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Summary

The paper presents some aspects of the sensitivity analysis in structural problems
involving correlations between the design variables. Time invariant structural problems based
on multivariate distribution models consistent with prescribed marginal distributions and
correlations are considered. The Monte Carlo simulation methods and the conventional
analytical methods are provided for the first order and the second order reliability procedures.
The examples given in the paper confirm the relevance of the applied procedures.
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OSJETLJIVOST NA KORELACIJE U STRUKTURNIM PROBLEMIMA

Sazetak

U ¢lanku se prikazuju neki aspekti analize osjetljivosti kod strukturnih problema koji
ukljucuju korelacije medu projektnim varijablama. Razmatraju se vremenski invarijantni
strukturni problemi opisani multivarijatnim modelima razdiobe sa zadanim marginalnim
razdiobama i korelacijama. Primijenjeni su Monte Carlo simulacijski postupci te analiticki
postupci prvog i drugog reda za analize pouzdanosti i osjetljivosti. Primjerima se u ¢lanku
potvrduje upotrebljivost primijenjenih postupaka.

Kljucne rijeci:  pouzdanost, vjerojatnost ostecenja, postupci pouzdanosti prvog reda,
postupci pouzdanosti drugog reda, Monte Carlo simulacija, parametarska
senzitivnost, korelacije, analiza senzitivnosti
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1. Introduction

It is well established that sensitivity analysis is a standard part of any sound engineering
procedure since it provides information on the stability (or robustness) of solution and also on
the level of sophistication required in the selection and determination of the problem
parameters and of the assumptions involved.

In structural reliability analysis efficient methods are available for computing
sensitivities of different measures of reliability to changes in distribution and limit state
function parameters.

In this paper, the sensitivity to correlation between the random variables in the structural
model is investigated. The results of the sensitivity analysis of reliability measures, with
respect to the correlation matrix are given as the sensitivity matrices and their appropriate
norms. The calculation of the elements of these matrices imply evaluation of derivatives of
reliability measures with respect to possibly numerous correlation coefficients.

Application of the finite difference method (FDM) to the sensitivity analysis is useful but
inefficient. The presented numerical procedures for sensitivity computation in structural
reliability problems with respect to correlations can be implemented within the Monte Carlo
simulation (MCS) methods, the first order reliability methods (FORM) and the second order
reliability methods (SORM). The sensitivity analysis could be added to the standard reliability
analysis, without repeated evaluations of the structural model.

The reliability of time invariant structural problem is defined by multivariate
distribution model using »# random variables denoted as X = {xl,xz, ........ X, } The space of

the basic design variables is denoted as the X-space. Each of the variables is defined by its
marginal cumulative distribution function (CDF) denoted as F,, by its marginal probability

density function (PDF) denoted as f;. The (n x n) correlation matrix R = [pkm] is considered in

general as a function of correlation coefficients p,,.k,m=12,...n.

Multivariate distribution approach based on the Nataf model is applied. The tree
principal steps when applying the Nataf’s model to structural problems are as follows:

(1) The correlation matrix R is transformed to matrix R’ whose elements are denoted as
Ounsksm=12,..n. The relation of p, and p,, is uniquely expressed as

pkm :kapkm b [1]

(2) Standard normal variables Y” ={y,,,,...,y,} are obtained by the marginal
transformation of X: F(x,)=®(y,), for i =1,2,...,n. The space of the Y-variables is
denoted as the Y-space. The joint PDF f(X) of the random vector X is expressed on
the basis of the marginal PDF’s f (x,) as follows:

¢,(Y,R") »
S(X)== T () (1)
¢,(Y) =7
P, (Y, R') in eqn. (1) is the n-dimensional joint normal PDF of zero means, unit
standard deviations and correlation matrix R :

_ exp[—%ch @)

N\ 1
2 (Y’R )_ (27Z_)n/2
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where Q. in eqn. (2) is a quadratic form as shown:
0.=Y'R'Y 3)

The joint standard normal PDF for independent random variables in the denominator of
eqn. (1) is defined as

6.00=4,00=Tig ()= e 10, | @)

where O, in eqn. (4) is a quadratic form as follows:

0,=Y"Y ©)

(3) Vector of variables Y can be related to independent standard normal variables
U' = {ul,uz, ......... ,u”} by transformation Y=A U. The space of the U-variables is

denoted as the U-space. The matrix A can be obtained by applying the two widely
used methods: the one based on Cholesky’s decomposition and another is based on
spectral decomposition of the correlation matrix R=A A,

Regarding the system reliability, each failure mode is considered as an elementary
event, also denoted as a "component". The failure modes are defined by the failure function
g, (X)= 0, i=12,...n,, where nyis the number of failure modes. Failure states are defined by
g, (X)S 0, while the safe states are defined by g, (X )> 0. Elementary set algebra is used to

define structural system as an interaction of components in terms of intersections and unions
of elementary failure events. The structural reliability can be formulated as the assessment of
the system failure probability, either in the X, Y or in U-space, in the form of the following
integrals:

Po=[" [ r(Xpx= ij [,V RWEY =[" [4,(UKU; aX = l_lflldxi; etc. (6)

The integration domain D, in eqn. (6) is in general defined by the failure functions as:
g, (X)S 0, i=12,..n,. The integration domain D, is obtained as a result of the marginal

transformation of the design variables, see step (2). The definition of the domain D, in the
standard normal U-space requires additional transformation, see step (3). The structural
reliability is defined using the eqn. (6) as shown:

S=1-P, (7)
The generalized safety index [ is expressed as follows:
fo =07 (5)-0"(P,) (®)

The sensitivities of the reliability measures (RM) such as P, S, 5, etc. with respect to

elements of R are developed in the sequel.
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2. The sensitivity of reliability measures in the Nataf’s model

The analytical step in sensitivity evaluation, when using the Nataf’s model,
is presented first.

2.1.  The derivatives of the Nataf’s transformation in steps (1) and (2)

Considering the steps (1) from the previous section, the derivatives of the Nataf’s
correlation matrix can be expressed as shown:

oF,,

km ’
m km

kom=12,..n; 9)

The expressions for e, =0p,, / 0p,, for commonly used two-parametric statistical
distributions are presented in Appendix A.

