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Summary 

The paper presents some aspects of the sensitivity analysis in structural problems 
involving correlations between the design variables. Time invariant structural problems based 
on multivariate distribution models consistent with prescribed marginal distributions and 
correlations are considered. The Monte Carlo simulation methods and the conventional 
analytical methods are provided for the first order and the second order reliability procedures. 
The examples given in the paper confirm the relevance of the applied procedures. 
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OSJETLJIVOST NA KORELACIJE U STRUKTURNIM PROBLEMIMA 

Sažetak 

U članku se prikazuju neki aspekti analize osjetljivosti kod strukturnih problema koji 
uključuju korelacije medu projektnim varijablama. Razmatraju se vremenski invarijantni 
strukturni problemi opisani multivarijatnim modelima razdiobe sa zadanim marginalnim 
razdiobama i korelacijama. Primijenjeni su Monte Carlo simulacijski postupci te analitički 
postupci prvog i drugog reda za analize pouzdanosti i osjetljivosti. Primjerima se u članku 
potvrđuje upotrebljivost primijenjenih postupaka. 

Ključne riječi: pouzdanost, vjerojatnost oštećenja, postupci pouzdanosti prvog reda, 
postupci pouzdanosti drugog reda, Monte Carlo simulacija, parametarska 
senzitivnost, korelacije, analiza senzitivnosti 
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1. Introduction 

It is well established that sensitivity analysis is a standard part of any sound engineering 
procedure since it provides information on the stability (or robustness) of solution and also on 
the level of sophistication required in the selection and determination of the problem 
parameters and of the assumptions involved. 

In structural reliability analysis efficient methods are available for computing 
sensitivities of different measures of reliability to changes in distribution and limit state 
function parameters. 

In this paper, the sensitivity to correlation between the random variables in the structural 
model is investigated. The results of the sensitivity analysis of reliability measures, with 
respect to the correlation matrix are given as the sensitivity matrices and their appropriate 
norms. The calculation of the elements of these matrices imply evaluation of derivatives of 
reliability measures with respect to possibly numerous correlation coefficients. 
Application of the finite difference method (FDM) to the sensitivity analysis is useful but 
inefficient. The presented numerical procedures for sensitivity computation in structural 
reliability problems with respect to correlations can be implemented within the Monte Carlo 
simulation (MCS) methods, the first order reliability methods (FORM) and the second order 
reliability methods (SORM). The sensitivity analysis could be added to the standard reliability 
analysis, without repeated evaluations of the structural model. 

The reliability of time invariant structural problem is defined by multivariate 
distribution model using n random variables denoted as { }n

T xxx ,........,, 21=X . The space of 
the basic design variables is denoted as the X-space. Each of the variables is defined by its 
marginal cumulative distribution function (CDF) denoted as Fx, by its marginal probability 
density function (PDF) denoted as fx. The (n x n) correlation matrix [ km ]ρ=R  is considered in 
general as a function of correlation coefficients nmkkm ,...2,1,, =ρ . 

Multivariate distribution approach based on the Nataf model is applied. The tree 
principal steps when applying the Nataf’s model to structural problems are as follows: 

(1) The correlation matrix R is transformed to matrix R’ whose elements are denoted as 
. The relation of  and  is uniquely expressed as 

, [1]. 
nmkkm ,...2,1,, =ρ ' '

'
kmρ kmρ

kmkmkm F ρρ =

(2) Standard normal variables { }n
T yyy ,...,, 21=Y  are obtained by the marginal 

transformation of X: ( ) ( )ii yxF Φ= , for ni ,...,2,1= . The space of the Y-variables is 
denoted as the Y-space. The joint PDF ( )Xf  of the random vector X is expressed on 
the basis of the marginal PDF’s ( )ix xf

i
 as follows: 

( ) ( )
( ) ( )ix

n

i
n

n xff
i1

',
=
Π=

Y
RYX

φ
φ  (1) 

( )'RY,nφ  in eqn. (1) is the n-dimensional joint normal PDF of zero means, unit 
standard deviations and correlation matrix R’: 

( )
( )

⎟
⎠
⎞

⎜
⎝
⎛−= cnn Q

2
1exp

2
1, 212/ R'

RY '

π
φ  (2) 
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where Qc in eqn. (2) is a quadratic form as shown: 

YR'Y 1−= T
cQ  (3) 

The joint standard normal PDF for independent random variables in the denominator of 
eqn. (1) is defined as 

( ) ( ) ( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛−=Π=≡

= ynii

n

inn Qy
2
1exp

2
1, 21 π

φφφ IYY  (4) 

where Qy in eqn. (4) is a quadratic form as follows: 

YYT
yQ =  (5) 

(3) Vector of variables Y can be related to independent standard normal variables 
 by transformation Y=A U. The space of the U-variables is 

denoted as the U-space. The matrix A can be obtained by applying the two widely 
used methods: the one based on Cholesky’s decomposition and another is based on 
spectral decomposition of the correlation matrix R=A A

{ n
T uuuU ,,........., 21= }

T. 
Regarding the system reliability, each failure mode is considered as an elementary 

event, also denoted as a "component". The failure modes are defined by the failure function 
, where n( ) fi nig ,...2,1,0 ==X f is the number of failure modes. Failure states are defined by 

, while the safe states are defined by ( ) 0≤Xig ( ) 0>Xgi . Elementary set algebra is used to 
define structural system as an interaction of components in terms of intersections and unions 
of elementary failure events. The structural reliability can be formulated as the assessment of 
the system failure probability, either in the X, Y or in U-space, in the form of the following 
integrals: 

( ) ( ) ( ) i

n

iDu nDy nDxf dxddddfP
1

.........
;,

=
Π==== ∫ ∫∫ ∫∫ ∫ XUUYR'YXX φφ ; etc. (6) 

The integration domain Dx in eqn. (6) is in general defined by the failure functions as: 
. The integration domain D( ) fi nig ,...2,1,0 =≤X y is obtained as a result of the marginal 

transformation of the design variables, see step (2). The definition of the domain Du in the 
standard normal U-space requires additional transformation, see step (3). The structural 
reliability is defined using the eqn. (6) as shown: 

fPS −=1  (7) 

The generalized safety index Gβ is expressed as follows: 

( ) ( )fG PS 11 −− Φ−Φ=β  (8) 

The sensitivities of the reliability measures (RM) such as Gf SP β,, , etc. with respect to 
elements of R are developed in the sequel. 
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2. The sensitivity of reliability measures in the Nataf’s model 

The analytical step in sensitivity evaluation, when using the Nataf’s model,  
is presented first. 

2.1. The derivatives of the Nataf’s transformation in steps (1) and (2) 

Considering the steps (1) from the previous section, the derivatives of the Nataf’s 
correlation matrix can be expressed as shown: 

nmkFFe
km

km
kmkm

km

km
km ,...,2,1,,

'

=
∂
∂

+=
∂
∂

=
ρ

ρ
ρ
ρ ; (9) 

The expressions for kmkmkme ρρ ∂∂= '  for commonly used two-parametric statistical 
distributions are presented in Appendix A. 

Considering step (2) in the Nataf model, the derivatives of the marginal transformation 
 can be represented in a diagonal matrix J. The elements of J are easily 

obtained in the form of: 
( )[ ikmi yFx Φ= −1 ]

( )
( )

; 1,2,...,
i i

ii

i x x

yx
i

y f

é ůé ů f¶ ę ú= = =ę ú¶ ę úë ű ë ű
J n . (10) 

2.2. The derivatives of the multinormal distribution in step (2) 

The derivatives of the multinormal PDF from eqn. (2) is obtained in a form of a product 
of the multinormal PDF and a function ( ).kmd : 

( ) ( ) ( ',',',
' RYRYRY

nkm
km

n d φ
ρ

)φ
=

∂
∂  (11) 

where  is defined as follows: ( ).kmd

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−== −

''
1 '

'
2
1',

km

c

km
kmkm

Qdd
ρρ

R
RRY  (12) 

It can be easily proved that the first term in the eqn. (11) reduces to the element 
'

kmρ  of 
the Nataf’s correlation matrix inverse 1'−R . The derivation of the second term of eqn. (11) 

 leads also to a simple expression, see eqn. (3) as: '/ kmvQ ρ∂∂

YRrRYYRY 1 1
'

1

' ''' −−
−

−=
∂
∂

=
∂
∂

KM
T

km

T

km

cQ
ρρ

 (13) 

where ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

= '
'

km

Rr
ρKM  in eqn. (13) is the derivative pointer matrix.  The nonzero terms 

are at locations (k,m) or (m,k), due to . Introducing in eqn. (13) an auxiliary vector ''
mkkm ρρ =

Y  defined as: 

{ } niyi ,...,1;' 1 === − YRY  (14) 

4 TRANSACTIONS OF FAMENA XXV-2 (2001) 



Sensitivity to Correlations in Structural Problems  Vedran Žanić, Kalman Žiha 
 

the derivatives of Qc in eqn. (13), using eqn. (14), can be expressed as: 

mkKM
T

km

c yyQ 2' −==
∂
∂ YrY
ρ

 (15) 

and finally, taking into account mkkm ρρ = : 

mkkmkm yyd +−=
'

ρ      or     [ ] T
kmd YYRD +−== −1'  (16) 

The vector Y  in eqn. (16) can be calculated even without inversion of matrix 'R , as a 
solution of the system of equations YYR ='  or UYA =T . The quadratic form in eqn. (3) can 
be rewritten using eqn. (14) as product YYT

cQ = . 

