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Abstract

This paper presents the derivation of the learning algorithm for feedback one-layer neural
network controller for optimal control of nonlinear multivariable systems with control vector
constraint. Derived is the off-line algorithm for the feedback optimal control problem with
fixed terminal time and the algorithm for the time optimal control problem. Derivation of
the algorithm is based on backpropagation through time (BPTT) algorithm, which is used
as a learning algorithm for dynamic neural networks, and it is not based on the calculus of
variations. The derived algorithms are used for feedback minimum-time control of the robot
with two degree of freedom. The paper also considers the possibilities of on-line optimal

regulation.
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trol, on-line control

1 Introduction

Generally speaking, controllers can be divided into two main classes: regulators and terminal
controllers, [1]. Regulators maintain the state of the system about some known reference state
despite external disturbances and internal uncertainties, [2]. Terminal controllers drive the sys-
tem to some final state at which point the control task is terminated. These terminal controllers
have received less attention in the literature than regulators, [3].

The only exact way to find the control law for the general nonlinear optimal feedback control
problem is solving the Hamilton-Jacobi-Bellman (HJB) partial differential equation. However,
the cost of solving HJB equation "exactly" (in a finite element approximation) rises exponentially
with the number of state variables in the system. The only special case where we actually
can solve the HJB equation exactly is time-varying linear systems with quadratic performance
criteria.

One approach in solving the HJB equation is the approximation of the solution by some kind
of universal function approximator - a neural network. Then we can try to adapt the weights
in that network to satisfy the performance criteria. The ability of neural networks to learn
arbitrary nonlinear mappings can be effectively utilised to represent the controller nonlinearity.
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Especially interesting, but also very difficult is the problem of Time Optimal Control (TOC)
with control vector constraints. There are many cases where this is applied in industry, for ex-
ample robotic manipulators, where increasing the speed of a maneuver is of primary importance,
and minimum-time control is an attractive control strategy for this purpose.

One of the approaches in solving this problem is an assumption in the form of a bang-bang
solution, which is generally sub-optimal but facilitates the resolution and implementation. Using
a three-layer backpropagation neural network, a controller that learns the switching time and
then uses it in minimum-time control was designed, [4].

This paper presents the derivation of a learning algorithm for the adjustment of weight
parameter of the one-layer neural network controller for terminal control of nonlinear systems.
The algorithm derivation is based on the backpropagation-through-time (BPTT) algorithm.
BPTT algorithm, [5, 6], is time generalization of the backpropagation algorithm (BP), in case
when the error which is minimised is given along the specified time interval. The essence of the
BP algorithm is a simple and precise calculation of derivations of the cost function in relation
to system parameters and the adjustment of parameters in line with those derivations in only
one transfer through the network. BPTT algorithm expands this method through application to
dynamic systems for which a direct calculation of derivations can be very complex. A solution
to this problem lies in the chain rule for order derivations [5, 7, 8|, which results in error
backpropagation, i.e. parameter adjustment backward in time.

2 Problem formulation

We consider the control of the continuous time-invariant deterministic nonlinear plant, repre-

sented by X
X(t) = £(x(t), u(t)), (1)

where x(t) € R and u(t) € R™ respectively denote the state vector and control vector. Function
f(-) is n - dimensional known function which is the first order differentiable in regard to x(t)

and u(t).
Further, the initial and final state are given
x(to) = %0, x(t;) =xy, (2)
and control vector constraints
lu(t)] <u™™. (3)

For the feedback control law we assumed the following form

u(t) = g (x(1),r(t)), (4)

where g(-) is an m - dimensional, appropriate generally nonlinear function to be determined
according to some performance criteria, and r(t) is exogenous reference input (in our case - final
state x7). We can use a neural network to approximate nonlinear function g(+) and what follows
is

u(t) =g (x(t),r(t), W), (5)
where W is the constant weight matrix of neural network, which can be determined according
to the performance criteria

ty
7 =min [ F (x(t) u() dr )

to
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Figure 1: Feedback control with the neural network controller.

where F'(-) is the first order differentiable scalar function. The basic structure of this neural
network controller is schematically shown in Fig. 1.

