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Abstract: 
 
This work deals with the problem of potential field based mobile robot motion 
planning in unorganised environment. The new approach, using a combination of 
negative gradient and vortex field based on Gauss potential functions is proposed. 
Radial Basis Function Neural Network (RBF Neural Network) learns the dependence 
between Gauss function parameters and velocity of mobile robot (or relative velocity 
between robot and obstacle in dynamical environment) ensuring passage between two 
closely spaced obstacles and smooth path condition for different mobile robot initial 
conditions. This approach overcomes some standard problems in classical potential 
field methods like local minima avoidance, problems of no passage between closely 
spaced obstacles, strong variation of the repulsive force near the minimum distance, 
and avoidance of moving obstacles. The method is illustrated on the example of 
mobile robot navigation between several closely spaced obstacles and example of 
avoidance of moving obstacle.   
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1. Introduction 
 
Potential field method is one of the most promising methods, widely used in 
applications for the mobile robot motion planning. The method can be used both for 
off-line global planning and for real time local planning in unorganised environment 
when sensors measure the presence of obstacles.  
This method is conceptually simple, it can be easily implemented in a feedback form 
and also extended to moving obstacles. The basic concept of the potential field 
method is a creation of an artificial potential field in the robot workspace in which the 
robot is repulsed from obstacles and is attracted to its goal position (Khatib, 1986). 
The robot follows the gradient of this potential toward its minimum. 
However, this method has some inherent limitations (Koren, 1991) which include the 
following: 1) possible existence of local minima for certain composition of target and 
obstacles; 2) no passage between closely spaced obstacles (e.g., passing through a 
doorframe); 3) oscillations in the presence of obstacles; and 4) oscillations in the 
narrow passages. There is also an additional problem concerning non-reachable goals 
with obstacles nearby (Ge & Cui, 2000). 
Various extensions of classical potential field method aimed at overcoming the above 
problems, like generalised potential field method (Krogh, 1984), vector field 
histogram method (Borenstein & Koren, 1990), navigation function method (Rimon 
& Koditschek, 1992), etc. are proposed.  
An elegant way for classical potential field method extension is the introduction of 
vortex field concept (De Medio & Oriolo, 1991). The basic idea of vortex field 
method is to replace the negative gradient of the given repulsive field with a 
circulatory field, which reorient the velocity of the robot guiding around the obstacle. 
The main advantage of this method is local minima avoidance and stable mobile 
robot movement without oscillations. However, this method has a serious drawback 
because it cannot guarantee the collision avoidance, especially when distance 
between the two obstacles becomes smaller.  
In order to avoid this problem a combination of classical potential field and 
circulatory field is proposed (Khatib & Chatila, 1995), which guarantee a minimal 
distance between robot and obstacle. Another possibility is the circulatory field 
approach (Singh at al., 1996) motivated by a charged particle in a magnetic field 
generated by a current flowing around the obstacle.  
Almost all previously mentioned methods use hyperboloidic repulsive potential 
functions (e.g., the inverse square law) for gradient and circulatory field. This choice 
of repulsive potential functions would ensure that a robot never penetrates the 
boundary at which the field goes to infinity. However, in practice the choice of the 
gain parameter of the repulsive potential function is very delicate. A small value of 
this parameter induces a strong variation of the repulsive force near the minimum 
distance and exceeds constraint on the velocity of the robot. Furthermore, it is 
possible that for greater velocity of the robot, controller produce extremely large 
force in very short time interval like a Dirac delta function, and response on this 
impulse excitation cannot guarantee the collision avoidance. On another side, a great 
value of the gain may over constrain the movement in place where the robot may 
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pass.  
In order to overcome mentioned problems, in this work, Gauss function is proposed 
for a repulsive potential function instead of hyperboloidic function. In additional, 
Gauss function parameters depend on velocity of the mobile robot ensuring passage 
between closely spaced obstacles and minimal or close to minimal obstacle detouring 
path. Radial Basis Function (RBF) Neural Network approximates this dependence on 
the base of simulation results with the best avoidance properties. On the other side, 
bounded value of Gauss function near the minimum distance provide acceptable 
variation of the repulsive forces satisfying control constraints. Additional 
consequence of velocity dependent Gauss potential function is possibility of 
avoidance of moving obstacles.  
Mobile robot model and a new potential field method are presented in section 2. In 
section 3, a model of Radial Basis Function Neural Network is shown, and in section 
4 the results of simulation experiment are analysed. Finally, section 5 summarises the 
conclusions and indicates the future research directions. 
 
