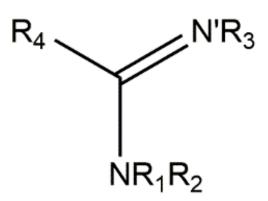
SYNTHESIS AND STRUCTURAL ANALYSIS OF NOVEL ISOMERIC AMIDINO-SUBSTITUTED 2-AMINOPHENOLS

Lucija Ptiček, Mario Cetina, Marija Mudrešić, Livio Racané

Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia


Contents

- Amidines
- Background (benzothiazoles)
- Synthetic approach (benzoxazoles)
- Synthesis of isomeric 2aminophenols

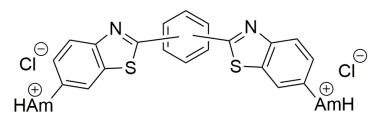
- Pinner reaction
- Amidine synthesis
- X ray crystal analysis
- Further research and goals

Amidines (Am)

- Nitrogen analogues of carboxylic acids
- Strong organic bases
- Protonated at physiological pH value (7.4)
- Acyclic and cyclic
- Unsubstituted, N- or N'-substituted, N,N'-disubstituted, N,N-disubstituted, N,N,N'-trisubstituted, N,N,N'-tetrasubstituted cation

Background

- Interesting due to their potential for diverse pharmaceutical uses
- Substituted benzothiazoles are associated with antimicrobial, antifungal and antitumor activity
- Amidines are often a part of important medical and biochemical agents


$$Ar = \begin{pmatrix} O \\ X \end{pmatrix}_{n=1-2} + \begin{pmatrix} O \\ H_2N \end{pmatrix} \begin{pmatrix} AmH \\ H_2N \end{pmatrix} \begin{pmatrix} AmH \\ M \end{pmatrix}_{n=1-2} + \begin{pmatrix} AmH \\ N \end{pmatrix}_{n=1-2} \begin{pmatrix} AmH \\ N$$

Racané, L. et al., *Eur. J. Med. Chem.* **55**, (2012), 108-116 Racané, L. et al., *Eur. J. Med. Chem.* **86**, (2014), 406-419

Background

 Antiproliferative effect of compounds 3a – 3f on growth of tumor cells in vitro.

	IC ₅₀ ^a (μM)					
Substance	Cell lines					
	MCF-7	SK-BR-3	SW620	MiaPaCa-2	WI38	HeLa
3a	5.34	83.2	6.01	>100	0.99	>100
3b	>100	0.04	0.47	0,26	0.15	2.06
3c	9.01	8.55	>100	20,4	41.93	9.6
3d	3.07	1.18	7.65	3.54	>100	7.75
3e	30.9	86.6	>100	44.8	86,4	63.6
3f	10.14	1.86	24.7	146	8.99	26.8

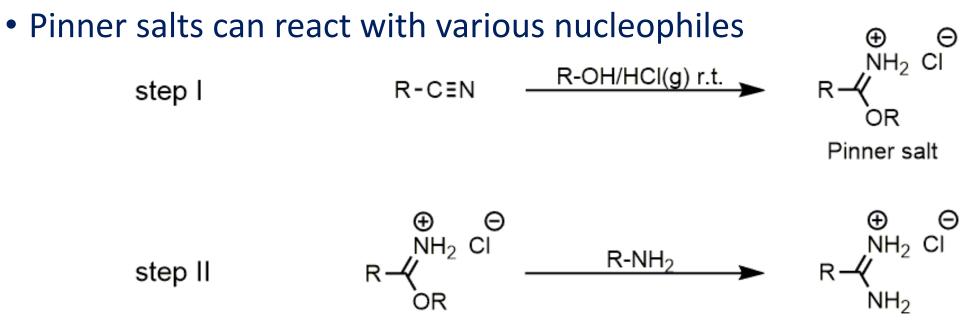
$$3d = - Am = - N$$

$$3e = \bigwedge_{NH}^{NH_2}$$

Racané, L. et al., Eur. J. Med. Chem. 63, (2013), 882-891

Synthetic approach – amidino-substituted benzoxazoles

- Efficient general method for benzoxazole preparation?
- Condensation reaction of amidino-substituted 2-aminophenols with aldehydes, carboxylic acids and carboxylic acid derivatives


$$Ar + \begin{pmatrix} O \\ X \end{pmatrix}_{n=1-2} + \begin{pmatrix} O \\ H_2N \end{pmatrix} \begin{pmatrix} AmH \\ H_2N \end{pmatrix} \begin{pmatrix} AmH \\ M \end{pmatrix} \begin{pmatrix} AmH \\ N \end{pmatrix}$$

Synthesis of isomeric cyano-substituted 2-aminophenols

OH
$$hNO_3/HOAc$$
 $OH \\ CN$ $SnCl_2 \times 2H_2O$ H_2O/HCI CN NH_2 CN NH_2 NH_2

Pinner reaction

- Partial solvolysis of a nitrile to yield an imidate (imino ether) by acid catalyzed addition of alcohol to nitrile
- Treatment of nitrile with gaseous hydrochloride acid in a mixture of anhydrous alcohol produces the hydrochloride salt of an imidate