In this paper we consider a special form of function g(-), the one-layer perceptron, which
doesn’t have the ability to generalize arbitrary nonlinear function, but in our example (minimum-
time control of robot with two-degree of freedom) this isn’t significant. On the other hand, one
advantage is the minimum number of weight parameters which we need to adjust, and another
advantage is avoidance of the local minimum problem which is a characteristic of multi-layer
perceptrons. Therefore, we use the following form of the feedback control law

U](t) = Sj(Zj), j = 1,2, R (7)

where

2(t) = wjo + Y wiwi(t), (8)

max. . max
uF; zj > ul
(. . __,,max ) max
S;(zj) = 25 up™ < 25 <l 9)
__p,Mmax. ) _ p,,max
uF; zj < —uj

Function S;(z;) is the activation function in the form of a saturation limiter, which has the

threshold of saturation in +uf**, (Fig. 2). This form of the activation function is the guaranty
of the constraint satisfaction (3). The parameters w;;, (for j =1, 2, ..., m, k=1, 2, ..., n) are
synaptic weights, and wjo (for j =1, 2, ..., m) is a bias or offset.

3 Learning algorithm for weights adjustment in neurocon-

troller

The next step is the derivation of the learning algorithm for weights and bias adjustment ac-
cording to the performance criteria (6) and constrains in the form of the plant equation (1) and
the initial and final boundary condition (2). The form of the activation function (7)-(9) satisfies
the control constraints.
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Figure 2: Activation function S;(z;) and derivation D;(z;) .

3.1 Optimal feedback control with fixed terminal time

The discrete time form of overall performance criteria with the penalty function for final bound-
ary conditions is

M“U:TE:F&@JMD+G&W”, (10)

where

G = KZ xk — Tk tf)) (11)

and where K is the coefficient of the penalty function for final boundary conditions. The discrete
time form of the plant equation (1) is

w;(i+1) = f; (x(i),u(@)), j=1,2,...n (12)

where R

fi(x(i), u(i)) = z; (i) + T £;(x(i), u(i)), (13)
for i = 0,1,..., N, where N is the number of sampling intervals, z;(i) = z;(t, +iT), T =
(t; —to)/N. The equations (7) and (8) can be expressed as

ui(i) = S5 (z(),  7(0) = wjo+ Y wirwk(i). (14)

k=1
The performance criteria (10) implicitly depend on wj; and wj, (equations (14)), and we can
use the gradient algorithm for minimization of the performance criteria according to weights and

biases 97
=+ — 0
w =w, —1 ,
pq pq ang

(15)
forp=1,..m,q=0,...,n,l =1,..., M where 7 is the learning coefficient which determines the

speed of convergence and M is the number of iteration of the gradient algorithm. The gradient
of the performance criteria is

o F(7) ] F(3) 0u,(i) x(N)) 0z,
awpq ZU(T (4) Z (¢) 8wpq> Z ox, (N) auqu)' (16)




Further, obtained from (12) is

0z, (1) 8f,(i—1)5xj(i—1)+zm: af,(g—1)auj(i—1)

- : : (17)
0wy = 0xri(i —1)  Owy, = Qui(i —1)  Owy,
and from (14) it follows that
Ou, (1)  02(7) oW S [(Owyy 0x;(1)
= Dr r = Dr r j rj ) 18
5 = D, (o i) G = Dy ) | G+ 3 (Gt i) + s (18)
where D, (z,(7)) is the derivation of function S, (z,(7))
0; zp (i) > u™
Dy (z(i) = ¢ 15 —uf®™ < z.(i) < uf™ (19)
0; 2 (1) < —u

(D,(z.(7)) is shown in Fig. 2). Further, it follows that

Ou, (i)

OWpyq

= D, (2(i)) la,paqo 2 <5r,,5qjxj (i) + wy, 3;; Z))] , (20)

where
_ ) Lir=p
Opp = { 0:r £ p (21)
Finally, obtained is

Ou, (i)

OWpyq

= D, (+(9) (6“36@ 8y (0(0)) 8y + Y 0 axﬂ'(i)) , )

OWpyq

where
a1 00 )

The equations (17) and (20) presents recurrent relations which we need for the gradient
calculation of performance criteria. The next step is the determination of the initial condition for
the above-mentioned recurrent relations. The initial condition of the state vector is independent
weights wj, so that

0z, (0)

OWpq

forr=1,2,...n,p=1,2,....m, ¢ =0,1,...,n. From (24) and (22) obtained is the second set of
initial condition

=0 (24)

Ou,(0)
OWpyq

= (0rp0g0 + £(24(0))0rp) D (2:(0)) (25)

fOI' r = ]-727 ey, p= 1727 - My 4 = 07 ]" e T
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Figure 3: Architecture of the single-layer neurocontroller in the learning process.

