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ABSTRACT: The design procedure for high-order 
single amplifier BP filters is presented. A method for 
the design of 2nd- and 4th-order band-pass (BP) active-
RC filters using a modified low-pass to band-pass (LP-
BP) frequency transformation, was already presented in 
previous works [1],[2]. It was shown that a BP filter 
could be realized simply by the substitution of resistors 
and capacitors of the ladder in a low-pass (LP) 
prototype filter, by serial and parallel RC circuits. Such 
a substitution results from a so-called, “lossy” LP-BP 
transformation. In this paper, the design procedure is 
extended to higher-order BP filters, such as 6th- and 8th-
order. The design procedure is simple, and the closed-
form design equations, are presented. Furthermore, it is 
shown that “impedance tapering” decreases 
sensitivities to component tolerances for the LP 
prototype, as well as for the resulting BP filter. The 
Schoeffler’s sensitivity measure is used for the 
sensitivity analysis. 
 
Index Terms: Allpole filters, BP filters, LP-BP 
transformation, low-sensitivity active filters  
 

1. INTRODUCTION 
The design of BP filters is usually performed by means 
of the well-known LP-BP frequency transformation 
applied to a LP prototype filter transfer function. The 
advantage of a passive-LC filter realization lies in the 
existence of the corresponding reactance LP-BP 
transformation, which defines the BP filter structure 
enabling a straightforward realization procedure, and 
the calculation of the element values. In previous 
works, it was shown that it is possible to find 
impedance LP-BP transformation by an active-RC 
filter, too. The design procedure is already derived for 
the 2nd- and 4th-order BP filters, which were obtained 
applying the so-called “lossy” LP-BP transformation as 
presented in [1], [2]. The circuits are of the class-4, i.e. 
they have an RC-ladder network in the positive 
feedback loop [3], [4]. In this paper we extend the 
procedure to the realization of an active-RC BP filter of 
higher–order, i.e. 6th- and 8th-order directly from a 
given 3rd- and 4th-order LP prototype, using the same 
impedance transformation. It turns out, however, that 
there are some differences between the procedures 
applied to odd-order LP prototype circuits and even 
order ones. They follow from the fact that the odd–
order LP prototype has a real pole and one or more 

pairs of complex-conjugate poles, while even-order 
prototype has only complex pole pairs. As a 
consequence, the realization of a BP filter, from an 
even-order LP prototype is more straightforward. Both 
procedures are demonstrated by the realization of 6th- 
and 8th-order BP single amplifier filters. 
It is shown in [5] that the “impedance tapering” design 
technique produces low-sensitivity allpole filters, used 
as LP prototypes. Furthermore, the application of the 
“lossy” LP-BP transformation to an impedance tapered 
LP filter, results in a low sensitivity BP filter as well 
(see [6]). In other words sensitivity to component 
tolerances of the BP filter is decreased in the same way 
as the sensitivity of the original LP prototype. 
The improvement comes with no additional cost, i.e. it 
requires only the selection of appropriate component 
values. This is verified by the use of the Schoeffler’s 
sensitivity measure. 
 

2. LP-BP TRANSFORMATION 
An even nth-order LP prototype transfer function can be 
written in the form 
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while an odd nth-order transfer function has the form 
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where ωpi are pole frequencies and qpi pole Q-factors, 
and γ is a frequency of the negative real pole. The LP-
BP frequency transformation defined by 
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gives a BP filter with the center frequency ω0 and the 
bandwidth B. The application of (3) to (1) and (2), 
doubles the filter’s order obtaining a symmetrical 2nth-
order BP filter with the transfer function 
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The transfer function (4) can be represented as a 
product of n biquadratic transfer functions of the form: 
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For odd n , there is a factor whose pole-Q, q1, is given 
by 
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 )/(01 γω= Bq , (6) 
and the pole frequency ω1 is given by 
 01 ω=ω . (7) 
The rest of the product (5) contains the factor pairs 
having equal Q-factors qi1=qi2=qi defined by 
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A procedure for the realization of an active-RC BP 
filter, which uses the “lossy” LP-BP transformation, 
pre-warps the pole frequencies and pole-Q factors of a 
given normalised LP prototype, and uses the prototype 
impedance transformation presented in Fig. 2 [1], [2]. 
The most important steps and design formulas will be 
repeated here and used in the design of higher-order, 
i.e. 6th- and 8th-order BP filters.  