Considering step (2) in the Nataf model, the derivatives of the marginal transformation
x, =F,! [CD(yl. )] can be represented in a diagonal matrix J. The elements of J are easily
obtained in the form of:

sarc 0 € ()0
4L (v)g

J - M
S‘ﬂyiu e/l

i=1,2,..,1. (10)

2.2.  The derivatives of the multinormal distribution in step (2)

The derivatives of the multinormal PDF from eqn. (2) is obtained in a form of a product
of the multinormal PDF and a function d, ()

o4,(Y.R)

' :dkm(Y’R')¢n (Y’R') (11)
8pkm

where d, () is defined as follows:

1@.{.%}

. : (12)
apkm 6pkm

' 1 '
dkm = dkm (Y’R ): _EUR |
It can be easily proved that the first term in the eqn. (11) reduces to the element ;km of

the Nataf’s correlation matrix inverse R'™'. The derivation of the second term of eqn. (11)
00, /0p,, leads also to a simple expression, see eqn. (3) as:

aQ'c — YT aR"71
8pkm apkm

Y=-Y'"R"r,,R"Y (13)

'

where r,, ={ } in eqn. (13) is the derivative pointer matrix. The nonzero terms

km

are at locations (k,m) or (m,k), due to p, = p. . Introducing in eqn. (13) an auxiliary vector
Y defined as:

Y={y]=RY; i=1,..n (14)

4 TRANSACTIONS OF FAMENA XXV-2 (2001)



Sensitivity to Correlations in Structural Problems Vedran Zani¢, Kalman Ziha

the derivatives of Q. in eqn. (13), using eqn. (14), can be expressed as:

0 - —
L Y rKMY:—Zykym (15)
apkm

and finally, taking into account p,, = p, . :
dy =P ¥, or D=[d,]=-RYY (16)

The vector Y in eqn. (16) can be calculated even without inversion of matrix R', as a
solution of the system of equations R'Y =Y or A”Y = U . The quadratic form in eqn. (3) can
be rewritten using eqn. (14) as product 0, =YY .

2.3.  The derivatives of the transformation Y=AU in step (3)

The derivatives of the random variables in the U-space with respect to p,, for a given Y
(and corresponding U) can be in general expressed as shown:

N __ a1 0A

- Yl =
ap km | y* ap km Y* ap km u* ap km

AU U

(17)

U*
Two methods used for calculation of derivatives are presented next.

(1) The transformation Y=LU, with L=A obtained from the Cholesky’s decomposition
of R'=LL", transforms the quadratic from Q., see eqn. (3), to the form O, =U"U.

L is a lower-triangular (n x ) matrix, with elements 4, whose inverse is denoted
M with elements g, , i=1,2,...,n, j=1,2,.. i, see Appendix B.

L and M always exist since R' is symmetric and positive definite. Analytically, the
transformation T and its inverse T"' based on Cholesky’s decomposition for j=1,2,...,n, are
expressed as:

T(UaR'): X, = ijl [(D(y_/) = szl |:(D[iﬂ’jiuiJ} (13)

J J
T (X, R'): u,= z:ujiyi = Z/uﬂq)_l [Fx:l (xi )] (19)
i=1 i=1

The differentiation applied on eqns. (18) and (19) locally in the point U™ and
corresponding Y and X gives:

%, o) 3 )z (20)

Pl T (x, apkm
ou, eka@ [F ) K, Q1)
ap km | x* ap km

The terms 04, / op,, and OH; / op,, are given in Appendix B.
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(2) The transformations of quadratic form Q. to principal axes, see eqn. (3), can be
performed by spectral decomposition of matrix R'=VAV'. In this case
Y =VA"*U, where V is the (n x n) square ortonormal matrix with elements v o

containing the eigenvectors V, —{ } =1,2,...,n . Note that each of the equations

is a solution of an eigenproblem R'v, =AV,. Eigenvalues A; are elements of a

diagonal matrix A.

Analytically the Nataf transformation and its inverse based on spectral decomposition
for j=1,2,...,n is expressed as follows:

T(U.R):x, = F.'[o(y, )|]= F.' Hiv/ﬂf“ ﬂ (22)

TR u, =423 vy, =22y o [F, (x,)] (23)
i=1 i=1

The differentiation applied on eqn. (23) in the point U and corresponding
Y= AU*=(Y)U=U* gives:

T
ou | — a' (A—l/2vTY*) ( 1/\—3/2 OA V A—1/2 oV ]Y (24)
ap km | Y* 8p km 2 610 km ap km

The terms of derivatives in eqns. (24), are obtained by the perturbation method. The
results are given in the sequel. Spectral decomposition of correlation matrix R' is as follows:

R'=VAV' => 4v,v/ (25)
i=1
The derivatives of eigenvectors and eigenvalues are as shown:

Ay ai/:n _|: } [2 Vk m):] (26)

apkm
where () is the k-th element of I-th eigenvector.
v [ ov,
ap/'cm a/)km

} VN, (27a)

and N, = [nijJ is a skew-symmetric matrix with n;=0 and

n - V) ), + ) 0), (a=0if 4, %2, (27b)
/ A—d+a -

A more general method is presented in [2].eqn (24) can be written ass:

oU
ap km

%A“AKM}AI/QU* =e, W,,U" (28)

Ut
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2.4.  The sensitivity of the reliability measures to correlation

(a) The derivative x,, of the failure probability to the correlation coefficient p,, can
be obtained from eqn. (6) in the X-space as:

e f) [221Y AR L 117, () (29)
pk’” U[yl-(x,-)]_

and alternatively in Y-space as shown:

Ty,

m

ap km

Ton =, j éTdY e ID [, (YR, (Y.R)aY (30)

The derivative By, of S to correlation coefficient py, can be obtained from eqns. (8)
and (29) or (30), as shown:
0
B, = Loz, 14(8,) (31)

o ap km

The derivative of the structural system reliability defined in eqn. (7) can be obtained on
the basis of eqns. (29,30) as follows:

oS oP
= — :—ﬂ'k

0P OPon

(32)

m

(b) The results of the sensitivity analysis with respect to elements of the correlation
matrix R can be naturally presented in the sensitivity matrices S. Sensitivity matrices
are formed as a term wise product of the matrix of derivatives of the reliability

measures [6(RM )/0py,, | and a matrix of multiplicators s = [S i ], as:
S = [Skm]:[Mskm} (333')
alokm

Using the derivatives of the failure probability and of the generalized safety index from
eqn. (30,31), the corresponding sensitivity matrices read:

n’ = [ﬁkmskm]:[ﬁskm} (33b)
0P
B =[B,,s,|=-7"/4(B;) (33¢)
Some cases of multiplicators are of interest in the sensitivity analysis:
S =1 rate of change (derivative) of RM
AV increment of RM due to perturbation, i.e the most unfavorable

deviation of p,,,
Sim =Ap,, /RM  logarithmic derivative of RM
S = Pim first order approximation of change of RM between corr. and uncorr.

case.
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(Note that: (1) if the coefficients p,, are functions of parameters p, factors s, would
include terms OJp,, (p)/ 8(p), (2) if correlation (k,m) is impossible, the term
d(RM)/6p,,, should be omitted by setting s;,=0.