3.2 Optimal feedback control with variable terminal time

For the problem of TOC, i.e. control in a situation which requires the minimization of the time
control interval in accordance with the given performance criteria and constraints, we use the
following heuristic algorithm, [9]

7D = 28 A7 H™ (G(%(N)) — Guin) (26)
where
_ 0; 220
mo={ 92 0

7(#) is the sampling interval in k-th iteration of the gradient algorithm, Gy, is the measure
of accuracy of the solution of the TOC problem for the given 7*), and Ar is the constant of the
sampling interval decrease.

In other words, the next iteration of sampling interval 7(*) will ensue only when the value
of function G(x(N)) achieves the given value Guin, and this means that 7#) > 7., As 7(F)
decreases, G(x(NN)) converges at an increasingly slow pace toward G, until it reaches a certain
value of 7®) for which G(x(N)) will not be able to reach G, or will converge toward it very
slowly, which means that 7®) < 7. . In that case, Tin ~ 7*=1 is taken as an approximation
for Tmin.

This algorithm structure guarantees stability and convergence toward 7.,;,, because it does
not change the value of 7*¥) until the value of function G/(x(NN)) falls below the given, sufficiently
low value of Gjn.

This form of algorithm for the TOC problem enables a simple generalisation of the algorithm
(15)-(17), (22) (with the given fixed terminal time) through the expansion of the algorithm with
the expression (26).
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Figure 4: Robot with two degrees of freedom - rotation and translation.

4 Application of the algorithm on optimal robot control

This section presents the application of the derived algorithms for optimal feedback control and
TOC to the minimum-time feedback control of the robot with two degrees of freedom.

4.1 Dynamics of the robot with two degrees of freedom

The non-linear dynamic model of the manipulator with two degrees of freedom, [10, 11] is
presented through cylindrical coordinates in the form of

Mu(q) 0 ] [ql ] N { Ni(q,q) ] _ {Pl(t) ] (28)

0 My (q) G2 Ny (a, &) Py(1)
where
M11 :II+[2+(m+M)q%+2Maq2+Ma2,
M22 = m+M, (29)
N1 =2[(m+ M)qg; + Magqo,
Ny = —[mg + M(a+ ¢2)]d7,

where q = [ q1 Q2 ]T are cylindrical coordinates of the center of the mass of manipulator 3,
(Fig. 4), M is the total mass (manipulator hand and load), m is the stick mass, .J; is the total
moment of inertia of sticks 1 and 2 in relation to axis Z, .J, is the moment of inertia of stick
3 in relation to the axis which is parallel to axis Y and goes through point S, a is the distance
between the center of mass M and point S. Pi(¢) stands for the control moment of rotation
freedom of motion ¢;, while P,(t) is the control force of the translation freedom of motion gs.

The numerical values of the above-mentioned parameters are:

M =50kg; m = 97kg; J, + Jo = 193kgm?; a = 1.1m; P max = 600NmM; Pyax = 500N,
where Pj .« is the maximum allowed moment and Pspay 1S the maximum allowed force. If
the above-mentioned system of the second-order differential equations is to be transformed into
the system of the first-order differential equations, the following coordinate transformation is
introduced:

qL = 715 Q1 = T2; @2 = T35 Go = 143 Pi(t) = ui(t); Pa(t) = ua(t),
and, for the sake of a more elegant expression, the following constants are introduced:
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Figure 5: Dependence of 7 and .J on the number of iterations.

A1:J1+J2+MG2QA2:2MGQ A3:m+M,

so that
Zt'l = T9
.'i’g _ —2143.’1)21‘3!1)4 — A21'2$4 Uy
Al + A2£C3 + A3ZU§ Al + AZ:C?) + A3ZU§ (30)
.',i,’3 =4
. A
Ty = 1373 — 2—1423:173 + jjl_z

Here we have transformed the dynamics of the robot with two degrees of freedom into a
system of four non-linear first-order differential equations.

4.2 Numerical results

Considered here is the minimum-time control problem, i.e. the problem of minimum time neces-
sary for the robot to go from the initial to the final state with the given control vector constraints.
In other words, one should determine weight parameters and biases for the transformation of
the robot state from the initial one

21(0) = 0rad, z2(0) = 0rad - s7', 23(0) = 0m, 24(0) =0m - s~
to the final state

x1(tp) =7/2rad, xo(ty) = 0rad- s, x3(t;) = 1m, z4(t;) =0m - s 1,
for minimum time ¢,,;, = t;, with control constraints

lmaz; (31)

where %10 = 600 N - m, Usmaez = 500 N.