    
Fig. 1 The transformation of s-variable, i.e. LP filter 
prototype pole shift for δδδδ. (a) 3rd-order. (b) 4th-order.  
By introducing a new variable p=s+δ, where δ is a real 
positive constant, we apply the transformation 
 s=p-δ (10) 
to (3) and obtain a new transfer function T1(p), whose 
poles are shifted to the right by an amount δ as shown 
in Fig. 1. The new even nth-order LP filter prototype 
transfer function is 
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and odd nth-order 

 ∏
−

=

γ

Ω+Ω+
ω⋅

⋅
Γ+
γ⋅

=
2/)1(

1
22

2

1 )/(
)(

n

i pipipi

pii

pQp
K

p
K

pT , (11b) 

where 

 Γ=γ-δ, 22 δ+δ
ω

−ω=Ω
pi

pi
pipi q

, 
δ−ω

Ω
=

2/ pipi

pi
pi q

Q . 

Application of (10) to (3), results in a “lossy”-
transformation in the variable p, given by 
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It is shown in [1], [2] that the application of the “lossy” 
LP-BP transformation, transforms resistors in the 
ladder network of the LP circuit into series RC circuits, 
and capacitors into parallel RC circuits. This 
substitution, together with impedance tapering factors r 
and ρ, which are defined in [6],[5], are shown in Fig. 2. 
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Fig. 2 Impedance tapering factors r and ρρρρ by LP-BP 
transformation. 
The substitution in Fig. 2 replaces the expression p⋅RC 
in the transfer function coefficients by: 
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Dividing both sides by RC we obtain a “lossy” LP-BP 
transformation 
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Comparing with (12), we obtain 
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where 
 CCCCRRCRCRRR bbbbaaaa /';'';';/' =⋅=⋅== . (17) 
The constant δ is not entirely free. It was shown in [1], 
[2], that the sensitivity of the filter amplitude response 
to component tolerances is minimal for 
 δ=δmin=2ω0/B. (18) 
For this case we have: 
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If, for example, C’a is arbitrarily chosen, the rest of the 
parameters can be easily calculated using 
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3. THE 6th-ORDER BP FILTER 
To construct a 6th-order BP filter, a modified 3rd-order 
LP filter shown in Fig. 3 needs to be considered. The 
filter is also a class-4 circuit. 

V2V1 C =C1

C = =C/2 2ρC’ +C’’2 2C’’ =C /2 µ2

C =C/3 3ρ

R =r R2 2 R =r R3 3

R1=R’ IIR’’1 1

R’1=R /( -1)1 α

R’’1=R /1 α0< <1α
µ≥1α= R’1

R’ +R’’1 1

R =G R0

R = ( -1)F βµR0

A→∞

C’ =C2 2(1-      )1
µ

 
Fig. 3 3rd-order LP filter modified for “lossy” LP-BP 
transformation. 
In comparison to the standard 3rd-order LP filter in [5], 
[4], it is modified by introducing an additional resistor 
R1’’, which enables shifting of the real pole [1], and 
additional (optional) capacitor C2’, which ensures that 
the feedback gain βµ, where µ≥1, is large enough. The 
capacitor C2’ needs to be added for selective, i.e. 
narrow-band BP filters (because of theirs high pole-Q 
factors), while for wide-band filters, with lower pole-Q 

(b) (a) 