2.3. The derivatives of the transformation Y=AU in step (3) 

The derivatives of the random variables in the U-space with respect to ρkm for a given Y 
(and corresponding U) can be in general expressed as shown: 

*U*U*Y*U

UAAAUAYAU

kmkmkmkm ρρρρ ∂
∂

−=
∂
∂

=
∂
∂

=
∂
∂ −

−−
1

11

  (17) 

Two methods used for calculation of derivatives are presented next. 

(1) The transformation Y=LU, with L=A obtained from the Cholesky’s decomposition 
of , transforms the quadratic from QTLLR'= c, see eqn. (3), to the form . 
L is a lower-triangular (n x n) matrix, with elements 

UUT
uQ =

ijλ , whose inverse is denoted 
M with elemen ijts µ , i=1,2,…,n, j=1,2,…,i, see Appendix B. 

)

L and M always exist since  is symmetric and positive definite. Analytically, the 
transformation T and its inverse T

R'
-1 based on Cholesky’s decomposition for j=1,2,…,n, are 

expressed as: 

( ) ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ=Φ= ∑

=

−−
j

i
ijixjxj uFyFx

jj
1

11:, λR'UT   (18) 

( ) ([ ]∑∑
=

−−

=

− Φ==
j

i
ixji

j

i
ijij xFyu

i
1

11

1

1 :, µµR'XT  (19) 

The differentiation applied on eqns. (18) and (19) locally in the point U* and 
corresponding Y* and X* gives: 

( )
( ) '

1

*
*

*

* km

ji
j

i
i

jx

j
km

km

j u
xf

y
e

x

j
ρ
λφ

ρ ∂

∂
=

∂

∂
∑
=U

 (20) 

( )[ ] '
*

1

1

* km

ji
ix

j

i
km

km

j xFe
u

j ρ
µ

ρ ∂

∂
Φ=

∂

∂
∑
=

−

X

 (21) 

The terms '
kmji ρλ ∂∂  and '

kmji ρµ ∂∂  are given in Appendix B. 

TRANSACTIONS OF FAMENA XXV-2 (2001) 5 



Vedran Žanić, Kalman Žiha  Sensitivity to Correlations in Structural Problems 
   

(2) The transformations of quadratic form Qc to principal axes, see eqn. (3), can be 
performed by spectral decomposition of matrix . In this case TVVR' Λ=

UVY 21Λ= , where V is the (n x n) square ortonormal matrix with elements jiν , 
containing the eigenvectors { } nj

iji ,...,2,1, == νv  . Note that each of the equations 

is a solution of an eigenproblem iii vvR' λ= . Eigenvalues λi are elements of a 
diagonal matrix Λ. 

Analytically the Nataf transformation and its inverse based on spectral decomposition 
for j=1,2,…,n is expressed as follows: 

( ) ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛Φ=Φ= ∑
=

−−
n

i
iijixjxj uFyFx

jj
1

2/111:, λνR'UT  (22) 

( ) ( )[ ]∑∑
=

−−

=

−− Φ==
n

i
ixjij

n

i
iijjj xFyu

i
1

12/1

1

2/11 :, νλνλR'XT  (23) 

The differentiation applied on eqn. (23) in the point U* and corresponding 
 gives: ( ) *

* *
U U== =Y YAU

( ) *
'

2/1
'

2/3*2/1
'

*
2
1 YVVYVU

U
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Λ+
∂
Λ∂

Λ−=Λ
∂
∂

=
∂
∂ −−−

km

T
T

km

T

kmkm ρρρρ
 (24) 

The terms of derivatives in eqns. (24), are obtained by the perturbation method. The 
results are given in the sequel. Spectral decomposition of correlation matrix  is as follows: R'

T
ii

n

i
i

T vvVVR' ∑
=

=Λ=
1

λ  (25) 

The derivatives of eigenvectors and eigenvalues are as shown: 

( ) ( )[ imk
km

i

km
KM νν

ρ
λ

ρ
2'' =⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

=
∂
Λ∂

Λ ] (26) 

where (νk) is the k-th element of I-th eigenvector. 

KM
km

i

km

VNvV
=⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

=
∂
∂

'' ρρ
 (27a) 

and [ ]ijKM n=N  is a skew-symmetric matrix with nij=0 and 

( ) ( ) ( ) ( ) ( ji
ij

jmikjkim
ij a

a
n λλ

λλ
)νννν

≠=
+−

+
=  if 0;  (27b) 

A more general method is presented in [2].eqn (24) can be written ass: 

**2/112/1

2
1

*

UWUNU

U
KMkmKMKMkm

km

ee =Λ⎥⎦
⎤

⎢⎣
⎡ ΛΛ+Λ−=

∂
∂ −−

ρ
 (28) 
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2.4. The sensitivity of the reliability measures to correlation 

(a) The derivative kmπ  of the failure probability to the correlation coefficient kmρ  can 
be obtained from eqn. (6) in the X-space as: 

( )[ ]
( )[ ]

( ) XRXY dxf
xy

e
P

ix

n

i
ii

m

I

D
km

n
km

km

f
km i

x 1

1

...

'

1',
=

=

Π
Π∂

∂
=

∂

∂
= ∫ ∫ ρ

φ
ρ

π  (29) 

and alternatively in Y-space as shown: 

[ ] ( ) ( ) YRYRYYRY ddede ND kmkmD
km

n
kmkm

yy

',',', ......

' φ
ρ

φπ ∫ ∫∫ ∫ =
∂

∂
=  (30) 

The derivative Bkm of βG to correlation coefficient ρkm can be obtained from eqns. (8) 
and (29) or (30), as shown: 

( Gkm
km

G
kmB βφπ

ρ
)β /−=

∂
∂

=   (31) 

The derivative of the structural system reliability defined in eqn. (7) can be obtained on 
the basis of eqns. (29,30) as follows: 

km
kmkm

PS π
ρρ

−=
∂
∂

−=
∂
∂  (32) 

(b) The results of the sensitivity analysis with respect to elements of the correlation 
matrix R can be naturally presented in the sensitivity matrices S. Sensitivity matrices 
are formed as a term wise product of the matrix of derivatives of the reliability 
measures ( )[ ]KMRM ρ∂∂ /  and a matrix of multiplicators [ ]kms=s , as: 

[ ] ( )
⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

== km
km

km sRMS
ρ

S  (33a) 

Using the derivatives of the failure probability and of the generalized safety index from 
eqn. (30,31), the corresponding sensitivity matrices read: 

[ ] ( )
⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
== km

km

f
kmkm

s s
P

s
ρ

ππ  (33b) 

[ ] ( )G
s

kmkm
s sB βφπ−==B  (33c) 

Some cases of multiplicators are of interest in the sensitivity analysis: 

1=kms  rate of change (derivative) of RM 

kmkms ρ∆=  increment of RM due to perturbation, i.e the most unfavorable 
deviation of kmρ  

RMs kmkm ρ∆=  logarithmic derivative of RM 

kmkms ρ=  first order approximation of change of RM between corr. and uncorr. 
case. 
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(Note that: (1) if the coefficients kmρ  are functions of parameters p, factors skm would 
include terms ( ) ( )ppkm ∂∂ρ , (2) if correlation (k,m) is impossible, the term 
( ) kmRM ρ∂∂ should be omitted by setting skm=0. 