Sensitivity matrices can also be used for sensitivity estimates via their different
measures or norms L, (S) e.g.:

L, = max|S km| - gives the most influential correlation coefficient;
k,m

L, = nzax(Z]S i U - the row norm; identifies the most influential random variable;

/p

1
L,= [Z Z|S . |pj - gives the total variability due to correlation (p=1,2);
k m

A(RM )= Z Z Sy - gives the total change in RM due to s,, =Ap,, .
k m

For the comparisons normalized forms of the sensitivity matrices can be use:

-1
S=1%)° (34)

In the sequel, the application of simulation and analytical methods to calculate
sensitivity matrices in an efficient manner will be investigated in order to expand the standard
reliability analysis by the sensitivity analysis with respect to numerous correlation
coefficients.

3. Analysis of sensitivity to correlation by simulation methods

The simulation procedure is demonstrated on the crude MCS method.

3.1.  The failure probability estimates by simulation

(a) By the following substitution:

., (v.R)=%(V:R) (35)

4,(Y)
the eqn (1) can be rewritten as shown:
FX)=¢,[YOORTI £, (x,) (36)

In the zero-one indicator MCS, the state indicator function is defined as / [g(X)] =1 for

X in the failure set, otherwise zero. The failure probability in the X-space see eqn. (6), cab be
expressed by means form the state indicator function as follows:

Pr=[  JHOOk V)RS, (x,)ax (372)
and alternatively in Y-space as shown:

=], JHeME YR, (Y)ay (37b)
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The MCS could also take place in the U-space, but additional transformations would be
needed as described in step (3) of the Nataf’s transformation presented in the previous section.

(b) The mean of the estimator Pf of the failure probability of a correlated problem from
eqn. (37a) can be expressed as the expectation with respect to /. (x,.) distributions

as shown:
N N e e
E(p)=—1 «&Y(x).RHBe(X )i 7, (38)
=1

(c) The variance of the estimator Pf'- is as follows:
Var|P, ]_—{j [ez Ol f( dX — Pz} (39)

The upper bound for the failure probability estimate of the original correlated problem
and its variance, can be related to the estimates of the failure probability P_;.) and its variance

Var[P_,Q ] =P/ (1 - P} )/ N of a hypothetically uncorrelated problem as:
Pf < %i%ﬁmaxl[g(xi )]: c¢max %il[g( l )] C¢maxPO (40)
i=1 i=1

var|P, < %[cmxk,. —P2]< ComeFs P, <, Var|P!] (41)

The value of ¢ in eqns. (40,41) can be obtained by applying a deterministic

¢ max

constraint optimization or by a trial simulation. The number of samples N, for the failure
probability estimates P/', of a correlated problem can be related to the number of samples N

of a hypothetically uncorrelated problem used to obtain the prescribed coefficient of variation
COV = [(1 - P/ )/ (N oP; )]1/2 , on the basis of eqns. (40,41) as follows:

1/2
cov <| L c¢mi—1 (42)
N P,

) 1 Nonq 1
Np <CoVv c¢max——1 =—5 c¢max——1 ~ N, o€ pmax (43)
Pf 1- Pf Pf
3.2.  The estimates of the derivative values by simulation

(a) The eqn. (29) can be rewritten using eqn. (36) as follows:
oP

ro = e, [ [e, eI, (1, )i (44)

ap km

The mean of the derivative estimate of the failure probability to correlation coefficient
from eqn. (44) x,, can be expressed as the expectation with respect to /. (x,.) distributions

as shown:

(”km ) ekm ZC¢ fom (~)I[g(xi ) =i (45)
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Comparing eqn. (45) to eqn. (38), it is easy to recognize that calculation of matrix of
derivatives 7Z'=[7Z'km] in eqn. (45), requires only additional multiplication of the ¢, (Yi,R‘)

defined in eqn. (35) by e,,d,, (Yi, R') from eqn. (16) for each Y;. Note that ¢, (.) is calculated
the anyway in estimation of failure probability together with Y =R"" Y,

(b) The variance of the estimator 7,, of the eqn. (44) is as follows:

varlz,, |- km{J ool O OF 2P T 7, ()X - n} (46)

The upper bounds of the derivative estimate and its variance from eqns. (45,46) can be
related to failure probabilities Py and Pf(-) , as well as to their variances as it is shown by:

i <| . € P < Cpma| i, € Pr (47)
Var[;r,'(m ]< Le,fm {cgjdkm max ﬂkm‘— r; }<

N (48)
< %e,fm {c¢dkm i 1D i [ P, - ﬁkm }< e, [c¢d ] Var[PO]

The value of |dkm o

, as well as the value of ‘c¢dkm‘ , in eqns. (47, 48) can be

obtained by applying a deterministic constraint optimization procedure or by a preliminary
trial simulation. The coefficient of variation of the sensitivity factor z,, can be expressed on

the basis of eqns. (47, 48), as follows:
1/2
1
—— 1} (49)
ﬂ-km|

The number of samples N; to get the prescribed coefficient of variation for the estimates

max

1
COV <e,, {F{\c s

of the sensitivity factor 7, is derived from eqn. (49) and can be presented as follows:

LY W A VP Y
ﬂ'km| _I—Pf Cim | (Co%hm|, . ”km| ~

e
km
“zor|

Ne COV{%% max

0

f
ekm‘cqﬁdkm

i

(50)
~ No

max

The eqn. (50) indicates that the prescribed coefficient of variation for the sensitivity
factor is attainable with the number of samples N; related to the number of samples N, for a
hypothetically uncorrelated problem.

The presented procedures are applicable to the crude Monte Carlo integration
procedures, as well as to sampling procedures and other variance reduction techniques, either
in the original random variable space, or in standard normal space.
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4. Analysis of sensitivity to correlations by analytical methods

The conventional sensitivity analysis within FORM is provided first [3], giving a
versatile insight into effects of correlation to reliability problem. Next, an efficient procedure
for sensitivity calculation is presented. Finally, the sensitivity analysis using the ‘fitting’
method [4], especially within SORM, is investigated.

4.1. The conventional analytical sensitivity analysis in FORM

(a) Most current methods of FORM and SORM transform the original problem into standard
normal space and fit the approximate failure surface in this transformed space. Using the

quadratic form defined in the U-space O, =U"U, the FORM safety index 4 form the I-
th failure mode can be defined as shown:

. * * 1/2 [ * %
P =g[Tr(I&}£)]0Q‘1’/2 - (U ‘U ) = 2 Gkt (1)

k=1
The solution to the optimization problem in eqn. (51) is the most probable failure point

(design point, S-point) U=U", or Y" = (Y)uzu* or X" = (X)uzu* .

