseudomonas aeurigonsa ATCC 27853	Escherichia coli ATCC 25925	Acinetobacter baumannii ATCC 19606	Klebsiella pneumoniae ESBL strain ^b			
2	>256	>256	>256	>256	>256	>256	>256	>256			
8	256	128	256	256	256	>256	128	>256			
9	256	128	256	128	256	>256	128	>256			
12	>256	256	>256	>256	>256	>256	>256	>256			
20	>256	8	>256	>256	>256	>256	>256	>256			
21	>256	>256	>256	>256	>256	>256	>256	>256			
23	>256	128	>256	256	>256	>256	256	>256			
24	>256	128	>256	>256	>256	>256	256	>256			
25	>256	>256	>256	>256	>256	>256	>256	>256			
26	>256	256	>256	256	>256	>256	256	>256			
27	>256	256	256	>256	>256	>256	256	>256			
28	>256	128	>256	>256	256	>256	256	>256			
CAZ ^c	1	1	1	1	1	-	-	-			
CIP ^d	0.125	0.125	0.125	0.125	0.125	-	-	-			

*Minimal inhibitory concentration; ^aVRE – vancomycin-resistant *Enterococcus faecium;* ^bESBL – extended spectrum beta-lactamase = resistant strains; ^cCAZ – ceftazidime; ^dCIP – ciprofloxacin.

Science Foundation (Project 5596).