Sensitivity matrices can also be used for sensitivity estimates via their different 
measures or norms  e.g.: ( )SiL

kmmk
SL

,
max=∞  - gives the most influential correlation coefficient; 

⎟
⎠

⎞
⎜
⎝

⎛= ∑
m

kmmkrow SL
,

max  - the row norm; identifies the most influential random variable; 

p
p

k m
kmp SL

1

⎟
⎠

⎞
⎜
⎝

⎛
= ∑ ∑  - gives the total variability due to correlation (p=1,2); 

( ) ∑ ∑ ∆=∆
k m

kmSRM ρ  - gives the total change in RM due to kmkms ρ∆= . 

For the comparisons normalized forms of the sensitivity matrices can be use: 

( )SS
S

iL
1'=  (34) 

In the sequel, the application of simulation and analytical methods to calculate 
sensitivity matrices in an efficient manner will be investigated in order to expand the standard 
reliability analysis by the sensitivity analysis with respect to numerous correlation 
coefficients. 

3. Analysis of sensitivity to correlation by simulation methods 

The simulation procedure is demonstrated on the crude MCS method. 

3.1. The failure probability estimates by simulation 

(a) By the following substitution: 

( ) ( )
( )Y

RYRY
n

nc
φ

φ
φ

',', =  (35) 

the eqn (1) can be rewritten as shown: 

( ) ( )[ ] ( )ix

n

i
xfcf

i1
,

=
Π= R'XYX φ  (36) 

In the zero-one indicator MCS, the state indicator function is defined as ( )[ ] 1=XgI  for 
X in the failure set, otherwise zero. The failure probability in the X-space see eqn. (6), cab be 
expressed by means form the state indicator function as follows: 

( )[ ]
( )

( )[ ] ( ) XR'XYX dxfcgIP ix

n

iXallf i1

...
,

=
Π= ∫ ∫ φ  (37a) 

and alternatively in Y-space as shown: 

( )[ ]
( )

[ ] ( ) YYR'YY dcgIP nXallf φφ ,
...

∫ ∫=  (37b) 
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The MCS could also take place in the U-space, but additional transformations would be 
needed as described in step (3) of the Nataf’s transformation presented in the previous section. 

(b) The mean of the estimator  of the failure probability of a correlated problem from 
eqn. (37a) can be expressed as the expectation with respect to  distributions 
as shown: 

'
fP

( )ix xf
i

( ) ( ) ( )'

1

1
,

N
i i

f f
i

E P c I g
N f

=

é ů é ů= ë ű ë űĺ Y X R' X P=  (38) 

(c) The variance of the estimator  is as follows: '
fP

[ ] ( ) ( )[ ] ( )
⎭
⎬
⎫

⎩
⎨
⎧ −Π= ∫ ∫ =

2...

1

22' .1
fi

n

if PdxfgIc
N

PVar XXφ  (39) 

The upper bound for the failure probability estimate of the original correlated problem 
and its variance, can be related to the estimates of the failure probability  and its variance 0

fP

[ ] ( ) NPPPVar fff /1 000 −=  of a hypothetically uncorrelated problem as: 

( )[ ] ( )[ ] 0
max

1
max

1
max

11
f

i
N

i

i
N

i
f PcgI

N
cgIc

N
P φφφ ==< ∑∑

==

XX  (40) 

[ ] [ ] [ ]02
maxmax

2
max

' 11
fffff PVarcPc

N
PPc

N
PVar φφφ <<−<  (41) 

The value of  in eqns. (40,41) can be obtained by applying a deterministic 
constraint optimization or by a trial simulation. The number of samples N

maxφc
p for the failure 

probability estimates  of a correlated problem can be related to the number of samples N'
fP 0 

of a hypothetically uncorrelated problem used to obtain the prescribed coefficient of variation 
( ) ( )[ ] 210

0
01 ff PNPCOV −= , on the basis of eqns. (40,41) as follows: 

21

max 111

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−<

fP
c

N
COV φ  (42) 

max0max0

0
0

max
2 11

1
11

φφφ cN
P

c
P
PN

P
cCOVN

ff

f

f
p ≈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−< −  (43) 

3.2. The estimates of the derivative values by simulation 

(a) The eqn. (29) can be rewritten using eqn. (36) as follows: 

( )
( ) ( )[ ] ( ) XX dxfgIce

P
ix

n

iXallkm
km

f
km i1

...
.

=
Π=

∂

∂
= ∫ ∫ φρ

π  (44) 

The mean of the derivative estimate of the failure probability to correlation coefficient 
from eqn. (44)  can be expressed as the expectation with respect to )ix  distributions 
as shown

'
kmπ  (xf

i

: 

( ) ( ) ( ) ( )[ ] km
i

km

N

i
kmkm gIdce

N
E ππ φ == ∑

=

X..1
1

'  (45) 
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Comparing eqn. (45) to eqn. (38), it is easy to recognize that calculation of matrix of 
derivatives [ km ]ππ =  in eqn. (45), requires only additional multiplication of the ( )',RYicφ  
defined in eqn. (35) by  from eqn. (16) for each Y( ',RYikmkmde ) i. Note that  is calculated 

the anyway in estimation of failure probability together with 

( ).φc

ii YR'Y 1−=  

(b) The variance of the estimator  of the eqn. (44) is as follows: '
kmπ

[ ] ( ) ( )[ ] ( )[ ] ( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧ −Π= ∫ ∫ =

... 2

1

222' ..1
Xall kmix

n

ikmkmkm dxfgIdce
N

Var
i

ππ φ XX  (46) 

The upper bounds of the derivative estimate and its variance from eqns. (45,46) can be 
related to failure probabilities Pf  and   , as well as to their variances as it is shown by: 0

fP

0
maxmaxmax fkmkmfkmkmkm PedcPed φπ <<   (47) 

[ ] { }
{ } [ ] [ ]0222

maxmax
2

2
max

2'

1

1

fkmkmkmfkmkmkm

kmkmkmkmkm

PVardcePddce
N

dce
N

Var

φφ

φ

π

πππ

<−<

<−<
 (48) 

The value of 
maxkmd , as well as the value of 

maxkmdcφ  , in eqns. (47, 48) can be 

obtained by applying a deterministic constraint optimization procedure or by a preliminary 
trial simulation. The coefficient of variation of the sensitivity factor  can be expressed on 
the basis of eqns. (47, 48), as follows: 

kmπ

21

max
111
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−<

km
kmkm dc

N
eCOV

πφ  (49) 

The number of samples Ns to get the prescribed coefficient of variation for the estimates 
of the sensitivity factor  is derived from eqn. (49) and can be presented as follows: kmπ

max

0

0

max0

0
0

max2 11
1

11

kmkm
km

f

km
kmkm

f

f

km
km

km
s

dce
P

N

dce
P
PN

dc
COV

eN

φ

φφ

π

ππ

≈

≈⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
−<

 (50) 

The eqn. (50) indicates that the prescribed coefficient of variation for the sensitivity 
factor is attainable with the number of samples Ns related to the number of samples N0 for a 
hypothetically uncorrelated problem. 

The presented procedures are applicable to the crude Monte Carlo integration 
procedures, as well as to sampling procedures and other variance reduction techniques, either 
in the original random variable space, or in standard normal space. 
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4. Analysis of sensitivity to correlations by analytical methods 

The conventional sensitivity analysis within FORM is provided first [3], giving a 
versatile insight into effects of correlation to reliability problem. Next, an efficient procedure 
for sensitivity calculation is presented. Finally, the sensitivity analysis using the ‘fitting’ 
method [4], especially within SORM, is investigated. 

4.1. The conventional analytical sensitivity analysis in FORM 

(a) Most current methods of FORM and SORM transform the original problem into standard 
normal space and fit the approximate failure surface in this transformed space. Using the 
quadratic form defined in the U-space , the FORM safety index βUUT

uQ = i  form the I-
th failure mode can be defined as shown: 

( )[ ]
( ) *

1

*21**21

, 0

min k

n

k
k

T
uTgi uQ ∑

=

===
≤

αβ UU
RU

  (51) 

The solution to the optimization problem in eqn. (51) is the most probable failure point 
(design point, β-point) U=U*, or ( ) *

*
UUYY ==  or ( ) *

*
UUXX == . 