The aZ is the component of the unit normal vector « to the failure surface g; directed

towards the failure set (or the direction cosine) in the design point U” in the U-space defined
as follows:

*

o, =a .=

: e o )Zr g

U

agi/auk :ﬁz % (52)
ou, )

J

The probability of failure Py, as presented in eqn. (6) for the i-th failure mode, can be
approximately expressed for closely linear failure surfaces by means of safety index from eqn.

(51):
P =o(-p) (53)

Conventional approach for sensitivities to correlation of FORM estimates for a single
failure mode, e.g. [3], yields to the following approximate (see [4]) values for derivatives:

| ., Ou,
OB, _ (aQuJ = Y (s4a)
apkm 2ﬂz apkm u=U" Jj=1 . apkm

The error of replacing the derivative of £ of true design point with the derivative of § of
original design point w.r.t py, is of order Ap; as shown in [4] and the derivative should be

used in this context.
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The eqn. (54a) can be rewritten in matrix form using eq. (17) and (51) as follows:

B, :eﬂLUT 8UJ G yrp OA (54b)
apkm ﬁ[ 8pkm u” ﬂi apkm

In addition, the derivative of the gradient vector Vg, = {a%u } in f-point reads:
k

oA" .
—J (ng)z

= ekm a
u* km

a(Vg u )i
6pkm

(54¢)

x*

The derivatives of the failure probability w.r.t correlation coefficient is easily obtained
using eqns. (54) as follows

0P _ o\ OB
o #(B,) > (55)

(b) Three approaches are used to calculate 85, /0p,,,

(1) Derivatives of the safety index /3 to correlation coefficients p,, , k,m=1,2,....n,

based on Cholesky’s decomposition (A=L) applied on FORM concept, see eqns.
(54a) and (21), using Nataf’s model, can be presented as follows:

0B, _ e O
—=e, ) a )V, — (56)
P ,Z‘ ’IZI: " 0P

The derivatives of the failure surface gradient vector components can be obtained using
eqn. (54c¢) as follows:

0 | Og, " OA,. Ox, Og.
98 =e, z_ff ox, 98 (57)
P \ OU; ) - = 0P OV OX; | o e

1

. . 0 .
The terms Ju/0p and 61/0p are given in Appendix B. The terms ai are defined in
Vi
eqn. (10).

(2) Derivatives of the safety index f;to correlation coefficients p,,, m,n=1,2,...,n,

based on spectral decomposition (A = VAW) applied to FORM concept, see eqn.
(28), using Nataf’s model, can be presented as follows:

P _ —eﬂU*TA”Z[N LY }A”ZU* = Sy Ty (58)
apkm ﬂi 2 apkm i
(3) An efficient procedure form calculation of all the derivatives at once, convenient
also for larger problems, can be obtained using the alternative expression of FORM
safety index £ in eqn. (51), as follows:
1/2

B =(YRY) (59)

1
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Using earlier considerations in section 2.2 and eqn. (15), with Y = R'Y", the
derivative can be obtained as follows for the i-th failure surface:

o e 7 OR'T . e on (3 ) (7
ST (Y y,-j= 2 e Yo = =22, ) () (60)
a,Okm 2,8, alokm Zﬁ ﬁi

The elements of the sensitivity matrices B} and II; for the i-th failure mode, can

therefore be presented simply as follows:

op.
,-km=a%= Senr.) (61a)
km i
oP,
1_[ikm = 6 :_¢(ﬂ1) ikm (61b)
pkm

Note that the procedure (3) is simpler and faster than the procedures (1) and (2) which
require derivatives of transformation matrices, particularly for larger problems. Procedures (1)
and (2) give better insight into the local changes in the vicinity of the design point.

(c¢) Regarding the structural system analysis, the asymptotic values of the sensitivity factors
to distributional parameters for fully dependent and fully independent series system, as
well as for parallel systems, are considered, [3].

The sensitivity estimate of system reliability may be quite inaccurate. Improvements for
series systems using bimodal joint probabilities of failure Pj, based on Ditlevsen’s upper
bound P, , can be obtained as shown:

Z Z (mg&] (62)

apkm 2 0P
The joint failure probability P; in eqn. (62) can be expressed by means of a single
integral over the bivariate normal PDF ¢,|5,, 8 j;z) with zero mean values, unit variances and

km

8p km

correlation coefficient z, with the upper integration bound equal to the mode correlation
coefficient y;, as follows:

P=F( b)F(- b )+ %fz(bi,bj;z)dz (63)
0

y

The derivatives of the joint failure probability P; to correlation coefficient py, can be
expressed as shown:

oF,
Iijkm =% ap = CyBlkm + Cth]km +¢2 (ﬂi,ﬂj;yij )Hijkm (648')
ke

where the derivative terms B, and B, are given in eqn. (6la). The H,, terms in
eqn. (64a) for the derivatives of the mode correlation coefficients y, w.r.t. correlation

coefficients py, are obtained via derivatives of the cosine of the angle between the normalized
gradient vectors ¢; and ¢; in the design points U, and Uj. :

A (;k),(;m>j+(;m>i<5k)j%[(;m;k}(;mz” o

Hi'm m
M Wl | BB BB, g )\ B
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The terms Cy, C;; and a development of H,, =0y, / op,, are given in Appendix C.

Alternatively, less accurate method using “conditional safety indices” [3] can be applied to
avoid the numerical integration. Finally, the local derivatives of the failure probability to the
correlation matrix R, based on Ditlevsen’s upper bound are:

maxP ? (65)

e
pkm = I P I 8 Cljkm
=1

The derivatives defined by eqns. (61a,b, 64a,b, 65) within the FORM concept can be
used in the following sensitivity matrices:

B* = [Bikmskm]={ %, skm} - sensitivities of safety indices
km
oy,
H = [H oS om ]= 7y St - sensitivities of bimodal correlation coefficient y;
_apkm .
N I aP ] (13541 b 1+
' =[1,,s,, |=| —-s,, - sensitivities of “1”-th mode failure probability
L apkm
S_[ ]_ OF, . babilit
X=X Sim )= —6,0 St sensitivities of joint failure probabilities
km
(for modes 7 and )
s OP, e . o
7 =z,s, ]= ?S o - sensitivity of failure probability (upper bound)
km

These sensitivity matrices, jointly used, enable identification of most significant
parameters involving correlations on the structural reliability problems.