2. Potential field based motion planning 
 
A wheeled mobile robot in a two-dimensional flat plane is considered. The main goal 
is to lead the mobile robot from the initial configuration to the final one by avoiding 
obstacles.  
 
2.1 Kinematical model of mobile robot 
The kinematical model of wheeled mobile robot is 
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where )y,x(  is position of the robots centre of the mass, θ  is orientation of the 
robot, 1u  is translational velocity and 2u  is rotational velocity. This model applies to 
a large class of mobile robots. Although the control inputs are at the velocity level, 
this is not restrictive for real mobile robot control because the modelling can be easily 
extended to include system dynamic. The main difficulties in dealing with the system 
(1) are getting from the fact that it is essentially underactuated, having less 
independent inputs then motion planning variables.  
A two-stage approach is convenient in solving the planning problem: (i) potential 
field approach is used to generate a holonomic collision-free reference position, and 
(ii) tracking this using nonholonomic tracking (Kyriakopoulos at al., 1996), or local 
incremental motion planning (De Luca & Oriolo, 1994). The resulting feedback 
control law uses only local information limited to the range of distance sensors.  
 
2.2 Potential field approach  
The potential function is given as follows 
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where [ ]Tyxq =  is the configuration vector of the robot, )q(U a  is the attractive 
potential, and )q(U r  is the repulsive potential. The most commonly used form of 
attractive potential is  
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where gq  is goal position, and aη  is the gain factor that specifies the strength of the 
attractive potential. The standard form of the repulsive potential is 
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where )q,q( 0ρ  is minimum distance of q from the obstacle, 0q  denotes the point on 
the obstacle observed by sensors, 0ρ  is the influence rang of the repulsive potential 
field, and rη  is the gain factor that specifies the strength of repulsive potential. Then 

the desired configuration vector [ ]Tddd yxq &&& =  can be obtained using gradient 
descent scheme  
 

( ))q(U)q(Uq raqd +−∇=&  , (5) 
 
or a less conventional approach, vortex field method 
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where J  is 2-dimensional skew symmetric matrix 
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and + sign corresponding to counterclockwise rotation of the vortex field. 

To complete the planning method, it is convenient to use 
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Taking into account previously mentioned problems with choice of repulsive 
potential, in this work a different type of repulsive potential is introduced 
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and combination of gradient descent field and vortex field is considered 
 

)q(UJ)q,qsign()q(U)q(Uq v,rq0g,rqaqd ∇+∇−−∇=&  , (10) 
 
where )q(U g,r  is the repulsive potential for negative gradient field, )q(U v,r  is the 
repulsive potential for the vortex field, and  
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It can be seen from expression (11) that vortex field vanish when robot go away from 
obstacle. Repulsive potential functions )q(U g,r  and )q(U v,r  contains four 
parameters: gµ , gσ , vµ , vσ  which can be adjusted to satisfy appropriate conditions 
like passage between closely spaced obstacles. This approach can be additionally 
improved by including Gauss function parameter dependence on velocity of robot. 
This dependence can be determined in simulation process and then estimated using 
the RBF Neural Networks in real time working environment. 
 