(11c) 
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factors, we have C2’’=C2. The voltage transfer function 
T(s) for the LP prototype circuit has the form given by 
(2). The coefficients ai (i=1,2) in terms of circuit 
components are the same as the coefficients of standard 
3rd-order LP filters [5], [4]. This fact is helpful, because 
for the design of a filter in Fig. 3, the same equations 
[5] used for designing a standard 3rd-order LP filter can 
be used here as well. The only difference is in the 
coefficient a0’, which is 
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The coefficient a0’ defined by (21) has the numerator, 
which enables a shift of the real pole to the right. Using 
Ωp, Qp and Γ, coefficients of the new T1(p) are  
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After some calculation we obtain: 
 )/(γβµδ=α , a0’’=Ωp

2γ. (24) 
Elements of the filter in Fig. 3 can be calculated using 
standard design procedures for the 3rd-order LP filter, 
which is given in [5], from “shifted” LP coefficients: 
a0’’ given in (24), and a’i (i=1,2) given by (22). Note, 
that we use a0’’, instead of a0’. 

V2V1 C6C2

C’’4

C’4

C5C3
C1

R6R2

R’’4

R’4

R5R3
+βµ
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µ
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Fig. 4 The 6th-order BP filter circuit (using LP-BP 
transformation). 
Example 1) As an illustration the design procedure of 
the single-amplifier 6th-order active-RC BP filter shown 
in Fig. 4 is considered. The filter is derived from the 
3rd-order Chebyshev LP filter with normalized cut-off 
frequency ω–3dB=1 and 0.5 [dB] pass-band ripple, 
having normalized pole frequencies ωp=0.915518 
[rad/s], γ=0.536586 [rad/s] and the pole Q-factor 
qp=1.706189. The BP center frequency is ω0=1 [rad/s], 
and the bandwidth B=1 [rad/s], or normalized, 
Bn=B/ω0=1. The step-by-step design procedure follows:  
i) For given filter specifications, find the 3rd-order LP 
prototype filter pole parameters γ, ωp, and qp. 
ii) Calculate δ: We choose the minimum value for δ 
from (18), i.e. δ=δmin=2ω0/B=2. 
iii) Calculate the new LP prototype by shifting poles by 
δ. From (11c), the new pole parameters are: 
Ωp=1.94036 and Qp=-0.560245 and Γ=-1.46341. Note 
that Qp and Γ are negative, i.e., poles lie in the right-
half p-plane. 
iv) Realize the new LP prototype circuit components:  
From (24), calculate a0’’=2.02025, and from (22) 
a’1=8.83341 and a’2=-4.92683. Applying the standard 
design procedure for the 3rd-order LP filter on the 

circuit in Fig. 3, we choose: ρ2=3, ρ3=9, C1=C=2, R1=R 
and the LP-prototype filter design frequency (see [5]) 
ωd=(RC)-1=0.15. Note that ωd<ωdmax=0.204429 from 
[5]. We obtain r2=0.284177, r3=0.158724, β=2.17847 
and the normalized value R1= )/(1 CR dω= =3.333. 
After that, we calculate α from (24) to realize R1’ and 
R1’’ and the coefficient a0’. If α>1, then we introduce a 
factor µ>1. From (24) α=1.71095, if µ=1. We must, 
therefore, choose µ>1, for example µ=2, and then we 
obtain α=0.855476, which is realizable by splitting 
input resistor R1 as shown in Fig. 3. With the additional 
capacitor C2’ we realize µ=2 as presented in Fig. 3. It 
can be shown that higher values of µ increase the 
sensitivities, and µ should be kept as low as possible. 
v) Calculate the transformed impedance component: 
Let C’a=1, from (19) we have C’b/C’a=δmin/2=1, and 
then from (20) R’a=1; C’b=1; and R’b=1. 
vi) Calculate the components of the BP filter: Using 
normalized R and C values from step iv), and (17) 
element values are: Ra=R⋅R’a=3.333; Ca=C’a/R= 0.3; 
Rb=R’b/C=0.5; and Cb=C⋅C’b=2. BP filter components 
are R1=Ra; R2=Rb; R3=r2Ra; R4=ρ2Rb; R5=r3Ra; R6=ρ3Rb; 
C1=Ca; C2=Cb; C3=Ca/r2; C4=Cb/ρ2; C5=Ca/r3; 
C6=Cb/ρ3. Fig. 5 shows the transfer function magnitude 
α(ω)=20log TBP(jω) [dB] of the circuit in Fig. 4. 

