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Abstract

This paper presents the derivation of the numerical algorithm for optimal
control of nonlinear multivariable systems with control and state vectors
constraints. The algorithm derivation is based on the backpropagation-
through-time (BPTT) algorithm which is used as a learning algorithm for
recurrent neural networks. This approach is not based on Lagrange mul-
tiplier techniques and the calculus of variations. The derived algorithm is
used for the control of the cooperative work of two robots with two degrees
of freedom. The main problem is the determination of the control vectors
of robots for the transfer of rigid load from the initial state to the final one
in a fixed time while maintaining constant distance between robot hands
and avoiding the cross-section of the robot hands.

1 Introduction

Optimal control of the non-linear robot model with a defined optimal cri-
terion still presents a relatively difficult task. The problem becomes more
complex when two or more robots work in cooperation on a common task
sharing workspace, time, constraints, and the cost function.

The cooperative robots control has several specific requests which makes
it difficult. First, the dynamic influence of robots on each other through the
load must be avoided if we want to decouple the overall system dynamics.
In other words, there is a need to avoid force transmission on the load. If
this request is not fulfilled, then we cannot independently use particular
robot models.



The second request is load transfer within a given time interval subject
to the control vector constrains (Canny [1], Bien [2]). The standard tra-
jectory planning, which independently determines a robot’s paths, cannot
guarantee achieving the final state within a given terminal time. The third,
very important request is collision avoidance (Chang [3], O’Donnell [4]).

There are many methods which treat separately above-mentioned re-
quirements. A natural way to meet these requirements is the optimal control
formulation of the cooperative robots control problem. However, the opti-
mal control of nonlinear systems with control and state vector constraints
presents a relatively difficult task, particularly in case of the state vector
constraints which can be very complicated in robotics control. Therefore,
various methods of numerical solution of the optimal control problem have
been developed (Bryson [5], Fan [6], Sage [7]).

A solution to the computational complexity of numerical optimal con-
trol algorithms are algorithms providing a high level of parallelism of compu-
tational tasks executions. The neural networks learning algorithms present
an example of this kind of algorithms. In this paper we use the backpropagation-
through-time algorithm (Werbos [8]), which is a learning algorithm for re-
current neural networks (Pearlmutter [9], Baldi [10]).

The BPTT algorithm presents a time generalization of the backprop-
agation algorithm (Rumelhart [11]), where the error (which is minimised)
is given along a specified time interval. The essence of the backpropaga-
tion algorithm is a simple and precise calculation of derivations of the cost
function in relation to system parameters and the adjustment of parame-
ters in line with those derivations in only one transfer through the network.
The BPTT algorithm expands this method through application to dynamic
systems for which direct calculation of derivations can be very complex. A
solution to this problem lies in the chain rule for order derivations (Wan
[12], Piche [13]), which results in error backpropagation, i.e. parameter ad-
justment backward in time.

2 Optimal Control Problem with Constraints

It is considered a nonlinear discrete optimal control problem with a fixed
beginning and terminal time. A continuous optimal control problem can be
approximated by discrete one using the first difference approximation.

2.1 Problem Formulation

The problem consists of determining the control vector u(t) with the aim
to minimize the cost function

J0 = min
u(i)

τ

N−1∑
i=0

F̂ (x(i),u(i)), (1)



subject to the constraints defined by the plant equations

x(i + 1) = f(x(i),u(i)), (2)

and the initial and final condition of the state vector

x(0) = x0, x(N ) = xf , (3)

subject to the control and state vector inequality constraints

g(x(i),u(i)) ≥ 0, (4)

and the equality constraints

h(x(i),u(i)) = 0, (5)

for i = 0, 1, ..., N−1, where N is the number of sampling intervals, τ = (tf −
t0)/N is the sampling interval, where x(i) is n-dimensional state vector, u(i)
is m-dimensional control vector, g(·) is Np-dimensional vector function of
inequality constraints, and h(·) is Nq -dimensional vector function of equality
constraints.

2.2 Penalty Method Approach

The next step is the expansion of the cost function (1) by adding penalty
functions for constraints

J = J0 + J1 + J2 + J3, (6)

where J1 is the penalty function for the final boundary condition, J2 is the
penalty function for inequality constraints (4), J3 is the penalty function
for equality constraints (5).

