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Abstract:

This work deds with the problem of potentia field based mobile robot motion
planning in unorganised environment. The new approach, using a combination of
negative gradient and vortex field based on Gauss potential functions is proposed.
Radiad Basis Function Neural Network (RBF Neura Network) learns the dependence
between Gauss function parameters and velocity of mobile robot (or relative velocity
between robot and obstacle in dynamica environment) ensuring passage between two
closaly spaced obstacles and smooth path condition for different mobile robot initial
conditions. This approach overcomes some standard problems in classica potentia
field methods like loca minima avoidance, problems of no passage between closaly
spaced obstacles, strong variation of the repulsive force near the minimum distance,
and avoidance of moving obstacles. The method is illustrated on the example of
mobile robot navigation between several closely spaced obstacles and example of
avoidance of moving obstacle.
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1. Introduction

Potential field method is one of the most promising methods, widdy used in
applications for the mobile robot motion planning. The method can be used both for
off-line global planning and for rea time loca planning in unorganised environment
when sensors measure the presence of obstacles.

This method is conceptually smple, it can be easlly implemented in a feedback form
and aso extended to moving obstacles. The basic concept of the potentia field
method is a creation of an artificial potentia field in the robot workspace in which the
robot is repulsed from obstacles and is attracted to its goal position (Khatib, 1986).
The robot follows the gradient of this potentia toward its minimum.

However, this method has some inherent limitations (Koren, 1991) which include the
following: 1) possible existence of loca minima for certain composition of target and
obstacles, 2) no passage between closely spaced obstacles (e.g., passing through a
doorframe); 3) oscillations in the presence of obstacles, and 4) oscillations in the
narrow passages. There is aso an additional problem concerning non-reachable goals
with obstacles nearby (Ge & Cui, 2000).

Various extensions of classica potential field method aimed at overcoming the above
problems, like generdised potentia field method (Krogh, 1984), vector field
histogram method (Borenstein & Koren, 1990), navigation function method (Rimon
& Koditschek, 1992), etc. are proposed.

An degant way for classical potential field method extension is the introduction of
vortex field concept (De Medio & Oriolo, 1991). The basic idea of vortex fidd
method is to replace the negative gradient of the given repulsive fidd with a
circulatory field, which reorient the velocity of the robot guiding around the obstacle.
The main advantage of this method is loca minima avoidance and stable mobile
robot movement without oscillations. However, this method has a serious drawback
because it cannot guarantee the collison avoidance, especidly when distance
between the two obstacles becomes smaller.

In order to avoid this problem a combination of classcd potentia fiedd and
circulatory fied is proposed (Khatib & Chatila, 1995), which guarantee a minimal
distance between robot and obstacle. Another possibility is the circulatory field
approach (Singh at al., 1996) motivated by a charged particle in a magnetic field
generated by a current flowing around the obstacle.

Almost al previoudy mentioned methods use hyperboloidic repulsive potential
functions (e.g., the inverse square law) for gradient and circulatory field. This choice
of repulsive potentia functions would ensure that a robot never penetrates the
boundary at which the field goes to infinity. However, in practice the choice of the
gan parameter of the repulsive potential function is very ddlicate. A small vaue of
this parameter induces a strong variation of the repulsive force near the minimum
distance and exceeds constraint on the velocity of the robot. Furthermore, it is
possible that for greater velocity of the robot, controller produce extremely large
force in very short time interval like a Dirac delta function, and response on this
impulse excitation cannot guarantee the collision avoidance. On ancther side, a great
value of the gain may over constrain the movement in place where the robot may
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pass.

In order to overcome mentioned problems, in this work, Gauss function is proposed
for a repulsve potential function instead of hyperboloidic function. In additional,
Gauss function parameters depend on velocity of the mobile robot ensuring passage
between closaly spaced obstacles and minimal or close to minimal obstacle detouring
path. Radia Basis Function (RBF) Neural Network approximates this dependence on
the base of smulation results with the best avoidance properties. On the other side,
bounded value of Gauss function near the minimum distance provide acceptable
variation of the repulsive forces satisfying control constraints. Additional
consequence of velocity dependent Gauss potential function is possbility of
avoidance of moving obstacles.