 
Fig. 5 The 6th-order Chebyshev BP filter magnitude. 
3.1.  Sensitivity analysis of the 6th-order BP filter 
In what follows we show how the impedance-tapering 
influences sensitivities of the 6th-order BP filter. 
Furthermore, we compare sensitivities of the new high-
order single amplifier (1-OA) BP filter to the cascade 
structure 2nd-order BP filter “biquads” (CAS). In order 
to minimize sensitivities, we apply impedance tapering, 
to both structures. 
Example 2) Consider a BP filter, with normalized 
central frequency ω0=1, and band-width B=1 [rad/s], 
derived from the 3rd-order Butterworth LP prototype. 
First we apply impedance tapering of capacitors to the 
LP prototype. The resulting BP filter whose normalized 
component values are given in Table 1, has a 
significant improvement of sensitivities. 
ρC ωd R1 C1 R2 C2 ρ2 ρ3 r2 r3 α β 
1 0.211 2.37 0.42 0.5 2 1 1 0.191 0.016 0.8 2.5 
3 0.253 1.98 0.51 0.5 2 3 9 0.379 0.384 0.8 2.5 
5 0.30 1.67 0.60 0.5 2 5 25 0.769 1.464 0.8 2.5 

Table 1 Normalized component values of BP filters 
applying capacitive tapering on LP prototype. 
The alternative procedure, i.e. tapering the resistors of 
the LP prototype, is efficient as well. To show this, we 
consider the BP filter component values in Table 2. For 
four values of the design frequency ωd, used to 
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construct the LP capacitively tapered filter prototype, 
we obtain the filter with component values in Table 3. 

rR ωd R1 C1 R2 C2 ρ2 ρ3 r2 r3 α β 
1 0.308 1.62 0.62 0.5 2 9.197 11.11 1 1 0.5 4.0 
3 0.354 1.41 0.71 0.5 2 71.69 3.00 3 9 0.5 4.0 
5 0.367 1.36 0.73 0.5 2 183.5 5.00 5 25 0.5 4.0 

Table 2 Normalized component values of BP filters 
applying resistive tapering. 
No. ωd R1 C1 R2 C2 ρ2 ρ3 r2 r3 α β 
1) 0.225 2.22 0.45 0.5 2 3 9 0.273 0.375 0.73 2.73 
2) 0.254 1.97 0.51 0.5 2 3 9 0.384 0.384 0.80 2.49 
3) 0.275 1.82 0.55 0.5 2 3 9 0.498 0.376 0.86 2.32 
4) 0.30 1.67 0.60 0.5 2 3 9 0.699 0.348 0.95 2.11 

Table 3 Normalized component values of BP filters 
applying capacitive tapering with various ωωωωd. 
The alternate procedure, i.e. tapering resistors of the LP 
prototype results in components given in Table 4. 
No. ωd R1 C1 R2 C2 ρ2 ρ3 r2 r3 α β 
1) 0.335 1.49 0.67 0.5 2 77.7 27.7 3 9 0.12 16.5 
2) 0.340 1.47 0.68 0.5 2 62.6 32.9 3 9 0.16 12.2 
3) 0.345 1.45 0.69 0.5 2 48.7 40.5 3 9 0.23 8.68 
4) 0.350 1.43 0.70 0.5 2 35.8 52.8 3 9 0.34 5.88 

Table 4 Normalized component values of BP filters 
applying resistive tapering with various ωωωωd. 
Sensitivity analysis is performed assuming relative 
changes of resistors and capacitors to be uncorrelated 
random variables, with a zero-mean Gaussian 
distribution and 1% standard deviation. The standard 
deviation (which is related to Schoeffler’s sensitivities) 
of the variation of the logarithmic gain ∆α=8.68588 
∆|TBP(ω)|/|TBP(ω)| [dB], with respect to passive 
elements, is calculated for filter examples from Table 1 
to Table 4 and shown in Fig. 6 (T- stands for tapering). 