The  is the component of the unit normal vector α to the failure surface g*
kα i directed 

towards the failure set (or the direction cosine) in the design point U* in the U-space defined 
as follows: 

( ) *

*

*

*

21
2

*

U

U

U ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

==

⎥
⎦

⎤
⎢
⎣

⎡
∂∂

∂∂
−==

∑
k

i

i

k

j
ji

ki
kk u

u

ug

ug β
β

αα   (52) 

The probability of failure Pf, as presented in eqn. (6) for the i-th failure mode, can be 
approximately expressed for closely linear failure surfaces by means of safety index from eqn. 
(51): 

( )ifP β−Φ=   (53) 

Conventional approach for sensitivities to correlation of FORM estimates for a single 
failure mode, e.g. [3], yields to the following approximate (see [4]) values for derivatives: 

'

*

1

*

*2 km

j
n

j
jkm

km

u

i

km

km

i u
eQe

ρ
α

ρβρ
β

∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂ ∑

==UU

  (54a) 

The error of replacing the derivative of β of true design point with the derivative of β  of 
original design point w.r.t ρkm is of order  as shown in [4] and the derivative should be 
used in this context. 

2
kmρ∆
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The eqn. (54a) can be rewritten in matrix form using eq. (17) and (51) as follows: 

*1*

*

UAAUUU
U km

T

i

km

km

T

i

km

km

i ee
ρβρβρ

β
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂ −   (54b) 

In addition, the derivative of the  gradient vector 
⎭⎬
⎫

⎩⎨
⎧

∂
∂=∇

k

i
u u

gg  in β-point reads: 

( ) ( ) *

*

*
X

U

gJAg
ix

km

T

km
km

iu e ∇
∂
∂

=
∂
∇∂

ρρ
  (54c) 

The derivatives of the failure probability w.r.t correlation coefficient is easily obtained 
using eqns. (54) as follows 

( )
km

i
i

km

fP
ρ
ββφ

ρ ∂
∂

−=
∂

∂
  (55) 

(b) Three approaches are used to calculate kmi ρβ ∂∂ : 

(1) Derivatives of the safety index βI to correlation coefficients kmρ , k,m=1,2,…,n, 
based on Cholesky’s decomposition (A=L) applied on FORM concept, see eqns. 
(54a) and (21), using Nataf’s model, can be presented  as follows: 

'
1

*

1

*

km

jl
j

l
j

n

j
jkm

km

i ye
ρ
µ

α
ρ
β

∂

∂
=

∂
∂ ∑∑

==

  (56) 

The derivatives of the failure surface gradient vector components can be obtained using 
eqn. (54c) as follows: 

*** ;
'

YXl

i

l

l
n

jl km

lj
km

j

i

km x
g

y
xe

u
g

∂
∂

∂
∂

∂

∂
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂ ∑

= ρ
λ

ρ
U

  (57) 

The terms ρµ ∂∂  and ρλ ∂∂  are given in Appendix B. The terms 
i

i

y
x
∂
∂  are defined in 

eqn. (10). 

(2) Derivatives of the safety index βi to correlation coefficients ρmn, m,n=1,2,…,n, 
based on spectral decomposition ( )2/1Λ= VA  applied to FORM concept, see eqn. 
(28), using Nataf’s model, can be presented as follows: 

***2/112/1*

2
1 WUUUNU T

i

km

km

T

i

km

km

i ee
βρβρ

β
−=Λ⎥

⎦

⎤
⎢
⎣

⎡
∂
Λ∂

Λ+Λ−=
∂
∂ −   (58) 

(3) An efficient procedure form calculation of all the derivatives at once, convenient 
also for larger problems, can be obtained using the alternative expression of FORM 
safety index βi  in eqn. (51), as follows: 

( 2/1*1*
i

T
ii YR'Y −=β )   (59) 
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Using earlier considerations in section 2.2 and eqn. (15), with *1*
YRY −= , the 

derivative can be obtained as follows for the i-th failure surface: 

( ) ( )ikim
i

km
iKM

T
i

i

km
i

km

T
i

i

km

km

i yyeee
ββρβρ

β
−=−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂ −

YrYYRY
2

'
2

*
1

*   (60) 

The elements of the sensitivity matrices  and  for the i-th failure mode, can 
therefore be presented simply as follows: 

s
iB s

iΠ

( imk
i

km

km

i
ikm yyeB

βρ
)β

−=
∂
∂

=   (61a) 

( ) ikmi
km

fi
ikm B

P
βφ

ρ
−=

∂

∂
=Π   (61b) 

Note that the procedure (3) is simpler and faster than the procedures (1) and (2) which 
require derivatives of transformation matrices, particularly for larger problems. Procedures (1) 
and (2) give better insight into the local changes in the vicinity of the design point. 

(c) Regarding the structural system analysis, the asymptotic values of the sensitivity factors 
to distributional parameters for fully dependent and fully independent series system, as 
well as for parallel systems, are considered, [3]. 

The sensitivity estimate of system reliability may be quite inaccurate. Improvements for 
series systems using bimodal joint probabilities of failure Pij, based on Ditlevsen’s upper 
bound Pu , can be obtained as shown: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
∂
∂

=
<==

∑∑
ij

ij

n

i km

n

i km

i

km

u
km PPP ff

max
21 ρρρ

π   (62) 

The joint failure probability Pij in eqn. (62) can be expressed by means of a single 
integral over the bivariate normal PDF ( )zji ;,2 ββφ  with zero mean values, unit variances and 
correlation coefficient z, with the upper integration bound equal to the mode correlation 
coefficient γij, as follows: 

( ) ( ) ( )2
0

, ;
ij

ij i j i jP
g

= F - b F - b + f b bň z dz   (63) 

The derivatives of the joint failure probability Pij to correlation coefficient ρkm can be 
expressed as shown: 

( ) ijkmijjijkmjiikmij
km

ij
ijkm HBCBC

P
γββφ

ρ
χ ;,2++=

∂

∂
=   (64a) 

where the derivative terms  and  are given in eqn. (61a). The  terms in 
eqn. (64a) for the derivatives of the mode correlation coefficients 

ikmB jkmB ijkmH

ijγ  w.r.t. correlation 
coefficients ρkm are obtained via derivatives of the cosine of the angle between the normalized 
gradient vectors αi and αj in the design points  and : *

iU *
jU

( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

∂

∂
=

j

km

i

km
ij

ji

jkim

ji

jmik
km

km

ij
ijkm

yyyyyyyy
eH

ji

22
** ββ

γ
ββββρ

γ

UU

 (64b) 

TRANSACTIONS OF FAMENA XXV-2 (2001) 13 



Vedran Žanić, Kalman Žiha  Sensitivity to Correlations in Structural Problems 
   

The terms Cij, Cji and a development of kmijijkmH ργ ∂∂=  are given in Appendix C. 
Alternatively, less accurate method using “conditional safety indices” [3] can be applied to 
avoid the numerical integration. Finally, the local derivatives of the failure probability to the 
correlation matrix R, based on Ditlevsen’s upper bound are: 

1 2

max
f fn n

km ikm ijkm ijj i
i i

P
<

= =

ć öçp = P - cčĺ ĺ ÷ř   (65) 

The derivatives defined by eqns. (61a,b, 64a,b, 65) within the FORM concept can be 
used in the following sensitivity matrices: 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

== km
km

i
kmikm

s ssB
ρ
βB  - sensitivities of safety indices 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
== km

km

ij
kmijkm

s ssH
ρ
γ

H  - sensitivities of bimodal correlation coefficient γij

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=Π=Π km
km

i
kmikm

s sPs
ρ

 - sensitivities of “i”-th mode failure probability 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
== km

km

ij
kmijkm

s s
P

s
ρ

χχ  - sensitivities of joint failure probabilities  

(for modes i and j) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

== km
km

u
kmkm

s sPs
ρ

ππ  - sensitivity of failure probability (upper bound) 

These sensitivity matrices, jointly used, enable identification of most significant 
parameters involving correlations on the structural reliability problems. 