Mobile robot model and a new potentia field method are presented in section 2. In
section 3, amodel of Radia Basis Function Neural Network is shown, and in section
4 the results of smulation experiment are anaysed. Finadly, section 5 summarises the
conclusions and indicates the future research directions,

2. Potential field based motion planning

A whedled mobile robot in a two-dimensiona flat plane is considered. The main goa
Is to lead the mobile robot from the initial configuration to the final one by avoiding
obstacles.

2.1 Kinematical modd of mobile robot
The kinematical modd of wheded mobile robot is

X = U; Cosq

y=usnq , 1)

q=u,

where (X, y) Is position of the robots centre of the mass, q is orientation of the
robot, u, istrandational velocity and u, is rotationa velocity. This model applies to
a large class of mobile robots. Although the control inputs are at the velocity levd,
thisis not restrictive for real mobile robot control because the modelling can be easily
extended to include system dynamic. The main difficulties in dealing with the system
(1) are getting from the fact that it is essentidly underactuated, having less
independent inputs then motion planning variables.

A two-stage approach is convenient in solving the planning problem: (i) potential
field approach is used to generate a holonomic collison-free reference position, and
(i) tracking this using nonholonomic tracking (Kyriakopoulos at d., 1996), or loca
incremental motion planning (De Luca & Oriolo, 1994). The resulting feedback
control law uses only local information limited to the range of distance sensors.

2.2 Potential field approach
The potentia function is given as follows



U(q)=U,(q)+U,(q), 2

where g = [x y]T is the configuration vector of the robot, U,(q) is the attractive
potential, and U, (q) is the repulsive potential. The most commonly used form of
attractive potentia is

Ua(a)=>ha(a- a )" (a- ag), ®

where g, is goal position, and h , isthe gain factor that specifies the strength of the
attractive potential. The standard form of the repulsive potentid is

i1 & 1 106
I=h - T+ if r(q, £r

=12 "(4%) o (3% )E T, (4)
i if r(g,00)>ry

where r (,q, ) is minimum distance of gfrom the obstacle, g, denotes the point on
the obstacle observed by sensors, r, isthe influence rang of the repulsive potential
field, and h, isthe gain factor that specifies the strength of repulsive potential. Then

the desired configuration vector ¢ =[>‘<OI yd]T can be obtained using gradient
descent scheme

g =-Ny(Ua(a)+U, (), (5)
or aless conventional approach, vortex field method
g =-NUa(q)£INU, (q), (6)
where J is 2-dimensiona skew symmetric matrix

60 1{
J=3 ,
&1 of (7)

and + sign corresponding to counterclockwise rotation of the vortex field.
To complete the planning method, it is convenient to use

Gy =tar*Yd g . 8)
X4

Taking into account previoudy mentioned problems with choice of repulsive
potentia, in thiswork a different type of repulsive potentia is introduced
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L =)
Uf(q):}. me 2 if r(qq0)Er, 9
1 0 it r(a,0)>ro

and combination of gradient descent field and vortex field is considered
dg =-NgUa(a)- NgU, (a)+sign(a,6,)INGU, (q) , (10)

where U, ,(q) is the repulsive potentia for negative gradient field, U, ,(q) isthe
repulsive potentia for the vortex field, and

1+1 if q'(do-d)>0 & q'I(d-q)°0
sign(d,0)=i-1 if q'(do-9)>0 & q' I - q)<0. (12)
{0 if a' (do - @) £0

It can be seen from expression (11) that vortex field vanish when robot go away from
obstacle. Repulsive potentid functions U, ,(q) and U, ,(q) contains four

parameters: my, s, I, s, which can be adjusted to satisfy appropriate conditions

like passage between closely spaced obstacles. This approach can be additionally
improved by including Gauss function parameter dependence on velocity of robot.
This dependence can be determined in smulation process and then estimated using
the RBF Neura Networksin rea time working environment.

3. The basic characteristics of Radial Basis Function Neural Networks
Radial Basis Function Neural Networks (RBF Neural Networks) shown by Figure 1.

are well-known static feedforward one step learning artificial neural networks, which
can be used as tools for solving various regression and classification problems.