4.2.  The sensitivity analysis using the “fitting” method

The method is based on the fitting of each of the failure surfaces to a set of points in the
standard normal space, [4]. A change in a parameter changes the transformation into the
standard normal space. The failure probability based on the new failure surfaces is used to
estimate the sensitivity. The set of n+1 arbitrarily selected non-collinear points in the vicinity
of the design point is used to define the linearized failure surface in the original space. The
same set of points is also used to get the linearized failure surface in the new space, using the
inverse transforms. The inverse transforms when the Cholesky’s decomposition is applied for
all j=1,2,...,n, are easily derived from eqn. (13) for a prescribed finite difference Ap as

follows:

T—l

p+ip -

—Z e[ (x,)] (66)

For the spectral decomposition, the inverse transformation from eqn. (17) is as shown:

T 1

prip °

*+Ap _ (iipﬂp)fl/zz p+Ap(D4 [F ] (67)

i=1

The transformations in eqns. (66, 67) can be provided by repeated matrix manipulations
for a changed parameter Ap .
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The elements of the transformation matrices for incremented values of correlation
coefficients in eqns. (66,67) can be assessed by using the decomposition matrix derivatives
given in Appendix B and section 2.2.2., as shown:

1~ it + (0w, Jop)Ap (68)

Ve s vl +(0v, Jop)Ap and A0 = 20 +(04, /op)Ap (69)

g

The coordinates of the point in the transformed standard normal space also can be
assessed by using the derivatives from eqns. (14) and (18), if available, as shown:

o0 p + 04 70
uj ~I/tj +$ O ( )

For a small increment in the correlation coefficient, the analytical method can be used to
obtain a new linear approximation for each component. These new linear approximations can
be used to estimate the changed failure probability and the sensitivity of the structural system.

For Ditlevsen’s bound in eqn. (61) in general the followings valid:

max P/ —max P/
Ap Ap i=1 J<i Jj<i

AP PP+AP _PP 1y PP+AP PP y
u _ “u u Z ) (71)

The eqn. (71) can be solved by recalculating the upper Ditlevsen’s bound for the
incremented value of the correlation coefficient p.

The advantage of the method [2] is that it can be used to efficiently and accurately
compute sensitivities of safety measures with respect to the correlation coefficients form
SORM estimates. The method for computing the sensitivities for SORM is similar to that for
FORM. The points used in the original standard normal space to fit the second order surface
are transformed into the new standard normal space and a new second order surface is used to
compute the sensitivity of the SORM estimates. The failure probability corresponding to this
new second-order surface can be used to compute the sensitivity of the SORM estimates.

5. EXAMPLES FOR SENSITIVITY ANALYSIS OF RELIABILITY MEASURES TO
CORRELATION COEFFICIENTS

5.1.  Example 1: Linear failure functions

A problem with two dependent random variables, defined by Gaussian marginal
distributions x;: N(, =8, 6, =2); x2: N(i, =5, o, =1) and by the correlation coefficient
p,, between the design variables, is considered first. The two linear limit state functions are
defined as g,(x,,x,)=x —x, and g,(x,,x,)=x, +x, —9. FORM results considering failure
probabilities and sensitivity factors for selected values of correlation coefficient p = p,, are
presented in Table 1.
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Table 1 FORM results for different values of r, - Example 1

Tablica 1. FORM rezultati za razne vrijednosti I, - Primjer 1

po | o | pa | p| m | pr| 0/dp | Op.Jop |Op/op | Oy/0p | 0P, 0P

.00 .090 .037 .020 .600 .109 -.087 +.058 +.012 .000 -.0415
.05  .085 .039 .020 .605 .107 -.089 +.058 +.009 .020 -.0415
25 .067 .051 .020 612 .099 -.097 +.057 +.002 .102 -.0415
S50 042 066 .018 .655 .088 -.103 +.055 -.012 .249 -.0354
J5 .017  .079 .012 750 .083 -.089 +.052 -.037 562 .0000

95 .003 .089 .003 923 .089 -.043 +.049 -.042 1.329  +.0492
999 .001 .091 .001 .998 .091 -.027 +.049 -.003 1.766  +.0500

Note restriction on Ap, - value, from [4], in applying derivative terms. Next, the

prediction of the sample size for the MCS assessment of the sensitivities is considered. For
P, =0.5, the maximal values of ¢, =18, d =4 and [cqja’lzjmax =72 are obtained in a

trial simulation procedure. The number of samples needed to obtain the prescribed level of
accuracy of the sensitivity factor is predicted according to eqn. (50) as
N, < N073(-109/ .0354)=220N, . The variance of the sensitivity factor estimates is predicted
to be less then 2.6/N, where N is the actual sample size.

Finally, a simulation experiment of 100 independent MCS was carried through to obtain
the mean and the variance of the estimates the sensitivity factors. The convergence rate of the

experiment with the 95% confidence intervals and the variance upper bound prediction
Var(s)"*® compared to the experimentally obtained variance Var(s) are presented in Table 2.

¢ max 12, max

Table 2 Crude MCS results for r,,= 0.5 - Example 1

Tablica 2. Rezultati grube Monte Carlo simulacije za r,= 0.5 - Primjer 1

N pr Var(py) cov. 0p; / op Var Varpp C.0.V.

500 .092+.003  3.6x 10" 21 -031£005 22x10° (52x10°) 1.34
1000 .090+.002  2.3x10* 17 -031+005 12x10° (2.6x10°)  1.26
2000 .089+.001 1.0x 10™ A1 -033+004 59x10%  (1.3x107) 073
5000 .088+.001  3.4x10° 07  -036+002 23x10%  (52x10% 044

10000 .088+.001 1.8x107° 05  -036+001 1.1x10%  (26x10%  0.29

Comments on results of Example 1:

— MCS method, see Table 2, gives coinciding results to FORM, see Table 1, i.e. the
exact result.

— The convergence rate of the sensitivity factor is slower then the rate of convergence
of the failure probability itself, see Table 2, and follows the predictions based on
eqn. (50).

— The total sensitivity to correlation can be assessed from Table 1 as follows:

P (p=.75)-P,(p=0)=-0.026.

5.2.  Example 2: Component reliability, nonlinear failure function

Component reliability with three dependent random variables given by marginal
distributions and correlation matrix is considered.
Distributions:  x;: lognormal (g, =500, &, =100)
x2: lognormal (u, = 2000, o, =400)
x3: uniform (g, =35, o, =0.5)
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Deterministic parameter: t=1.0

1.0 03 0.2
Correlation matrix: R=103 1.0 0.2
02 02 1.0
2
x X
Limit state function: XXXy ) =1 ———— — !
gl )=t 1000x, KzoooxJ

Crude MCS result for the probability of failure with the 95% confidence interval,
obtained in a simulational experiment of 100 independent runs with 10000 samples each, is as
shown:

P, =0.0342+0.0005, c.0.v.=0.05, (B, =1.822).