The introduction of the penalty functions provides a transformation of
the problem from (1) to (5) to the next form

J = min
u(i)

(
τ

N−1∑
i=0

F (x(i),u(i)) + J1

)
, (7)

x(i + 1) = f(x(i),u(i)), x(0) = x0, (8)

where the sum on the right side of the above-mentioned expression includes
the penalty function for equality and inequality constraints. The problem
is thus reduced on only one type of constraints - plant equations. Concrete
forms of the penalty functions will be shown on the example of cooperative
robots work.

The gradient descent algorithm is used for minimizing the cost function

u(l+1)(i) = u(l)(i) − η
∂J

∂u(l)(i)
(9)

where i = 0, 1, . . . , N − 1, l = 1, 2, . . . ,M , while η is the convergence coeffi-
cient, index l represents the l-th iteration of the gradient algorithm and M
is the number of iterations of the gradient algorithm.



2.3 Calculation of the gradient

In this subsection, basic steps in the calculation of the gradient of the cost
function (7) subject to the constraints (8) will be described very briefly .

The gradient of the cost function (7) in l-th iteration is

∂J

∂uk(j)
= τ

N−1∑
i=0

∂F (i)
∂uk(j)

+
∂J1

∂uk(j)
(10)

where F (i) ≡ F (x(i),u(i)).
Only addends for which i ≥ j remains on the right side of the eqn (10),

τ

N−1∑
i=0

∂F (i)
∂uk(j)

= τ
∂F (j)
∂uk(j)

+ τ

N−1∑
i=j+1

∂F (i)
∂uk(j)

(11)

The addends on the right side of the previous equation depend on uk(j)
implicitly through x(i) for i > j, and it follows that

∂F (i)
∂uk(j)

=
n∑

r=1

∂F (i)
∂xr(i)

∂xr(i)
∂uk(j)

(12)

The next step is the calculation of partial derivations ∂xr(i)
∂uk(j) on the

right side of the eqn (12). On the basis of eqn (8), it is obtained

∂xr(j + 1)
∂uk(j)

=
∂fr(j)
∂uk(j)

, (13)

∂xr(i)
∂uk(j)

=
n∑

p=1

∂fr(i− 1)
∂xp(i− 1)

∂xp(i− 1)
∂uk(j)

, (14)

for r = 1, 2, . . . , n, k = 1, 2, . . . ,m, j = 0, 1, . . . , N − 1, i = j +2, . . . , N − 1,
where fr(j) ≡ fr(x(j ),u(j )). The above-mentioned iterative expression is
the chain rule for ordered derivations.

By manipulating with the expressions from eqn (10) to eqn (14), it
is obtained a backward in time iterative algorithm for calculation of the
gradient of the cost function in relation to the control vector.

The basic characteristic of this algorithm is derivation without using
the calculus of variations and Lagrange multiplier techniques. This fact
provides an obvious geometrical interpretation of the gradient algorithm
which, on the other hand, provides a rough approximation of the gradient
of the penalty function without the accuracy of the optimal solution being
lost. This will be demonstrated on the example of cooperative work of two
robots.

3 Optimal Control of the Cooperative Robots Work

In this section, the derived algorithm will be used to the control of the
cooperative work of two robots with two degrees of freedom.



3.1 Dynamics of the robot with two degrees of freedom

The non-linear dynamic model of the manipulator with two degrees of free-
dom (Heiman [14]) is presented through cylindrical coordinates in the form
of [

M11(q) 0
0 M22(q)

] [
q̈1
q̈2

]
+
[
N1(q, q̇)
N2(q, q̇)

]
=
[
P1(t)
P2(t)