  

  
Fig. 6 Sensitivities of the 6th-order Butterworth B=1 
BP filter. (a) C-Tapered, (b) R-Tapered, (c) C-Tapered 
with various ωωωωd, (d) R-Tapered with various ωωωωd. 
The BP filter desensitization obtained with a resistively 
tapered LP prototype, shown in Fig. 6(b), is similar to 
the capacitively tapered version. The influence of the 
LP prototype design frequency ωd is demonstrated in 
Fig. 6(c) and (d) for C- and R-tapered cases, 
respectively. We conclude that low-sensitivity BP 

filters can be designed applying the impedance tapering 
and optimising the BP filter, by choosing an optimum 
value of ωd. For optimum ωd value there exists min. 
sensitivity of the BP filter magnitude to component 
tolerances. 

  
Fig. 7 The sensitivity comparison of the single-
amplifier 6th-order BP filter circuit to the cascade; (b) 
Butterworth B=2. (d) Chebyshev B=2. 
In Fig. 7, we present sensitivities of various 
approximations (Butterworth and Chebyshev) and 
bandwidth B=2 compared to the cascade design. Higher 
pole-Qs in Chebyshev approximations inevitably 
produce higher sensitivities than Butterworth. In all 
cases the cascade design has lower sensitivity. 
Comparing to the narrow pass-band B=1 case in Fig. 6, 
which has high sensitivities, we can conclude that only 
impedance tapered 1-OA BP filters with the wider 
pass-band have low sensitivities, which are near to 
sensitivities of a cascade design and, therefore, are 
useful for the 1-OA BP filter realisation. This is even 
more restrictive in higher-order BP filters, for example 
8th-order, the design of which will be shown in what 
follows. 

4. THE 8th-ORDER BP FILTER 
In order to realize an 8th-order BP filter, consider the 
4th-order LP filter shown in Fig. 8. 

V2
RG

R =R ( -1)F G β

A→∞

V1

R =R1

C =C/2 2ρ C =C/4 4ρ

C =C/3 3ρC =C1

R =r R2 2 R =r R4 4R =r R3 3

 
Fig. 8 The 4th-order LP prototype filter. 
The realization of the 8th-order BP filter shown in Fig. 
9, is simpler than the realization of the 6th-order BP 
filter, because a pair of complex-conjugate poles can be 
shifted into the right by an amount δ, as shown in Fig. 
1(b), simply by increasing the gain value β. Sometimes, 
for large values of δ, the pre-warped poles can lie in the 
right-half plane.† It does not produce stability 
problems, because the shift δ is cancelled in next 
design steps. 
Example 3) As an illustration of the proposed BP filter 
design procedure, a 4th-order Chebyshev LP prototype 
filter with ω–3dB=1 and 0.5 [dB] ripple is considered. 
                                                           
† It is realizable, because the root-locus diagram of the 
class-4 filters, have branches in the right-half plane for 
enough large values of the gain β.  

(a) (b) 