The method of the conjugated gradient has been used here because of good convergence prop-
erties and algorithm stability which do not depend on the choice of penalty function coefficients.
The values of the constants are N = 1000, M = 20000, K = 1, A7 = 0.00001, Gmin = 0.0001.
As can be seen in Fig. 5, obtained is the minimum time ¢,;, = 1.5s, i.e. 7Ty, = 0.0015s.
The results for that (fixed) time are obtained with the help of the algorithm (15)-(17), (22),
with M = 10000. These results are shown in Fig. 6 - 9. Weight parameters and biases after
M = 10000 iterations are
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Figure 7: Time dependence of the control variables.
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W10
w11
w12
w13
W14

738.8,
—1211.4,
233.5,
—894.1,
—67.4,

W =
W21
Wa2
W23
Wy =

~191.2,
—218.1,

346.6, (32)
—331.5,

88.0.

5 Possibilities of on-line optimal regulation

The previous section address the feedback terminal control problem. In this section considered
is the time-optimal regulation problem, i.e. retrieving the desired referent state for the minimum

We considered the example in the previous section, but with the exchanged initial and final

time.

state, i.e.
T (0) =
IL’Q(O) =
r3(0) =
24(0) =

/2
0
1
0

rad,
rad - s !,
m7

m-st,

z1(tf)
zo(tr)
z3(ty)
z4(ts)

0
0
0
0

rad,
rad - s !,
m7

m-s ',

(33)

This problem may be considered as returning the robot hand in its initial position after the
termination of the task. In Fig. 10 shown is the speed of convergence of the algorithm in this
case. In comparison with Fig. 9. the speed of convergence in the regulation case is obviously
higher, i.e. less iterations are needed for the same level of accuracy. The reason for this difference
in the speed of convergence is the exponentially decreasing behaviour of the state vector in the

regulation case.
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Figure 10: Dependence of J on the number of iterations for the on-line regulation.

Based on these properties we may consider the possibility of on-line optimal regulation which
would be founded on the gradient (i.e. weight parameters) calculation during the sampling
interval of the measuring signal. In Fig. 11. shown is the difference of the on-line solution and
the off line solution (the solution with constant weight parameters for M = N = 1000).

We can see a small deviation which vanished at the end of the terminal time, which confirms
the possibility of on-line optimal regulation. What remains to be determined is the required
number of calculation during a sampling interval. On the basis of the algorithm (15)-(17), (22),
obtained is the approximate number of calculations during the sampling interval

~ 3 22
o
Nop ~ N (n°m + 2n°m?) (34)

For N = 1000, n = 4, m = 2, obtained is Npp ~ 256000 during the sampling interval T =
0.0015s , i.e. the required time for the execution of one instruction is 7y = 5.8 - 107?s. For
example, microprocessor TM5320C67x has such computational capabilities.

11
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Figure 11: Differences of the off-line solutions and the on-line solutions.

6 Conclusion

The main goal of this paper is the research of possibilities of the one-layer neural network optimal
feedback control of nonlinear systems with control constraints. Even though one-layer neural
networks haven’t general approximation capability, in the case of minimum-time robot control
we obtain good result for the minimum time t,;, = 1.5s, the same as in feedforward optimal
robot control, [9].

A good side of the one-layer neural network controller is a small number of weight parame-
ters which have to be adjusted, which results in good convergence properties of the algorithm,
especially for the optimal regulation which is possible to realise on-line. Furthermore, good con-
vergence properties are the result of choosing the activation function in form of the saturation
limiter function, which is how we avoid introducing additional penalty function for control vector
constraints.

A next useful research step could be the application of a similar approach on the dynamic neu-
ral network controller which promise even better convergence properties. Furthermore, it would
be interesting to research the considered problem with the state vector constraint introduced.

Appendix: Symbols
e « - distance between the center of mass M and point S, m
e J; - total moment of inertia of sticks 1 and 2 in relation to axis Z, kgm?2

e J, - moment of inertia of sticks 3 in relation to the axis which is parallel to axis Y and
goes through point S, kgm2

e K - coefficient of the penalty function, 1

e m - mass of stick, kg

12



M - total mass (manipulator hand and load), kg

e Pi(t) - control moment of rotation freedom of motion ¢;, Nm
e P,(t) - control force of the translation freedom of motion ¢z , N
e ((t) - vector of generalised coordinates, rad, m

e ((t) - vector of speed of generalised coordinates, rad/s, m/s
® 1y - starting time-point, s

e i; - final time-point, s

e T' - constant sampling period, s

e u(t) - control vector, Nm, N

e w;; - the elements of the weight matrix,

e x(t) - state vector, rad, rad/s, m, m/s

e 17 - constant coefficient of convergence, 1
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