]
, (15)

where

M11 = I1 + I2 + (m+M)q2
2 + 2Maq2 +Ma2,

M22 = m+M,

N1 = 2[(m+M)q2 +Ma]q̇1q̇2,
N2 = −[mq2 +M(a+ q2)]q̇2

1 ,

and where q = [q1 q2]T stands for cylindrical coordinates of the center of
the mass of link 3 (Figure 1.a), M is total mass (manipulator hand and
load), m is link mass, I1 is the total moment of inertia of links 1 and 2
in relation to axis Z, I2 is the moment of inertia of link 3 in relation to
the axis which is parallel to axis Y which goes through point S, a is the
distance between the center of mass M and point S. P1(t) stands for the
control moment of rotation freedom of motion q1, while P2(t) is the control
force of the translation freedom of motion q2. The numerical values of the
above-mentioned parameters are M = 50kg, m = 97kg, I1 + I2 = 193kgm2,
a = 1.1m, Pmax

1 = 600Nm, Pmax
2 = 500N , where Pmax

1 is the maximum
allowed moment and Pmax

2 is the maximum allowed force.
If we transform the mentioned system of the second-order differential

equations into the system of the first-order differential equations, then the
following coordinate transformation will be introduced:

x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2, u1 = P1, u2 = P2.
The same dynamic eqns (15) are used for the second robot which is

located d = 3 m from the first one (Figure 1.b). The coordinates of the
second robot are marked with q3, q4 while control variables are marked
with u3, u4.

3.2 Problem formulation

Cooperative work is mutual coordinate work on a common defined goal. The
cooperation of two robots is useful when a single robot, i.e. manipulator,
cannot manipulate a load that is too heavy or too large. This example
considers the problem of rigid load transfer from one place to another by
using two robots (or two arms). To avoid the dynamic coupling of the robots,
the distance between the robots’ hands (i.e. joints between the robots hands
and the load) must be constant and the same as the load length.

The problem considered here represents the transformation of the initial
robots state from
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Figure 1: Robot with two degrees of freedom - rotation and translation.

x1(0) = 0 rad, x2(0) = 0 rad/s, x3(0) = 0.4 m, x4(0) = 0 m/s,
x5(0) = π rad, x6(0) = 0 rad/s, x7(0) = 0.2 m, x8(0) = 0 m/s,

into the final state
x1(tf ) = π/2 rad, x2(tf ) = 0 rad/s, x3(tf ) = 0.4 m, x4(tf ) = 0 m/s,
x5(tf ) = 2.62 rad, x6(tf ) = 0 rad/s, x7(tf ) = 2.35 m, x8(tf ) = 0 m/s,

including the control constraints

|uk(i)| ≤ umax
k , k = 1, ..., 4, i = 0, ..., N − 1, (16)

where umax
1 = umax

3 = 600 Nm, umax
2 = umax

4 = 500 N in the fixed time
tf = 2s, on condition the distance between the manipulators’ hands r(i) in
i-th time interval and load length D = 0.2 m are equal

r(i) = D, i = 0, ..., N, (17)

where
r(i) =

√
∆x2

i +∆y2
i , (18)

and
∆xi = d+ (x7(i) + a) cosx5(i)− (x3(i) + a) cosx1(i),
∆yi = (x7(i) + a) sinx5(i)− (x3(i) + a) sinx1(i).

(19)

On the basis of the above mentioned problem formulation, a set of
penalty functions for constraints are obtained. The penalty function for the
final boundary condition is

J1 = KB

8∑
k=1

(xk(N)− xk(tf ))2, (20)

where KB is the coefficient of the penalty function. The penalty function
for control vectors inequality constraints (16) is

J2 = K̂V

N−1∑
i=0

4∑
k=1

[(umax
k − uk(i))2H−(umax

k − uk(i))

+ (umax
k + uk(i))2H−(umax

k + uk(i))], (21)
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Figure 2: The trajectories of the robots’ hands in the plane x-y with posi-
tions of load in different time intervals a) without the condition
of avoiding the cross-section of the robots’ hands, and b) with the
condition of avoiding the cross-section of the robots’ hands.

where H−(z) is the Heaviside step function defined as

H−(z) =
{
0, if z ≥ 0
1, if z < 0 (22)

while K̂V is the coefficient of the penalty function for inequality constraints.
The penalty function for equality constraints (17) is

J3 = KE

N∑
i=0

(r(i) −D)2, (23)

where K̂E is the coefficient of the penalty function of equality constraints.
The solution shown in Figure 2.a is obtained by using the cost function

J = J1 + J2 + J3. However, the cross-section of the robots’ hands occurs
during the time period from t1 = 0.84 s to t2 = 1.24 s. In an actual situation
it will be a collision of the robots’ hands in time t1 = 0.84 s. Therefore, the
condition of avoiding the cross-section of the robots hands is necessary to
include in the cost function.