(c) (d) 
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The BP filter center frequency is ω0=1 [rad/s], and B=1 
[rad/s]. The step-by-step design procedure follows: 
i) Define the 4th-order LP prototype filter pole 
parameters ωp1, ωp2, and qp1, qp2. They are: ωp1=0.9434 
[rad/s], ωp2=0.5461[rad/s], qp1=2.9405 and qp2= 0.7051. 
ii) Calculate the minimum value of δ: δ=δmin=2ω0/B=2. 
iii) Calculate the LP prototype by shifting the poles by 
δ: Its pole parameters are: Ωp1=2.06116, Qp1=-0.56023, 
Ωp2=1.65806, and Qp2=-0.514057. Qp1 and Qp2 are <0, 
i.e., the poles lie in the right-half p-plane. 
iv) Realize the new LP prototype circuit components:  
From Ωpi, Qpi (i=1,2) calculate coefficients of new 
T1(p), i.e. a0’=11.6795, a’1=-23.8175, a’2=18.8645 and 
a’3=-6.9046. Applying the standard (numerical) design 
procedure for the 4th-order LP filter and choosing: 
ρ2=3, ρ3=9, ρ3=27, C1=C=1, and ωd=0.15, we obtain 
r2=0.2685, r3=1.0088, r4=0.1166, β=1.6523 and the 
normalized value R1= )/(1 CR dω= =6.667. 
v) Calculate the transformed impedance component: 
Let C’a=1, from (19) we have C’b/C’a=δmin/2=1, and 
then from (20) R’a=1; C’b=1; and R’b=1. 
vi) Calculate the components of the 8th-order BP filter: 
From the normalized R and C values [step iv)], and (17) 
the element values are Ra=R⋅R’a=6.667; Ca=C’a/R=0.15 
Rb=R’b/C=1; and Cb=C⋅C’b=1. The BP filter compo-
nents are R1=Ra; R2=Rb; R3=r2Ra; R4=ρ2Rb; R5=r3Ra; 
R6=ρ3Rb; R7=r4Ra; R8=ρ4Rb; C1=Ca; C2=Cb; C3=Ca/r2; 
C4=Cb/ρ2; C5=Ca/r3; C6=Cb/ρ3, C7=Ca/r4; C8=Cb/ρ4. 

V2V1 C8C4

C6C2

C7C5C3C1

R8R4

R6R2

R7R5R3R1
+β

 
Fig. 9 The 8th-order BP filter circuit . 
4.1.  Sensitivity analysis of the 8th-order BP filter 
Sensitivities of the 8th-order BP filter, shown in Fig. 9, 
with Butterworth and Chebyshev approximations, and 
band-width B=2 [rad/s] compared to the cascade design 
(CAS) are presented in Fig. 10.  

  
Fig. 10 Sensitivities of the 8th-order BP filter circuit 
with; ωωωω0=1, B=2. (a) Butterworth. (b) Chebyshev. 
The narrow pass-band BP filters (for example with 
B=1), have higher pole-Q values than wider pass-band 
BP filters (with B=2) resulting in extremely high 
sensitivities thus they are not presented. From Fig. 10, 
we conclude that BP filters with B=2 (specially those 
with “low-Q” Butterworth approximation), that are 
impedance tapered, have acceptably low sensitivities, 
which are near those realized by a CAS. Consequently, 

BP filters with narrow pass-band, and approximations 
with higher pole-Q factors, are not suitable for the 
realization using our new 1-OA BP filter topology. 
This is particularly true for high-order BP filters. 

5. CONCLUSIONS 
A procedure for the design of allpole low-sensitivity, 
low-power high-order (6th and 8th) BP active-RC filters 
using impedance tapering is presented. The filters are 
designed using a “lossy” LP-BP transformation [2]. 
The filters use only one operational amplifier, and a 
minimum number of passive components. The design 
procedure is straightforward and the calculation of the 
BP filter components is very simple. Using the 
appropriate impedance tapering factors ri, ρi, and the 
design frequency ωd, while designing LP prototype 
filter, we can reduce the sensitivity to component 
tolerances of the resulting BP filter. The reduction in 
power and component count achieved with the single-
amplifier 6th- and 8th-order BP filters is obtained at a 
price: a cascade of impedance-tapered biquads is better 
on sensitivity performance. Thus the decision on which 
way to go is typically one of tradeoffs: low power and 
component count versus low sensitivity. The 
component count increases, and sensitivities get worse, 
when we realize selective, narrow-band BP filters with 
our new 1-OA filter. We conclude that the new 6th- and 
8th-order filters are most suitable for the realization of 
(non-selective) wide-band BP filters of low-power and 
low component count. Otherwise, it is recommended to 
use other low sensitivity structures for the realization of 
(selective) narrow-band BP filters, such as: the cascade 
of impedance-tapered biquads, leap-frog, follow-the-
leader feedback, cascade of biquarts, etc. 
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