4.2. The sensitivity analysis using the “fitting” method 

The method is based on the fitting of each of the failure surfaces to a set of points in the 
standard normal space, [4]. A change in a parameter changes the transformation into the 
standard normal space. The failure probability based on the new failure surfaces is used to 
estimate the sensitivity. The set of n+1 arbitrarily selected non-collinear points in the vicinity 
of the design point is used to define the linearized failure surface in the original space. The 
same set of points is also used to get the linearized failure surface in the new space, using the 
inverse transforms. The inverse transforms when the Cholesky’s decomposition is applied for 
all j=1,2,…,n, are easily derived from eqn. (13) for a prescribed finite difference ρ∆  as 
follows: 

( )[ ix

j

i
ijj xFu

i

1

1

*1 : −

=

∆+∆+−
∆+ Φ=∑ ρρρ
ρρ µT ]

]

  (66) 

For the spectral decomposition, the inverse transformation from eqn. (17) is as shown: 

( ) ( )[ ix

n

i
ijij xFu

i

1

1

2/1*1 : −

=

∆+−∆+∆+−
∆+ Φ= ∑ ρρρρρ
ρρ νλT   (67) 

The transformations in eqns. (66, 67) can be provided by repeated matrix manipulations 
for a changed parameter ρ∆ . 
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The elements of the transformation matrices for incremented values of correlation 
coefficients in eqns. (66,67) can be assessed by using the decomposition matrix derivatives 
given in Appendix B and section 2.2.2., as shown: 

( ) ρρµµµ ρρρ ∆∂∂+≈∆+
ijijij   (68) 

( ) ρρννν ρρρ ∆∂∂+≈∆+
ijijij  and ( ) ρρλλλ ρρρ ∆∂∂+=∆+

iii   (69) 

The coordinates of the point in the transformed standard normal space also can be 
assessed by using the derivatives from eqns. (14) and (18), if available, as shown: 

ρ
ρ

ρρρ ∆
∂

∂
+≈∆+ j

jj

u
uu   (70) 

For a small increment in the correlation coefficient, the analytical method can be used to 
obtain a new linear approximation for each component. These new linear approximations can 
be used to estimate the changed failure probability and the sensitivity of the structural system. 
For Ditlevsen’s bound in eqn. (61) in general the followings valid: 

⎟
⎠
⎞⎜

⎝
⎛ −

∆
−

∆
−

=
∆
−

=
∆
∆

<

∆+

<
==

∆+∆+

∑∑ ρρρ
ρρρρρρ

ρρρρ ijijijij

n

i

n

i

iiuuu PPPPPPP ff

maxmax1
21

 (71) 

The eqn. (71) can be solved by recalculating the upper Ditlevsen’s bound for the 
incremented value of the correlation coefficient ρ. 

The advantage of the method [2] is that it can be used to efficiently and accurately 
compute sensitivities of safety measures with respect to the correlation coefficients form 
SORM estimates. The method for computing the sensitivities for SORM is similar to that for 
FORM. The points used in the original standard normal space to fit the second order surface 
are transformed into the new standard normal space and a new second order surface is used to 
compute the sensitivity of the SORM estimates. The failure probability corresponding to this 
new second-order surface can be used to compute the sensitivity of the SORM estimates. 

5. EXAMPLES FOR SENSITIVITY ANALYSIS OF RELIABILITY MEASURES TO 
CORRELATION COEFFICIENTS 

5.1. Example 1: Linear failure functions 

A problem with two dependent random variables, defined by Gaussian marginal 
distributions x1: ( )2,8 11 == σµN ; x2: ( )1,5 22 == σµN  and by the correlation coefficient 

12ρ  between the design variables, is considered first. The two linear limit state functions are 
defined as  and ( ) 21211 , xxxxg −= ( ) 9, 21212 −+= xxxxg . FORM results considering failure 
probabilities and sensitivity factors for selected values of correlation coefficient 12ρρ =  are 
presented in Table 1. 
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Table 1 FORM results for different values of  - Example 1 

Tablica 1. FORM rezultati za razne vrijednosti  - Primjer 1 
12r

12r

ρ12 p1 p 2 p 12 γ12 p f ρ∂∂ 1p ρ∂∂ 2p ρ∂∂ 12p  ργ ∂∂  ρ∂∂ fp  
.00 .090 .037 .020 .600 .109 -.087 +.058 +.012 .000 -.0415 
.05 .085 .039 .020 .605 .107 -.089 +.058 +.009 .020 -.0415 
.25 .067 .051 .020 .612 .099 -.097 +.057 +.002 .102 -.0415 
.50 .042 .066 .018 .655 .088 -.103 +.055 -.012 .249 -.0354 
.75 .017 .079 .012 .750 .083 -.089 +.052 -.037 .562 .0000 
.95 .003 .089 .003 .923 .089 -.043 +.049 -.042 1.329 +.0492 
.999 .001 .091 .001 .998 .091 -.027 +.049 -.003 1.766 +.0500 

Note restriction on kmρ∆  - value, from [4], in applying derivative terms. Next, the 
prediction of the sample size for the MCS assessment of the sensitivities is considered. For 

5.012 =ρ , the maximal values of 18max =φc , 4max,12 =d  and [ ] 72
max12 =dcφ  are obtained in a 

trial simulation procedure. The number of samples needed to obtain the prescribed level of 
accuracy of the sensitivity factor is predicted according to eqn. (50) as 

. The variance of the sensitivity factor estimates is predicted 
to be less then 2.6/N, where N is the actual sample size. 

( ) 00 2200354./109.73 NNNs =<

Finally, a simulation experiment of 100 independent MCS was carried through to obtain 
the mean and the variance of the estimates the sensitivity factors. The convergence rate of the 
experiment with the 95% confidence intervals and the variance upper bound prediction 
Var(s)upp compared to the experimentally obtained variance Var(s) are presented in Table 2. 
Table 2 Crude MCS results for  - Example 1 

Tablica 2. Rezultati grube Monte Carlo simulacije za  - Primjer 1 
12 0.5r =

12 0.5r =

N pf Var(pf) c.o.v. ρρ ∂∂ f  Var Varupp c.o.v.
500 .092±.003 3.6 x 10-4 .21 -.031±.005 2.2 x 10-3 (5.2 x 10-3) 1.34 

1000 .090±.002 2.3 x 10-4 .17 -.031±.005 1.2 x 10-3 (2.6 x 10-3) 1.26 
2000 .089±.001 1.0 x 10-4 .11 -.033±.004 5.9 x 10-4 (1.3 x 10-3) 0.73 
5000 .088±.001 3.4 x 10-5 .07 -.036±.002 2.3 x 10-4 (5.2 x 10-4) 0.44 

10000 .088±.001 1.8 x 10-5 .05 -.036±.001 1.1 x 10-4 (2.6 x 10-4) 0.29 

Comments on results of Example 1: 
− MCS method, see Table 2, gives coinciding results to FORM, see Table 1, i.e. the 

exact result. 
− The convergence rate of the sensitivity factor is slower then the rate of convergence 

of the failure probability itself, see Table 2, and follows the predictions based on 
eqn. (50). 

− The total sensitivity to correlation can be assessed from Table 1 as follows: 
( ) ( ) 026.0075. −==−= ρρ ff PP . 

5.2. Example 2: Component reliability, nonlinear failure function 

Component reliability with three dependent random variables given by marginal 
distributions and correlation matrix is considered. 

Distributions: x1: lognormal ( )100,500 11 == σµ  
 x2: lognormal ( )400,2000 22 == σµ  
 x3: uniform ( )5.0,5 33 == σµ  
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D ameter: t=1.0eterministic par  

Correlation matrix: 

Limit state function: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.12.02.0
2.00.13.0
2.03.00.1

R  

( )
2

3

1

3

1
1321 20001000

,, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

x
x

x
xtxxxg  

Crude MCS result for the probability of failure with the 95% confidence interval, 
obtain

 c.o.v.=0.05,  

ed in a simulational experiment of 100 independent runs with 10000 samples each, is as 
shown: 

,0005.00342.0 ±=fP ( )822.1=Gβ . 