Pinner reaction: step I

NC
$$\longrightarrow$$
 NH₂ \longrightarrow R-OH/HCl(g) r.t. \longrightarrow CI \longrightarrow NH₂ \longrightarrow OH \longrightarrow NH₂ \longrightarrow NC \longrightarrow NH₂ \longrightarrow R-OH/HCl(g) r.t. \longrightarrow OH \longrightarrow NH₂ \longrightarrow NH₂ \longrightarrow NH₃ CI \longrightarrow NH₂ \longrightarrow R-OH/HCl(g) r.t. \longrightarrow NH₂ \longrightarrow NH₃ CI \longrightarrow R-OH/HCl(g) r.t. \longrightarrow Ab¹ - 4b³ \longrightarrow R²=- CH₂CH₂OCH₂CH₂OCH₂CH₃ \longrightarrow R³=- CH₂CH₂OCH₂CH₂OCH₂CH₃

Pinner reaction: step II from 2-amino-4-cyanophenol

R-NH₂ +
$$\Theta_{\text{Cl} H_3N}^{\text{HO}} \bigoplus_{\text{NH}_2}^{\text{HO}} \bigoplus_{\text{reflux 2 - 4 h}}^{\text{EtOH abs.}} \bigoplus_{\text{H}_2N}^{\Theta_{\text{O}}} \bigoplus_{\text{HAm}}^{\text{HAm}} \bigoplus_{\text{HAm}}^{\text{EtOH abs.}} \bigoplus_{\text{H}_2N}^{\text{O}} \bigoplus_{\text{HAm}}^{\text{HAm}} \bigoplus_{\text{HAm}}^{\text{O}} \bigoplus_{\text{HAm}}$$

5b; R=
$$\overset{\text{CH}_3}{\longleftarrow}$$
 CH₃

25th Croatian meeting of chemists and chemical engineers, Poreč, 2017.

Pinner reaction: step II from 2-amino-4-cyanophenol

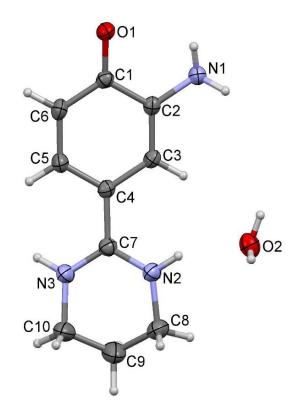
25th Croatian meeting of chemists and chemical engineers, Poreč, 2017.

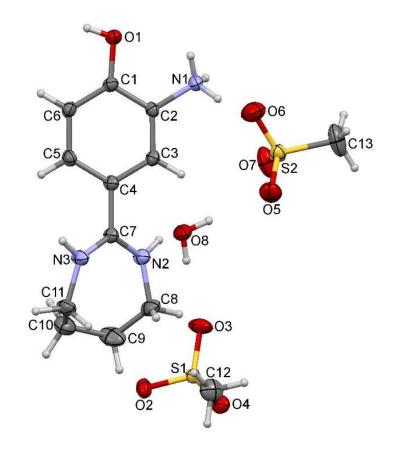
Pinner reaction: step II from 2-amino-5-cyanophenol

R-NH₂ +
$$\Theta_{CI \ H_3N} \bigoplus_{\oplus} \bigoplus_{O} \bigoplus_{O} \bigoplus_{\text{reflux 2 - 4 h}} \bigoplus_{H_2N} \bigoplus_{H_2N} \bigoplus_{\text{7a-d}} \bigoplus_{\text{7a-d}} \bigoplus_{O} \bigoplus_{O} \bigoplus_{H_2N} \bigoplus_{O} \bigoplus_{O} \bigoplus_{H_2N} \bigoplus_{O} \bigoplus_{O}$$

5b; R=
$$-$$
CH₃CH₃

7a; Am=
$$\stackrel{\text{NH}_2}{\longrightarrow}$$


7d; Am=
$$\stackrel{HN}{\longrightarrow}$$


X – ray structural analysis

• 7d: zwitterionic form

• 6g: mesylate salt form

Selected	Compound			
bonds	7d	6g		
C7 – N2	1.322 (3)	1.313 (2)		
C7 – N3	1.322 (3)	1.316 (2)		
C1 – O1	1.303 (3)	1.347 (2)		

Current research and goals

 Preparation of isomeric amidino-substituted benzoxazole derivatives by condensation reaction in PPA and investigation of their biological activity

⊕

$$Ar = \begin{pmatrix} O \\ OH \end{pmatrix}_{n=1-2} + \begin{pmatrix} O \\ H_2N \end{pmatrix} \begin{pmatrix} O \\ AmH \end{pmatrix}$$

$$PPA \longrightarrow Ar = \begin{pmatrix} O \\ N \end{pmatrix} \begin{pmatrix} O \\ N \end{pmatrix}$$

Am=
$$\stackrel{\mathsf{NH}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{NH}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}}{\overset{\mathsf{N}}}}}}}}} , \overset{\mathsf{N}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}}}, \overset{\mathsf{N}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}}$$

Thank you for your attention!

This work was funded by the Croatian Science Foundation (project HRZZ-5596).