From the viewpoint of the coordinate system of the first robot, the
cross-section of the robots’ hands’ lines is in the point (xp(i), yp(i)), where

xp(i) = d
tan q3(i)

tan q3(i)− tan q1(i)
, yp(i) = d

tan q1(i) · tan q3(i)
tan q3(i)− tan q1(i)

. (24)

The projections of this point on the coordinate axes which pass along the
robots hands are

qcs
2 (i) = xp(i) cos q1(i) + yp(i) sin q1(i),
qcs
4 (i) = (xp(i)− d) cos q3(i) + yp(i) sin q3(i).

(25)
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Figure 3: Time dependence of robots control functions.

A sufficient condition for avoiding the cross-section of the robots’ hands is
to satisfy whichever of the following state vectors inequality constraints

g1(i) = qcs
2 (i)− a− q2(i) ≥ 0,

g2(i) = qcs
4 (i)− a− q4(i) ≥ 0,

g3(i) = −qcs
2 (i) ≥ 0,

g4(i) = −qcs
4 (i) ≥ 0,

(26)

for i = 0, 1, ..., N .
the penalty function for the state vectors inequality constraints is ob-

tained on the basis of inequality (26),

JS
2 = KS

N∑
i=0

4∑
k=1

g2
k(i)

4∏
l=1

H−(gl(i)). (27)

It is obvious that the gradient calculation of the above-mentioned penal-
ty function is very complicated task. The gradient approximation of the
penalty function means a certain deviation from the exact direction of the
overall cost function gradient. However, the approximation of the gradient
does not means the approximation of the optimal solution but only slower
convergence toward the optimal solution.

Namely, the following rough approximation of the penalty function gra-
dient is used

∂JS
2

∂q2(j)
=

∂JS
2

∂q4(j)
= KS

4∏
l=1

H−(gl(j)),
∂JS

2

∂q1(j)
=

∂JS
2

∂q3(j)
= 0, (28)

The gradient algorithm with the constant coefficient of convergence is used.
The values of the constants are N = 1000, M = 160000, η = 3000, KB =
100, KV = 0.01, KE = 1.0, KS = 0.5.
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Figure 4: The distance between the manipulator hands r, and difference
between this distance and load length D.

By extending the previous cost function with the penalty function (27),
i.e. approximating the penalty function gradient by eqns (28), a solution
shown in Figure 2.b is obtained. Figure 3 shows time dependence of robot
control functions, while Figure 4 shows time dependence of the distance
between the manipulators’ hands r, and the difference between this distance
and load length D. Because of the existing error (about 2.5% for M =
160000 iteration), there is a need for an appropriate level of elasticity of the
joint between the robot hands and the load.

4 Conclusions

This paper has shown a possibilities of application of the backpropagation-
through-time algorithm to optimal control of cooperative robots’ work. In
this problem must be satisfy the set of relatively complex constraints on the
robots’ state vectors. The penalty function gradients for those constraints
can be extremely complicated. Therefore, it is significant that good results
can be obtained through a rough approximation of those derivatives, but
only by the expense of a decreased convergence speed. Bearing in mind the
specific geometrical interpretation of the gradient algorithm, we can con-
clude that the gradient algorithm is very effective in solving the constraint
optimal control problem with the mentioned type of approximations.

Since proving the existence of a solution to the optimal control con-
straints problem is generally a very difficult problem, treating constraints
with penalty functions is very useful also as an indication of the solubility
of the problem. If the penalty function does not converge to zero (for a
stable algorithm with a constant convergence coefficient), that is a definite
sign that the problem does not have a solution within the given constraints.

The speed of convergence of the algorithm does not depend much on
the order of the system as much as it depends on the number of constraints,
i.e. penalty functions.
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