3. The basic characteristics of Radial Basis Function Neural Networks 
 
Radial Basis Function Neural Networks (RBF Neural Networks) shown by Figure 1. 
are well-known static feedforward one step learning artificial neural networks, which 
can be used as tools for solving various regression and classification problems.  
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Fig. 1.  RBF Neural Network model 
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Their structure is based on three mutually connected neurone layers: input, hidden 
and output layer. Input layer consists of n number of input neurones, where n is 
equivalent to the number of input vectors xr (r = 1, …, n), which distributes input 
values toward hidden layer neurones. Each hidden layer neurone is parameterised 
with n centres (dimension of a vector tj) and every centre is related to the belonging 
input vector. This means that input vector elements defines the amounts of the 
centres. Number of hidden layer neurones and the centre amounts has to be 
established during the learning phase. Learning an input-output mapping (Rn à Rm) 
from an example is a hypersurface reconstruction problem (Poggio & Girosi, 1989), 
and is related to the classical approximation techniques. In a classical approximation 
theory, the approximation (interpolation) of a certain function f can be done by using 
another function F which can successfully approximate (interpolate) function f. In the 
case of RBF NN, function F belongs to the radial basis functions such as: 
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d)d(h = , (15) 
 
where d is an Euclidean distance between the elements in Rn, and c, α? and? β are radial 
basis function parameters. In another words, every neurone of a hidden layer evaluate 

radial basis function ( ) ( )( )
rjir txh − , where ( ) ( )

rjir tx −  is previously mentioned 

Euclidean distance between the i-th element of all input vectors xr (r = 1, …, n) and 
the input vectors related centres (tj)r of a j-th hidden layer neurone. Hidden layer is 
connected with the output layer through the weight coefficients (vectors cw, w = 1, …, 
m, where m is the number of output vectors). The amounts of these coefficients are 
unknown and, as a main objective, they have to be determined in the learning phase. 

Radial Basis Function Neural Network maps n-dimensional inputs to m-
dimensional outputs in the form: 
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where N is a total number of data points and K represents the number of hidden layer 
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neurones. In the case of interpolation, all elements of every input vector in the 
learning phase should be used for centres. This means that the number of hidden layer 
neurone (K) is equal to the number of input (output) vector elements (N). On the 
other hand, in the case of approximation, K is less than N. Using the equation: 
 

( )( ) ( ) N,...,1i,yxF iwirw ==  , (17) 
and the expression 
 

( ) ( )( )
rjirij txhH −=  (18) 

 
for NN ×  (interpolation) or KN ×  (approximation) matrix of radial basis functions 
(Hij), the Equation 16 can be written in the matrix form 
 

CHY =  , (19) 
 
where Y is an output elements matrix. 
The matrix of weight coefficients C (with dimension mK × ) can be calculated from 
previous expression as 
 

YHC 1−= , (20) 
 
for interpolation process of learning, or from the equation 
 

YHC += , (21) 
 
for approximation learning process, where H+ is Moore – Penrose pseudoinverse of a 
rectangular matrix H that can be computed as 
  

( ) T1T HHHH −+ = . (22) 
 
According to the Equations (16) to (22) it is obvious that the weight calculations are 
performed in only one step. Once established in the learning procedure, the amounts 
of weights and centres are fixed for a learned problem. 
 