Fig. 1. RBF Neura Network model



Their structure is based on three mutually connected neurone layers. input, hidden
and output layer. Input layer consists of n number of input neurones, where n is
equivaent to the number of input vectors x, (r = 1, ..., n), which distributes input
values toward hidden layer neurones. Each hidden layer neurone is parameterised
with n centres (dimension of a vector t;) and every centre is related to the belonging
input vector. This means that input vector elements defines the amounts of the
centres. Number of hidden layer neurones and the centre amounts has to be
established during the learning phase. Learning an input-output mapping R" > R™)
from an example is a hypersurface reconstruction problem (Poggio & Girosi, 1989),
and is related to the classical approximation techniques. In a classical approximation
theory, the approximation (interpolation) of a certain function f can be done by using
another function F which can successfully approximate (interpolate) functionf. In the
case of RBF NN, function F belongsto the radial basis functions such as:

il
h(d)=e €2 (12)
h(d):;’a >0, (13
a/C2+d2
h(d)="c?+d?,0<b <1, (14)
h(d)=|d|, (15)

where d is an Euclidean distance between the dementsin R", and ¢, a andd areradia
basis function parameters. In another words, every neurone of a hidden layer evaluate

radia basis function h(“ (%) - (tj)rH)’ where H(xr ), - (tj)rH is previously mentioned

Euclidean distance between the i-th dement of al input vectors x. (r =1, ..., n) and
the input vectors related centres (t), of a j-th hidden layer neurone. Hidden layer is
connected with the output layer through the weight coefficients (vectorsc,, w=1, ...,
m, where m is the number of output vectors). The amounts of these coefficients are
unknown and, as a main objective, they have to be determined in the learning phase.

Radid Basis Function Neural Network maps n-dimensiona inputs to m-
dimensiona outputs in the form:

«)=4 (|06,
=1

—

M = i N, inthecaseof interpolation
— I . ) ]
1 K, inthecaseof approximation

where N is a total number of data points and K represents the number of hidden layer
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neurones. In the case of interpolation, all eements of every input vector in the
learning phase should be used for centres. This means that the number of hidden layer
neurone (K) is equal to the number of input (output) vector eements (N). On the
other hand, in the case of approximation, K islessthan N. Using the equation:

Ful% ) )= (), i=1...N, (17)
and the expression

Hjj = h(H(Xr ) - (tj)r ) (18)

for N” N (interpolation) or N~ K (approximation) matrix of radia basis functions
(Hjj), the Equation 16 can be written in the matrix form

Y=HC, (19)

where Y is an output e ements matrix.
The matrix of weight codficients C (with dimenson K~ m) can be calculated from
previous expression as

C=H"1y, (20)
for interpolation process of learning, or from the equation
C=H"Y, (22)

for approximation learning process, where H™ is Moore — Penrose pseudoinverse of a
rectangular matrix H that can be computed as

H*=(HTH) THT. 22)

According to the Equations (16) to (22) it is obvious that the weight calculations are
performed in only one step. Once established in the learning procedure, the amounts
of weights and centres are fixed for alearned problem.

4. Description and the results of an experiment

As it was mentioned in Section 1., the main idea of this work was implementation of
a new repulsive potential fields (gradient descent field and vortex field) through RBF
Neural Network, which was then used as atool for mobile robot obstacle detouring in
unorganised environment. Attraction of robot to its goal position was performed by
standard type of attractive potential field (Section 2.).
Avoidance of obstacles in unorganised robot workspace was accomplished by
defining a set of Gauss repulsive function parameters of both repulsive potentid
.



fields for different amounts of robot velocities. The parameter cdculations were
performed on behdf of the condition that for every velocity amount the parameters
should be defined in a way to ensure minimal or close to minimal obstacle detouring
path. Minimal distance between robot and obstacle was limited on 0.1 m. In order to
define the desire parameter amounts, ssmulation processes of mobile robot model
path defining (from point A to point B) in the workspace with two obstacles were
carried out for robot velocities from 0.1 to 2 m/s with step 0.1m. In that way, 20 sets
of parameters were calculated (every set is connected to one of the velocity amount)
and al of them ensured approximate equal path lengths (from 6.9154 to 6.93 m) and
robot distances from an obstacle (from 0.1004 to 0.1068 m). The results of
amulations are presented by Figure 2. (relationships between Gauss function
parameters and robot velocities) and Figure 3. (one of the obstacle detouring path for
velocity v=0.6 m/s).
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Fig. 2. Relationships between Gauss functions parameters and robot velocities
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Fig. 3. Smulated obstacle detour path for v=0.6 m/s