FORM results for the failure probability and for the safety index are as shown:
P, =0.0381, p=1.772

The prediction of the upper bounds of the sample size and of the variance according to
eqns. (50,48) are presented in Table 3.

Table 3 Simple size and variance prediction — Example 2
Tablica 3. Predvidanje veli¢ine i varijance uzorka —Primjer 2

0P [OPr Cpmn (¢, )max

k m pkm Iol'cm ﬂ.km P/O Ns < Var(ﬂ-km ) <
2 1 300 304 1.0078 20 60 +.0427 .0468 65No 2.6/N
3 1 200 .206 1.0330 20 60 -.0738 .0468 38No 4.4/N
3 2 200 .206 1.0330 20 30 -.0388 .0468 36No 1.1/N

Table 4 presents the results of the sensitivity analysis using FORM procedure for
component reliability and compared to the MCS experiment of 100 independent runs of
10000 samples each.

Table 4 Sensitivity of component probability of failure — Example 2
Tablica 4. Senzitivnost vjerojatnosti oSte¢enja komponente na korelacije — Primjer 2

FORM MONTE CARLO SIMULATION

k m 0p, /apkm an /apkm an /5pkm Var Var"™® C.0.V.
21 -.515 +.0426  +037+.001 43x10° 26x 107 18
3 1 +.890 -.0738 -060+.001 1.7x10° 44 x 107 .07
32 +.468 -.0388 -034+.001 12x10° 11x10° .10

Next, the total sensitivity to correlations is checked by repeated FORM calculations for
a hypothetically uncorrelated problem and for a highly correlated problem giving results:

B =167, (P;) ~ =0.047; B, =247, (P,)  =0.007;

Aﬂmt - IBhicorr _IBuncorr - 080 ? (APf )glo - (Pf )hicorr N (Pf )uncorr - _040 5
The results can be compared to A(Pf)=—0.070and A(f)=0.843 in FORM, and to

A(P,)=-0.057 in MCS.
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5.3. Example 3: System reliability

The system reliability of a problem with three limit state functions and seven dependent
random variables defined by marginal distributions and correlation coefficients is considered.

Margin distributions:

X1, X2 : Weibull (z =134, ¢ =23)  x3: Uniform (=160, o =35)

X4, X5 : Weibull (,u =150, o = 30) Xg : Weibull (y =65, o= 20)

X7: uniform (x4, =50, o, =15), Deterministic parameter: £=5.0
Following correlation coefficients are given:
p1=4, p13=2, p14=.2, p15=.2, Pr3=4, pra=.2, pr5=.2, p3a=.4, p35=.2, pss—=.4, and pg;=.4,
Limit state functions under considerations are as follows:

gl(X)le +X, +x, +x5— X4t
2, (X)=x, + 20, +2x, + x5 —x t—x,t

g3(X)=x2 +2x; +x, —x,t

Table 5 presents the sensitivity factors based on upper probability bound, using the
FORM procedures for the system reliability and compared to the direct numerical calculation,
using finite difference of Ap=0.01(FDM), as well as the crude MCS results from an

experiment of 50 runs with 30x10000 samples each.

Table 5 Sensitivity of system reliability to correlations— Example 2
Tablica 5. Senzitivnost sistemske pouzdanosti na korelacije — Primjer 2

K m p, Pel%u gomy  rorm %P o, (FDM)
FORM MCS
2 1 04 -029 (-029)  +.0040  +0034+.0012 145  (+.0040)
301 02 -040 (-041)  +.0055  +0047+.0006 0.52  (+.0056)
4 1 02  -074 (-072)  +0101  +.0077+.0007 036  (+.0099)
5 1 02  -056 (-055)  +.0077  +.0074+.0018 1.0l  (+.0076)
32 04 4030 (+030)  -.0040  -.0028+0006 0.97  (-0040)
4 2 02 -025 (-022)  +.0033  +0030£0007 1.13  (+.0031)
5 2 02  -037 (-036) 0051  +0050£.0021 1.71  (+.0050)
4 3 04  -l6l (-163)  +.0220 +0190£.0010 020  (+.0223)
5 3 02  -054 (-056)  +.0073  +0061£.0005 035  (+.0076)
5 4 04 -097 (-095)  +.0133  +0115:0011 043  (+.0130)
7 6 04  -180 (-176)  +.0245  +0217+.0006 0.10  (+.0240)
Total: ~730 (-665) _ +.0975 ~0862 (+.0975)

FORM result for hypothetically uncorrelated problem are as shown:
P, =0.035 and f,,.., =181

Suncorr

FORM result for hypothetically highly correlated problem (pkm =0.98, forall k,m) are:
P,

Shicorr

=0.111 and B, =121
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The total sensitivities to correlation based on upper bounds are as follows:

IBhicorr - IBuncorr = _060 ’ PShicorr - PSuncorr = 0076 .

The FORM results are presented also in the matrix form as shown:

[ .0000 +.0040 +.0055 +.0102 +.0077 .0000  .0000 |
+.0040  .0000 -.0041 +.0033 +.0052 .0000  .0000
+.0055 -.0041  .0000 +.0219 +.0074 .0000  .0000

7°=|+.0102 +.0033 +.0219 .0000 +.0133 .0000  .0000

+.0077 +.0052 +.0074 +.0133  .0000  .0000  .0000
.0000  .0000  .0000  .0000  .0000 .0000 +.0246
.0000  .0000  .0000  .0000  .0000 +.0246  .0000

Following measures and norms, see eqns. (33), are obtained from the matrix 7':
Maximal derivations are

A(P)=0.099, +A(P.)=0.1031, — A(P.)=0.0206, L,;=0.1072, L,=0.00223,
The most influential correlation coefficient is ps7 and the most influential variable
1S x4 from
L, =0.0246 (k=6,m=17), L, =0.0487 (k=4)

The sensitivity of mode correlation coefficient y to variable correlation coefficients pg7,
obtained by FORM is demonstrated in the matrix form as follows:

5 0.00 (sym)
H67=[H!j67]:{ y”}: +0.09  0.00
o +0.28 +0.06 0.00

The effect of the coefficient ps7 to the probability upper bound P, and to the sensitivity
factor obtained by FORM and by MCS experiment in 50 runs wit x 30x10000 samples, are
given in Table 6.