4. Description and the results of an experiment 
 
As it was mentioned in Section 1., the main idea of this work was implementation of 
a new repulsive potential fields (gradient descent field and vortex field) through RBF 
Neural Network, which was then used as a tool for mobile robot obstacle detouring in 
unorganised environment. Attraction of robot to its goal position was performed by 
standard type of attractive potential field (Section 2.). 
Avoidance of obstacles in unorganised robot workspace was accomplished by 
defining a set of Gauss repulsive function parameters of both repulsive potential 
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fields for different amounts of robot velocities. The parameter calculations were 
performed on behalf of the condition that for every velocity amount the parameters 
should be defined in a way to ensure minimal or close to minimal obstacle detouring 
path. Minimal distance between robot and obstacle was limited on 0.1 m. In order to 
define the desire parameter amounts, simulation processes of mobile robot model 
path defining (from point A to point B) in the workspace with two obstacles were 
carried out for robot velocities from 0.1 to 2 m/s with step 0.1m. In that way, 20 sets 
of parameters were calculated (every set is connected to one of the velocity amount) 
and all of them ensured approximate equal path lengths (from 6.9154 to 6.93 m) and 
robot distances from an obstacle (from 0.1004 to 0.1068 m). The results of 
simulations are presented by Figure 2. (relationships between Gauss function 
parameters and robot velocities) and Figure 3. (one of the obstacle detouring path for 
velocity v=0.6 m/s). 
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Fig. 2.  Relationships between Gauss functions parameters and robot velocities 
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Fig. 3.  Simulated obstacle detour path for v=0.6 m/s 
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On behalf of the parameters simulated in the robot workspace with two obstacles, 
which ensure minimal (or close to minimal) detouring paths for the specific mobile 
robot velocities, it is possible to achieve smooth and short obstacle detouring paths in 
the cases when there are many obstacles in the robot workspace. 
In order to determine the Gauss repulsive function parameters for all velocities 
between 0.1 and 2 m/s the RBF Neural Network was used for parameter 
approximations. Simulated sets of parameters and their velocities were used in the 
learning phase in a way that the network input vector was defined by the velocity 
amounts and output vectors were defined by 3 of 4 Gauss function parameters. Gauss 
function width parameter of the gradient descent field sg was not used because its 
values turnout to be constant (sg = 0.1) for all the velocities. Also, several sets of 
parameters for new velocities were calculated in simulation process and 
approximated by RBF Neural Network. Measure of neural network performance was 
specified by using a non-dimensional error index NRMS, Normalized Root Mean 
Square error (Majetic, 1995), given by: 
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where dn represents desired n-th network output, On represents calculated network 
outputs, d represents mean value of all desired outputs, 

ndσ  is standard deviation of 
the target data and N is the number of all input data. Results for all tested velocities 
are presented in Table 1.  
 

v  m/s NRMS 
0.16 0.00960712 
0.33 0.00192603 
0.47 0.00598637 
0.65 0.00854716 
0.84 0.01314951 
1.14 0.00526180 
1.32 0.00497401 
1.43 0.00823509 
1.65 0.00572662 
1.83 0.00583949 
1.97 0.00678056 

 
Table 1.  Test results achieved by RBF Neural Network 
 
The NRMS error was calculated on behalf of the co-ordinates of the paths achieved 
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by calculated Gauss function parameters. 
One of the detouring path comparisons between the path achieved by simulation 
process and RBF Neural Network with v=1.14 m/s is shown by Figure 4.  
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Fig. 4.  Test results of simulated and RBF NN obstacle detour path for v=1.14 m/s 
 
As it can be noticed from the presented results, it is obvious that the RBF Neural 
Network managed to achieve satisfactory approximation characteristics. This concept 
was also very successfully tested on several examples with more than two obstacles 
(Figure 5.) and in the problems with moving obstacles (Figure 6.). 
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Fig. 5.  Test results of simulated and RBF NN obstacle detour path for v=1.43 m/s  
  in the case of 8 obstacles in the robot workspace 
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Fig. 6. Test results of simulated and RBF NN obstacle detour path for  
  v(robot)=0.65 m/s and v(obstacle)=1 m/s in the case of moving obstacle  
  in the robot workspace 
 
5. Conclusion 
 
In this work, a new approach to mobile robot navigation using a combination of 
negative gradient and vortex fields based on Gauss potential function is proposed. 
Parameters of Gauss potential functions depend on the mobile robot velocity and 
RBF Neural Network was trained to approximate this dependence on the base of 
simulation results which ensure passage between closely spaced obstacles and 
minimal or close to minimal obstacle detouring path. 
This approach provides real-time mobile robot navigation in unorganised 
environment with closely spaced obstacles without local minima problems and 
trajectory oscillations. In additional, velocity dependent Gauss potential function 
provides effective avoidance of moving obstacles and other mobile robots in working 
environment. 
These results are valuable at the level of holonomic motion planner. Next step is 
incremental motion planning which employ a feasible projection strategy to modify 
the output of the holonomic motion planner. Future research directions will include 
implementation of the proposed approach and local incremental planning on real 
mobile robot system (Pioneer 2) including complete robot and actuator dynamics. 
Also, an additional improvement of presented results will be achieved by introducing 
dependence between potential function parameters, velocity of mobile robot and 
distance from obstacles. 
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