FORM results for the fai y and for the safety index are as shown: lure probabilit
0381.0 , 772.1==fP β  

The prediction of the upper bounds of the sample size and of the variance according to 
eqns.

ple 2 
ka –Primjer 2 

 (50,48) are presented in Table 3. 
Table 3 Simple size and variance prediction – Exam
Tablica 3. Predviđanje veličine i varijance uzor

k m kmρ  'ρ  km
kmkm ρρ ∂∂ '

maxφc
  

( )
maxkmdcφ

 
kmπ  0

fP  <sN  ( )<kmVar π

2 1 .300 .304 1.0078 20 60 +.0427 .046  65No 2.6/N 8
3 1 
3 

.200 

.200 
.206 
.206 

1.0330 
1.0330 

20 
20 

60 
30 

-.0738 
-.0388 

.0468 

.0468 
38No 
36No 

4.4/N 
1.1/N 2 

Tabl r s th ts of  sensi ty an u O roce or 
comp

ponent probability of failure – Example 2 
erojatnosti oštećenja komponente na korelacije – Primjer 2 

LATION 

e 4 p esent e resul  the tivi alysis sing F RM p dure f
onent reliability and compared to the MCS experiment of 100 independent runs of 

10000 samples each. 
Table 4 Sensitivity of com
Tablica 4. Senzitivnost vj

FORM MONTE CARLO SIMU  
kmG ρβ ∂∂  kmfPk m ρ∂  ∂ kmfP ρ∂∂  Var Varupp c.o.v. 

2 1 -.515 +.0426 +.037±.001 4.3 -5 2 x 10 6 x 10-5 .18 
3 1 +.890 -.0738 -.060±.001 1.7 x 10

-5

-5 -544 x 10
-5

.07 
3 2 +.468 -.0388 -.034±.001 1.2 x 10 11 x 10 .10 

N t, the ensitivity to corr he repeate  calculations for 
a hyp

ex  total s elations is c cked by d FORM
othetically uncorrelated problem and for a highly correlated problem giving results: 

67.1=uncorrβ , ( ) 047.0=
uncorrfP ; 47.2=hicorrβ , ( ) 007.0=

hicorrfP ; 

80.0=− ( ) ( ) ( ) 040==∆ uncorrhicorrtot βββ ,  .−−=∆
uncorrfhicorrfglof PPP ; 

The results can be compared to ( ) 070.0−=∆ fP and ( ) 843.0=∆ β  in FORM, and to 
( ) 057.0−=∆ fP  in MCS. 
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5.3. 

The syste y of a problem with three limit state functions and seven dependent 
random variables defined by marginal distributions and correlation coefficients is considered. 

Margin distributions: 
x1, x2 : Weibull 

Example 3: System reliability 

m reliabilit

( )23,134 == σµ  x3 : Uniform ( )35,160 == σµ  

x4, x5 : Weibull ( )30,150 == σµ  x6 : Weibull ( )20,65 == σµ  

x7:  uniform  ( )15,50 33 == σµ ,  Deterministic parameter: t=5.0 

Following correlation coefficients are given: 
ρ12=.4, ρ13=.2, ρ14=.2, ρ15=.2, ρ23=.4, ρ24=.2, ρ25=.2, ρ34=.4, ρ35=.2, ρ45=.4, and ρ67=.4, 

Limit state functions under considerations are as follows: 

( ) txxxxxXg 654211 −+++=  

( ) txtxxxxxXg 7654312 22 −−+++=  

( ) txxxxXg 74323 2 −++=  

Table 5 presents the sensitivity factors based on upper probability bound, using the 
FORM procedures for the system reliability and compared to the direct numerical calculation, 
using finite difference of 01.0=∆ρ (FDM), as well as the crude MCS results from an 
experiment of 50 runs with 30x10000 samples each. 

Table 5 Sensitivity of system reliability to correlations– Example 2 
Tablica 5. Senzitivnost sistemske pouzdanosti na korelacije – Primjer 2 

k m kmρ  kmG ρβ ∂∂  
FORM 

(FDM) FORM kmfP ρ∂∂  
MCS 

c.o.v. (FDM) 

2 1 0.4 -.029 (-.029) +.0040 +.0034±.0012 1.45 (+.0040) 
3 1 0.2 -.040 (-.041) +.0055 +.0047±.0006 0.52 (+.0056) 
4 1 0.2 -.074 (-.072) +.0101 +.0077±.0007 0.36 (+.0099) 
5 1 0.2 -.056 (-.055) +.0077 +.0074±.0018 1.01 (+.0076) 
3 2 0.4 +.030 (+.030) -.0040 -.0028±.0006 0.97 (-.0040) 
4 2 0.2 -.025 (-.022) +.0033 +.0030±.0007 1.13 (+.0031) 
5 2 0.2 -.037 (-.036) +.0051 +.0050±.0021 1.71 (+.0050) 
4 3 0.4 -.161 (-.163) +.0220 +.0190±.0010 0.20 (+.0223) 
5 3 0.2 -.054 (-.056) +.0073 +.0061±.0005 0.35 (+.0076) 
5 4 0.4 -.097 (-.095) +.0133 +.0115±.0011 0.43 (+.0130) 
7 6 0.4 -.180 (-.176) +.0245 +.0217±.0006 0.10 (+.0240) 

Total:   -.730 (-.665) +.0975 -.0862  (+.0975) 

FORM result for hypothetically uncorrelated problem are as shown: 

035.0=SuncorrP    and   81.1=Guncorrβ  

FORM result for hypothetically highly correlated problem ( )mk, allfor ,98.0=kmρ  are: 

111.0=ShicorrP    and   21.1=Ghicorrβ  
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T ion based on upper bounds are as follows: he total sensitivities to correlat

60.0−=− uncorrhicorr ββ ,    076.0=− SuncorrShicorr PP . 

The FORM results are presented also in the matrix form as shown: 

⎥
⎥
⎥

⎢
⎢ + 0246.0000.0000.0000.0000.0000.0000.

⎥
⎥
⎥
⎥
⎥

⎦⎢

⎢

+

++

+−
++

0000.0246.

0000.0000.0000.33
0.0219.330.

000.0000.0000.0041.
0000.0000.0041.0000.
0000.0000.0055.0040.

 

Following measures and norms, see eqns. (33), are obtained from the matrix πs: 
Maximal derivations are  

⎥
⎤

⎢
⎡

++
++

0052.0033.0040.
0077.0102.0000.

⎢ ++++ 01.0074.0052.0077.

⎢ ++= 0000.0000.0133.00000.102sπ
⎢
⎢

++−+ 00074.0219.0055.

⎣ 0000.0000.0000.0000.0000.

( ) 099.0=∆ sP , ( ) 1031.0=∆+ sP , ( ) 0206.0=∆− sP , L1=0.1072, L2=0.00223, 

The most influential correlation coefficient is ρ67 and the most influential variable  
is x4 from 

( )7,60246.0 ===∞ mkL , ( )40487.0 == kLrow  

The sensitivity of mode correlation coefficient γ to variable correlation coefficients ρ , 
obtained by FORM is demonstrated in the matrix form

67
 as follows: 

[ ]
( )⎤⎡

⎤⎡ ∂
00.0 sym

γ

⎥
⎥
⎥

⎦

⎢

+
+=⎥

⎦
⎢
⎣∂

==
00.0

00.009.0
67

6767 H ij
ij ρ

H  

The ffe  the coefficient e p y  and to the sensitivity 
fac  ob ne  FOR d by xpe  5 x  sa e 
giv  in le

Table 6 Se  the s obabi ure –  
Tab a 6. zi t vjer ti ošteć ma na korelacije 

FORM MO R N

⎢
⎢
⎣+ 28.0 06.0

 e ct of ρ67 to th robabilit upper bound Pu
tor tai d by M an MCS e riment in 0 runs wit x 30 10000 mples, ar
en Tab  6. 

nsitivity of ystem pr lity of fail  Example 3
lic  Sen tivnos ojatnos enja siste – Primjer 3 

NTE CA LO SIMULATIO S  

ρ P67
u 67ρ∂P∂  Pf o.v.u c.  67ρ∂∂ fP  Var c.o.v. 

.00 .061 8 5±.00 8± x 1.02 .045 04 0.04 .019 .0004 2.4 0-6 0.08 

.20 .06  1±.00 1±.00 2.9 x 10

.40 0-5 0.10 

.60 .076 .023 .0 07 0.07 .0235±.0007 8.1 x 10-5 0.12 

.80 1.2 x 10-4 0.