Table 6 Sensitivity of the system probability of failure — Example 3
Tablica 6. Senzitivnost vjerojatnosti oStecenja sistema na korelacije — Primjer 3

FORM MONTE CARLO SIMULATIONS
P71 p, OP,/0p Py C.0.V. oP, / 0P, Var C.0.V.
.00 .061 028 0455+.0004 0.04  .0198+.0004 2.4x10° 0.08
20 .066 026 .0501+.0005  0.05 0211+.0005 29x107 0.08
40 071 024 0543+.0006 0.06  .0271+.0006 48x107° 0.10
.60 .076 .023 0586+.0007  0.07 0235+.0007 8.1x107 0.12
.80 .080 021 0651+.0014  0.08 .0286+.0026 1.2x10* 0.38
95 083 020 0696+.0051 030  .0463+.0300 1.7 x 107 2.83
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5.4. The practical example

The effect of correlation between the still water bending moment and the wave bending
moment on a tanker structure is investigated, [5]. This correlation arises because of a week
dependence of the wave bending moment on the weight distribution.

The limit state function is given in the form:

glx, . SM,o,,x M, ,x,.x .M, \)=xSMc,—x M, —xxM,

cr?7Vsw?d sw?2

The distributions of random variables are given in Table 7.

Table 7 Distribution of random variables in the practical example
Tablica 7. Distribucije slu¢ajnih varijabli u praktiénom primjeru

| Var Distribution Mean value C.0.V. Description
SM Lognormal 4.658x10° m cm 0.04 Effective section modulus
M,, Normal 1.813x10° KNm 0.40 Stillwater bending moment
M, Gumbel 4.855x10° kNm 0.09 Weve-induced bending moment
Oor Lognormal 17.0 kN/cm® 0.07 Critical stress

The model uncertainty is defined by random variables, see Table 8.

Table 8 Distributions of model uncertainties and parameters
Tablica 8. Distribucija neizvjesnosti i parametara modela u prakti¢nom primjeru

| var  Distribution Mean C.O.V. Uncertainty due to:
Xy N 1.0 0.15 Strength
Xew N 1.0 0.05 Still watter bending moment
X, N 0.9 0.15 Wave bending moment due to linear analysis
X; N 1.15 0.03 Nonlinearities in sagging

The FORM results of repeated calculations reported in Ref. [5] with correlation
coefficient of p=0.0, 0.02, 0.05 and 0.08, are /=2.25, 2.23, 2.18 and 2.13 respectively. The
sensitivity factor can be assessed as AS/Ap =(2.13-2.25)/0.8 =-0.15.

The equivalent result for sensitivity factors can be obtained immediately in the FORM
procedure according to the analytical procedure presented in the paper as follows:

oP
P 015 and 20049
op op

6. CONCLUSIONS

e Derivatives of Nataf correlation matrix form commonly used two-parametric statistical
distributions are given. Derivative of multinormal PDF is conveniently split into the
product of PDF with a simple function of correlation matrix and coordinates of point
considered, for further use in simulation procedures.

e The presented Monte Carlo simulation procedure for estimation of sensitivity factors to
correlations using derivatives of multinormal PDF with respect to correlation coefficients
gives accurate results, but generally requires much more samples than the estimation of
the failure probability itself. The paper presents guidelines for sample size upper bound
prediction of sensitivity factor estimation in terms of the sample size of the reliability
calculation.

e The paper also considers the derivatives of the transformation matrices applied to
numerical procedures. The derivatives of the Cholesky’s decomposition matrix are
available in a form of two recursive procedures. The derivatives of the eigenvalues and
eigenvector in the spectral decomposition are available using a perturbation method. The
Cholesky’s decomposition is numerically more efficient than the spectral decomposition.
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But the spectral decomposition renders information about sensitivities in terms of
principal axes.

The conventional numerical approach in FORM for the sensitivity analysis of
componental reliability measures w.r.t correlations based on derivatives of transformation
matrices is developed. Sensitivity estimation within the conventional approach of system
reliability measures w.r.t correlations in FORM is formulated as an upper bound and
proven in this sense sufficiently accurate.

The paper presents a comprehensive and numerically efficient method for sensitivity
analysis in FORM. It require neither the derivatives of the transformation matrices nor the
recalculation of the transformation matrices and enables a direct calculation of sensitivity
matrices for component and system reliability measures with respect to all correlation
coefficients simultaneously.

The procedure for sensitivity analysis of component and system failure probabilities base
on the “fitting” method is directly straightforward by applicable to correlation
coefficients, either in FORM or in SORM. The “fitting” method is based on the
recalculation of the transformation matrices for incremented values of correlation
coefficients, being in this sense numerically accurate but quite inefficient.

The sensitivity matrices w.r.t correlation coefficients or their parameters are available as
the intermediate results of the failure probability calculation. These matrices, used jointly,
enable efficient identification of most significant correlation related parameters in the
reliability analysis.

All the presented methods can be easily implemented to the existing procedures and
computer codes for the reliability analysis and neither of them requires additional
structural response evaluation.
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APPENDIX A

The relation of p and p is uniquely expressed as p,, =p,, F, see Ref. [2] for
commonly used two-parametric distributions.

The derivatives of the terms in the Nataf correlation matrix can be expressed as shown:

apkm +pkm aF’i, k’m=1,2,...,n;

ap km o ap km

Two groups of two parametric distributions are considered

Group | Group Il

U-Uniform LN-Lognormal

SE-Shifted exponential GM-Gamma

SR-Shifted Rayleigh T2L-Type-II Largest value
T1L-Type-I Largest value T3S-Type-II smallest value

T2S-Type-II Smallest value

There are five categories of formulae for F. In some cases, F depends also on the

coefficient of variation o. The values for 5 Y are given for each of five categories.
Pij

OF,
(I Cat.) Fj=const. for x; belonging to group 1 and x; normal: 6/0” =0.
i

oF,
(I Cat) F}, = F(5j) for x; belonging to group 2 and x; normal: —-=0

op;
(111 Cat.) F,=F (pl.j) for both x; and x; belonging to group 1:
x; U SE SR TIL T1S
U -.094p
SE +.058p -.367+.306p
SR -.016p -.100+.042p  -.029p
TIL +.0300 +.154+.062p +.045+.012p +.069+.010p
T1S +.0300 +.154+.062p +.045+.012p +.069+.010p -069+.010p
(IV Cat.) F,=F (py,é‘ j) for x; belonging to group 1 and x; belonging to group 2:
X U SE SR TIL T1S