On behalf of the parameters smulated in the robot workspace with two obstacles,
which ensure minimal (or close to minimal) detouring paths for the specific mobile
robot velocities, it is possible to achieve smooth and short obstacle detouring paths in
the cases when there are many obstacles in the robot workspace.

In order to determine the Gauss repulsive function parameters for al velocities
between 0.1 and 2 m/s the RBF Neura Network was used for parameter
approximations. Simulated sets of parameters and their velocities were used in the
learning phase in a way that the network input vector was defined by the velocity
amounts and output vectors were defined by 3 of 4 Gauss function parameters. Gauss
function width parameter of the gradient descent field o, was not used because its

values turnout to be constant Gy = 0.1) for al the velocities. Also, several sets of
parameters for new velocities were caculated in smulation process and
approximated by RBF Neural Network. Measure of neural network performance was
specified by using a non-dimensiona error index NRMS, Normalized Root Mean
Squareerror (Mgetic, 1995), given by:

Qo=

\v/é(dn'on)2
n=1
N 1N -2 = 1
NRMS= , Sq =./—al\d,-dJ, d=—ad, , 23
Sdn d, \/Nr?:l(n ) ann ( )

where d, represents desired n-th network output, O, represents calculated network
outputs, d represents mean value of al desired outputs, s g, 1S standard deviation of

the target data and N is the number of al input data. Results for al tested velocities
are presented in Table 1.

v m/s NRMS

0.16 0.00960712
0.33 0.00192603
0.47 0.00598637
0.65 0.00854/716
0.84 0.01314951
1.14 0.00526180
1.32 0.00497401
1.43 0.00823509
1.65 0.00572662
1.83 0.00583949
1.97 0.00678056

Table 1. Test results achieved by RBF Neura Network

The NRMS error was calculated an behalf of the co-ordinates of the paths achieved
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by calculated Gauss function parameters.
One of the detouring path comparisons between the path achieved by smulation
process and RBF Neura Network with v=1.14 m/sis shown by Figure 4.
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Fig. 4. Test results of smulated and RBF NN obstacle detour path for v=1.14 m/s

As it can be noticed from the presented results, it is obvious that the RBF Neural
Network managed to achieve satisfactory approximation characteristics. This concept
was also very successfully tested on several examples with more than two obstacles
(Figure 5.) and in the problems with moving obstacles (Figure 6.).
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Fig. 5. Test results of simulated and RBF NN obstacle detour path for v=1.43 m/s
in the case of 8 obstacles in the robot workspace
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Fig. 6. Test results of simulated and RBF NN obstacle detour path for
v(robot)=0.65 m/s and v(obstacle)=1 m/s in the case of moving obstacle
In the robot workspace

5. Conclusion

In this work, a new approach to mobile robot navigation usng a combination of
negative gradient and vortex fields based on Gauss potential function is proposed.
Parameters of Gauss potential functions depend on the mobile robot velocity and
RBF Neural Network was trained to approximate this dependence on the base of
simulation results which ensure passage between closely spaced obstacles and
minima or close to minimal obstacle detouring path.

This approach provides real-time mobile robot navigation in unorganised
environment with closay spaced obstacles without local minima problems and
trgectory oscillations. In additional, velocity dependent Gauss potentia function
provides effective avoidance of moving obstacles and other mobile robots in working
environment.

These results are vauable at the level of holonomic motion planner. Next step is
incremental motion planning which employ a feasible projection strategy to modify
the output of the holonomic motion planner. Future research directions will include
implementation of the proposed approach and loca incrementa planning on redl
mobile robot system Pioneer 2 including complete robot and actuator dynamics.
Also, an additional improvement of presented results will be achieved by introducing
dependence between potentia function parameters, velocity of mobile robot and
distance from obstacles.
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