.95 .083 .020 .0696± 0.30 .0463±.0300 1.7 x 10-2 2.83 

6 .026 .050 05 0.05 .021 05 -5 0.08 

.071 .024 .0543±.0006 0.06 .0271±.0006 4.8 x 1

586±.00
.080 .021 .0651±.0014 0.08 .0286±.0026 38 

.0051
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5.4. 
The effect of correlation between the still water bending moment and the wave bending 

moment on a tanker structure is investigated, [5]. This correlation arises because of a week 
depen

The limit state function is given in the form: 

The practical example 

dence of the wave bending moment on the weight distribution. 

( ) wswswswcruwswswswcru MxxMxSMxMxxMxSMxg −−= σσ ,,,,,,,  

The distributions of random variables are given in Table 7. 
Table 7 Distribution of random variables in the practical example 
Tablica 7. Distribucije slučajnih varijabli u praktičnom primjeru 

Var Distribution Mean value C.O.V. Description 
SM Lognormal 4.658x105 m cm 0.04 Effective section modulus 
Msw Normal 1.813x106 kNm 0.40 Stillwater bending moment 
Mw Gumbel 4.855x106 kNm 0.09 Weve-induced bending moment 
σcr Lognormal 17.0          kN/cm2 0.07 Critical stress 

The model uncertainty is defined by random variables, see Table 8. 
Table 8 Distributions of model certainties and para eters 
Tablica 8. Distribucija neizvjesnosti i parametara mo la u praktičnom prim

Var 

 un m
de jeru 

Distribution Mean C.O.V. Uncertainty due to: 
xu N 1.0 0.15 Strength 
Xsw N 1.0 0.05 Still watter bending moment 
Xw N 0.9 0.15 Wave bending moment due to linear analysis 
Xs N 1.15 0.03 Nonlinearities in sagging 

The FORM results of repeated calculations reported in Ref. [5] with correlation 
coefficient of ρ=0.0, 0.02, 0.05 and 0.08, are β=2.25, 2.23, 2.18 and 2.13 respectively. The 
sensitivity factor can be assessed as ( ) 15.08.0/25.213.2/ −=−=∆∆ ρβ . 

The equivalent result for sens ined immediately in the FORM 
procedure according to the analytical procedure presented in the paper as follows: 

itivity factors can be obta

15.0−=
∂ρ
∂β      and     049.0=

∂

∂

ρ

6. CONCLUSIO

fP
. 

NS 

only used two-parametric statistical 
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se in simulation

• arlo simulation procedure for estimation of ity factors to 
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e n o siti tim  in samp f the re ity 
ion.

• h er con eriv s o rmat ces ap to 
dure ati of t s decom a

e in m o ve procedures. The derivatives of the eigenvalues and 
g ctor  sp g a n method. The 

Cholesky’s decomposition is numerically more  the spectral decomposition. 

• Derivatives of Nataf correlation matrix form comm
distributions are given. Derivative of multinormal PDF is c

considered, for further u  procedures. 
The presented Monte C
correlations using deriva

 sensitiv
orrels fficien

gi es ac ate re s, but general
 itself. The pa

requi much more sa
 guidelines for sam

ation 
the failu
pr

robability
f sen

ple size uppe
le size o

r bound 
liabildictio vity factor es ation terms of the 

calculat  
T
num

e pap
erical p

also 
roce

siders the d
s. The deriv

ative
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f the transfo
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position m
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availabl  a for f two recursi
ei enve  in the ectral decomposition are available usin

efficient than
perturbatio
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But the spectral decomposition renders information about sensitivities in terms of 
p

atives of transformation 
l approach of system 

reliability measures w.r.t correlations in FORM is formulated as an up nd 
proven in this sense sufficiently accurate. 

• T ient method for sensitivity 
 of the transformation matrices nor the 
ables a direct calculation of sensitivity 

rices ent and iabili ures with re correlation 
effi taneou

• he p  for sensit  component and system failure probabilities base 
ethod is directly straig a tion 

coefficients, either in FORM or in SORM.  “ d is based on the 
re lues of correlation 

urate but quite inefficient. 
arameters are available as 

 in es  th e probability calcu es, used jointly, 
enable ef ent id icatio mo nt correlation related parameters in the 

alysis. 
• All the p ented ods c e e ures and 

computer des f  f them requires additional 
st

Authors are grateful to Prof. Alaa Mansour for suggesting investigations of sensitivities 
to correlation. 

[2] 

[3] ntice-Hill, Englewood Cliffs,  

[4] 

[5] 

d
bm

 
Prih
Acc

rincipal axes. 
• The conventional numerical approach in FORM for the sensitivity analysis of 

componental reliability measures w.r.t correlations based on deriv
m ithin the conventionaatrices is developed. Sensitivity estimation w

per bound a

he paper presents a comprehensive and numerically effic
analysis in FORM. It require neither the derivatives
recalculation of the transformation matrices and en
mat  for compon  system rel ty meas spect to all 
co cients simul sly. 

 T rocedure ivity analysis of
on the “fitting” m htforw rd by applicable to correla

 The fitting” metho
calculation of the transformation matrices for incremented va

coefficients, being in this sense numerically acc
• The sensitivity matrices w.r.t correlation coefficients or their p

the termediate r ults of e failur lation. These matric
fici entif n of st significa

reliability an
 res meth an b asily implemented to the existing proced

 co or the reliability analysis and neither o
ructural response evaluation. 
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AP

com

PENDIX A 

The relation of 'ρ  and ρ is uniquely expressed as Fkmkm ρρ =' , see Ref. [2] for 
monly used two-parametric distributions. 

The derivatives of the terms in the Nataf correlation matrix can be expressed as shown: 

nmkFF
km

km
kmkm

km

km ,...,2,1,,
'

=
∂
∂

+
∂
∂

ρ
ρ

ρ
ρ ; 

Two groups of two parametric distributions are considered 

oup I Gr Group II 
U-Uniform LN-Lognormal 
SE
SR
T1
T2

-Shifted exponential GM-Gamma 
-Shifted Rayleigh T2L-Type-II Largest value 
L-Type-I Largest value T3S-Type-II smallest value 
S-Type-II Smallest value  

There are five categories of formulae for F. In some cases, F depends also on the 

fficient of variation δ. The values for coe
ij

ijF
ρ∂
∂

 are given for each of five categories. 

(I Cat.) Fij=const. for xj  belonging to group 1 and xi  normal: 0=
∂

∂

ijρ
ijF

. 

 

(II Cat.) ( )jij FF δ=  for xj  belonging to group 2 and xi  normal: 0=
∂

∂ ijF
ρ

 
ij

 
 
(III Cat.) ( )ijij FF ρ=  for both xi  and xj  belonging to group 1: 

U SE SR T1L T1S ixx j

U -.094ρ     
SE +.058ρ -.367+.306ρ    
SR -.016ρ -.100+.042ρ -.029ρ   

ρ 
T1L +.030ρ +.154+.062ρ +.045+.012ρ +.069+.010ρ  
T1S +.030ρ +.154+.062ρ +.045+.012ρ +.069+.010ρ -069+.010

(IV Cat.) ( )jijij FF δρ ,=  for xi belonging to group 1 and xj  belonging to group 2: 

U SE SR T1L T1S ix
jx

LN +.020ρ +.003+.050ρ-.437δj +.001+.008ρ-.130δj +. δj -.001+.086ρ+.197δj001+.008ρ-.197
GM +.004ρ +.003+.028ρ-.296δj +.001+.004ρ-.090δj +.

48 ρ-.728δj -.038+.056ρ-.229δj -.0 -.001+.040 +.332 j

-.010ρ +.145+.020ρ-.467δj +.042-.136δj +. δj

001+.006ρ-.132δj -.001+.006ρ+.132δj

T2L +.1 ρ -.152+.260 60+.040ρ-.332δj ρ δ
T3L 065+.006ρ-.211δj -.065+.006ρ+.211
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 ( )jiijFF δδρ ,,=(V Cat.)  for both xi and xj  belonging to group 2: 

For xi and xj lognormally distributed: 

x T2L ix
j LN GM T3S 

GM +.033+.004ρ-.104δi-.119δj +.022+.002ρ-.077(δi+δj)   

T2L -.570(δi+δj)+.514ρ(δi+δj)- 
-.371(δi+δj) 

T3L +.052ρ +.034+.006δi-.111δj +.146+.026ρ+.005δi- 
-.481δj

-.004-.002ρ- 
-.005(δi+δj) 

+.082+.036ρ-.441δi-.277δj +.056+.024ρ-.313δi-.182δj +.054-.110ρ-.060ρ2
j-  

For both x xi and j  lognormally distributed: 

( )
( ) ( ) ⎥

⎥−
ρδρδ

 
⎦ji

⎤1
⎢
⎢
⎣

⎡

+⋅+ δρδ
δδδδρ

1ln1
,,

ji

jiji F
F

A

(a) 

2,

=
∂ρ

∂

PPENDIX B 

The Cholesky decomposition is of the form R=LLT or R-1=MTM. 