LN  +.020p +.003+050p-4375 +001+.008p-.1305  +.001+.008p-.1975  -.001+.086p+.1975
GM  +.004p +.003+.028p-2965 +.001+.004p-0905 +.001+.006p-.1325  -.001+.006p+.1325
T2L  +.148p  -.152+260p-7285 -.038+.056p-2295  -.060+.040p-3325  -.001+.040p+.3325
T3L  -010p +145+.020p-4675  +.042-.1365 +.065+.006p-2115  -.065+.006p+2115;
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(VCat) F= F(p,.j,éi,éj) for both x; and x; belonging to group 2:

For x; and x; lognormally distributed:

x;’ LN GM T2L T3S
GM  +.033+.004p-.1045-.1195 +.022+.002p-.077(5+3)
+.082+.036p-4415-2778 +.056+.024p-3135-.1825  +.054-.110p-.0605"-

T2L -570(6+8)+.514p(5+6)-
-371(5+9)

3L +.052p +.034+.0060-.1115 +.146+.026p+.0055- -.004-.0020-
-4816; -.005(5+5)

For both x; and x; lognormally distributed:
oF(p.5,.5,) . 5,0, 1

op (1 + p§l.c5'j)-ln(l + p§i§j) o,

APPENDIX B

(a) The Cholesky decomposition is of the form R=LL" or R"'=M'M.
The elements /"Lij,i =12,..,n; j=12,.,i, of the lower-triangular matrix L are as

follows:

1
i-1 3
ﬁ“ii :(pii _zj’izrjz (B-1)
r=1

1

1 < 2 . .

A = pii—zllii,,/l,,, fori>j;  A;=0 for i<j; (B-2)
i r=

The elements ,ui/.,i=1,2,...,n; j=12,...,i, of the matrix M=L" can be determined as
follows:

1

Hi =—— (B-3)

1 i—1
Hy === D Aokt Fori>js (=0 for i<j) (B-4)

i r=l1

(b) The matrix of derivatives (5%/) jof the matrix L w.r.t. p,, can be determined in
km

recursion as follows:

izﬁ. o4, (B-5)

1, 1€qr, r. M, € q I I (e
ﬂ_’fzieﬂ” ljﬂjl I | T“_,r_'_l ﬂjr Jr ”ﬂj/iu,i>j (B-6)

ﬂr km l j/'eﬂr km l Jj ﬂr km rzlg i ﬂr km i ﬂr km I Vi ﬂr km Fa
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The derivative of the matrix M can be determined as (0M/dp,, )=-M(0L/dp,, M or
in recursion as follows:

Ol _ _LZ O4; (B-7)
8/)km ﬂ’ii apkm
OuU.. il ‘ ou. A u. )
. Z(ﬂrf R j e
ap km ﬂ’ii r=j ap km ap km ﬁ’ii ap km
The derivatives of the elements of the matrix R can be obtained as follows:
0P _ < ( ou, Oty j
= H; et U, : (B-9)
6pkm VZ:k: ‘ apkm apkm

(c) If derivatives are to be calculated w.r.t all or a great number of correlation coefficients,
the procedure can be made efficient considering derivatives of the relation R=LL” w.r.t

pkm:
T
_ oL L7 oL oL
apkm apkm

(B-10)

rKM

Taking into account symmetry of R or rg, and lower triangular form of L, a system of

L L
(n2 +n)/ 2 equations in (n2 +n)/ 2 unknown terms of 2 can be formed. If they are stored

km
row by row in a vector, the coefficient matrix of the system of equations has also a lower
triangular form. Using relations (B-3) and (B-4), this matrix can be easily inverted. Each
column of the inverse matrix represents all lower triangle terms of the derivative of L matrix

w.r.t p,, stored in the same way. Only one row of coefficient matrix is needed at a time the

calculation of the needed columns.
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APPENDIX C

(a) The derivatives of the integral of the bivariate normal distribution:

1 ]ﬂi2+ﬂ?—2zﬂi,8.
O\B:,Bsz)=———y7exp| 5 ’ ’ (C-1)
2( J ) 27[(1_22)1/2 7 (I—ZZ)
w.r.t to correlation coefficient p,, can be expressed as:
o Zij 6ﬂ 8ﬂi 7ij 1
i ’ = i : + i ) i a +
apkm [-(|)‘¢2 (ﬂl ﬂj Zﬁ } (ﬂ kam ﬂj kam -(|)‘ 1 - Zz ¢2 (ﬂ ﬂj Zﬁz
(C-2)
B, 5B \i_z oy,
+| 5. —+ [ LB + S PV
(ﬁ" 0P g 0P { " (8.2 4o B, )apkm

The values of the integrals in eqns. (C-2) can be obtained by numerical integration.

The Cj; term in eqn. (64) is obtained by substitution of eqn. (C-2) in the derivative of the
eqn. (63) and the collecting the appropriate terms w.r.t 63,/dp,,, as shown:

c,=- f(b,)F (- b,)- b, %%dz+ b, %w& (C-3)
0 0

The term Cj; is obtained by collecting the terms w.r.t 94, / op,,, -

(b) The Hjjm terms in eqn (64) for the derivatives of the mode correlation coefficients y,
w.r.t. correlation coefficients p,, are obtained via derivatives of the cosine of the angle

between the normalized gradient vectors in the design points U’ and U; .

For gradient vectors the transformation between U and Y coordinates reads

a'= A" and the corresponding length of vector o reads: d = (a)TR'a))”2 . The cosine of the
angle is given by the expression:

L= (C-4)

, al a; a)l.TR'a)j

Vi=o o= 172 172
E T T

d; d; (a)iRa)l.) (a)jR a)/.)

For given w and v, is the function of elements of R'. If @ is calculated for R'=R, and

a'=a; it can be expressed as:

(C-5)
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Substituting (C-5) into (C-4), taking derivative of y, wrt p,, and noting that
ﬁl%p' =T, the following expression is obtained:
km

o, {<;k>,<;m),+<;k>,(;m>,_ ()0 (m,(;m)j} )

jim = = +
ijkm a
P km

BB, TR 5,

(c) If the mode correlation coefficient y; is expressed via design point coordinates U; and

€699

and “” as

[73LD)
1

U; of two modes

n

_ *T )
py =t )
YY)

the derivatives of the r.h.s can be expressed as:

L auls u i + ujS uis _ }/ij L 6ﬂ1 + L ﬁ/ (C_g)
ﬂiﬂj s=1 a[)km ‘ a[)km ﬂi aIOkm ﬂj apkm

* %
Uy U

The expression for ;y gives the same numerical result, but of the opposite sign than
eqn. (C-6), since it represents the rate of the change of angle between position vectors U; and

Uj and not the normals ¢; and ¢; of the tangent hyperplanes to the failure surface needed in

the calculation of ;.
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