The elements ijniij .,1;,...,2,1, ,..==λ , of the lower-triangular matrix L are as 
follows: 

21
2 ⎟
⎞

⎜
⎛ −= ∑

1

1 ⎠⎝

−

=r

 (B-1) 
i

iriiii λρλ  

2
1

1

1

1
⎟⎟
⎠

= ∑ ⎞
⎜⎜
⎝

⎛
−

−

=

j

ij
jj

ρ
λ

 (B-2) 

he elements 

r
jririj λλλ      for i >j;     λij=0     for  i< j; 

T ijniij ,...,2,1;,...,2,1, ==µ , of the matrix M=L-1 can be determined as 
follows: 

iiλ
iiµ 1
=   -3) (B

rj

i

riiλ
irij µλµ ∑−=

−

=

 µij   i< j;)  (B-4) 

(b) The matrix of derivatives 

11
1

    for i >j;     ( =0     for

⎟
⎠
⎞⎛∂L . kmρ⎜

⎝ ∂ρ of the matrix L w.r.t
km

 can be determined in 

s follows: recursion a

kmrii ρλ ∂
ir

i
ii λλ ∂
= ∑

−

irλ
1

kmρ∂
∂

=

1   (B-5) 
1

1j
jj ir

- ć ¶lç- l +ĺ
1

ir
r=

ç ¶rč
1 ij ij

é ¶r r
ę -ij¶l jr jr ir¶l l l ¶l

- jj

km km km

¶l
= l

r
) ir

km jj¶r l ¶rkm¶r jj km jjl ¶r l ¶ęë

ůö
÷ú, i >j (B-6÷úřű

TRANSACTIONS OF FAMENA XXV-2 (2001) 23 



Vedran Žanić, Kalman Žiha  Sensitivity to Correlations in Structural Problems 
   

( ) ( )MLMM kmkm ρρ ∂∂−=∂∂The derivative of the matrix M can be determined as  or 
in rec ollows: ursion as f

km

iiii

iikm ρ
λ

λρ
µ

∂∂ 2  (B-7) ∂
−=

∂ 1  

⎥⎟⎟
iirj  

⎦⎠∂ kmρ
⎤

⎣

⎞

⎝

∂
⎢ ⎜⎜−=

∂ ∑ij

λρ
⎡ ⎛∂

−
∂

+
∂

rj
ir

ir
rj λ

ρ
µ

∂∂ µλ−

= jr ii

ir

kmkmiikm

λ
λ

λ
ρ

 (B-8) 

R-1  fol

11 iµ µ

The derivatives of the elements of the matrix  can be obtained as lows: 

∑
−

=

⎞
⎜
⎛ ∂∂∂ n

ikimkm µµρ 1

(B-9) 

(c) If derivatives are to be calculated w.r.t all or a great number of correlation coefficients, 
the procedure can be made efficient considering derivatives of the relation R=LLT w.r.t 

⎟⎟
⎠

⎜
⎝ ∂

+
∂

=
∂ kr km

im
km

ik
km ρ

µ
ρ

µ
ρ

  

kmρ : 

kmkm
KM ρρ ∂

+
∂

= LLr  (B-10) 
T

T ∂∂ LL

unt symmetry of R or rKMTaking into acco  and lower triangular form of L, a system of 

( ) ( ) 22 nn +  unknown terms of 2 nn + 2  equations in 
kmρ∂

∂L  can be formed. If they are stored 

row by row in a vector, the coefficient m
triangular form. Using relations (B-3) and (B-4), this matrix can be easily inverted. Each 
column of the inverse matrix represen
w.r.t

atrix of the system of equations has also a lower 

ts all lower triangle terms of the derivative of L matrix 
 kmρ  stored in the same way. Only one row of coefficient matrix is needed at a time the 

calcu ns. lation of the needed colum
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APPENDIX C 

(a) The derivatives of the integral of the bivariate normal distribution: 

( )
( ) ( ) ⎟

⎟
⎠⎝− 121 z

⎞
⎜
⎜
⎛

−

−+
2

22

2/122

21exp
2

1
z

z jiji
ji

ββββ

π
  (C-1) 

w.r.t to correlation coefficien

=,, zββφ

t kmρ  can be expressed as: 

( ) ( )

( ) ( )
km

ijjiji ρ∂2
ij

km

j
i

km

i
j

ji
km

j
j

km

i
iji

km

ijij

dzz
z

z
dzz

γββφββφ
ρ

β
ρ

β

ρ
β

β
ρ
ββββφ

ρ

γγ

+
−⎟⎟

⎠
⎜⎜
⎝ ∂

+
∂

+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∫

∫∫

;,;,
1

;,
1

1;,

0
22

0
22

0
2

 (C-2) 

The values of the integrals in eqns. (C-2) can be obtained by numerical integration. 

eqn. (

ij z γββ
γ ∂⎞⎛ ∂∂

 

dzzββφ +

The Cij term in eqn. (64) is obtained by substitution of eqn. (C-2) in the derivative of the 
63) and the collecting the appropriate terms w.r.t kmi ρβ ∂∂  as shown: 

( ) ( ) ( ) ( )2 2
2 2

0 01 1i jz dz
z z

+ b
- -

  (C-3) 
, , , ,ij ij

i j i j
ij i j

z z z
C d

g gf b b f b b
= - f b F - b - b ň ň

The term Cij  is obtained by collecting the terms w.r.t kmj ρβ ∂∂ . 

H(b) The ijkm terms in eqn (64) for the derivatives of the mode correlation coefficients ijγ  

kmw.r.t. correlation coefficients ρ  are obtained via derivatives of the cosine of the angle 

T

between the normalized gradient vectors in the design points *
iU  and *

jU . 

For gradient vectors the transformation between U and Y coordinates reads 
α A=' and the corresponding length of vector αω ’ reads: ( ) 2/1'ωω RTd = . The cosine of the 
angle is given by the expression: 

( ) ( ) 2/12/1

''

j
T
ji

T
i

j
T
i

j

j

i

T
i

j
T
iij dd ωωωω

ωωααααγ
R'R'

R'
===   (C-4) 

For given ω and γ, is the function of elements of 'R . If ω is calculated for  and 
 it can be expressed as: 

'
0' RR =

'' iαα =

ββ
ω

** YUA == −T
0   (C-5) 
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Substituting (C-5) into (C-4), taking derivative of ijγ  w.r.t  kmρ  and noting that 

KM
km
'ρ rR =

∂
∂ ' the following expression is obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎪⎭
⎬
⎥
⎥
⎦

+
ji

i

ββ
  (C-6) ⎪⎫
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⎧ ⎤
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⎡
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+
=

∂

∂
= jmjkmik

ij
ji

imjkjmik
km

km

ij
ijkm

yyyyyyyy
eH γ

ββρ
γ

(c) sign point coordinates  and 
 of two modes “i” and “j” as 

If the mode correlation coefficient γij is expressed via de  *
iU

*
jU

ji

n

ik
jkik

ji

i
T

i
ij

uu
YY

ββββ
γ

∑
=

−

==

**
*1* R ,  

the derivatives of the r.h.s can be expressed as: 

(C-7) 

⎟
⎟
⎠

⎜
⎜
⎝ ∂

+
∂

−⎟
⎟
⎠

⎜
⎜
⎝ ∂

+
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⎞⎛ ∂∂⎞⎛ ∂∂n uu ββ 111 **
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The expression for 
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j
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i

i
ij

s
is

km

js
js

km

is

ji

uu
ρβρβ

γ
ρρββ 1

**   (C-8) 

ijγ

ents

 gives the same numerical result, but of the opposite sign than 

eqn. (C-6), since it repres  the rate of the change of angle between position vectors 
 and not the normals α  and α   of the tangent hyperplanes to the failure surface needed in 

the ca

*
i  and U

*
jU i j

lculation of γij. 
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