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Optimal Robot Control with Unspecified Initial and
Final Conditions
Josip Kasac, Branko Novakovic

Abstract— This paper presents the derivation of the nu-
merical algorithm for optimal control of nonlinear multivari-
able systems with control and state vectors constraints and
with unspecified initial and final conditions. The initial and
final conditions depend on the parameter vector which rep-
resents a type of coordinate transformation. It is presented
a detailed derivation of the algorithm for the calculation
of the parameter vector, while the algorithm for time opti-
mal control is described briefly. The algorithm derivation is
based on the backpropagation-through-time algorithm, i.e.
the chain rule for ordered derivations, and it is not based
on Lagrange multiplier techniques and the calculus of vari-
ations. The derived algorithm is used for the solution of
the minimum-time control of the robot with two degrees of
freedom and with control vector constraint. The problem
discussed in this paper is the determination of the control
and parameter vector for the transition of the robot state
from the initial to the final one in minimum time.

Keywords— Optimal Control, Robot Control, Minimum-
time control, Backpropagation Through Time Algorithm,
Nonlinear Systems.

I. Introduction

The common formulation of the minimum-time robot
control includes optimization in relation to the control vec-
tor and minimum time. The solution of the minimum time
control problem, generally speaking, is not in the form of
the bang-bang solution. Usually, some components of the
control vector are in the form of the bang-bang solution,
while other components are in the form of the continuous-
time solution in the limits defined by control vector con-
straints. In other words, with control vector constraints
and without full energy constraint, only the bang-bang so-
lution of the all control vector components guarantees fully
usable minimum-time control.
In robot control, one possibility to achieve the bang-bang

solution of the control vector is the appropriate coordi-
nate transformations of the robot placement. Coordinate
transformations of the robot placement means parameter
transformations of the initial and final condition of the op-
timal control problem formulation. In other words, by in-
troducing coordinate transformations, the optimal control
problem with fixed initial and final conditions becomes the
optimal control problem with unspecified initial and final
conditions.
As is already known from the classical optimal control

theory, [1], the solution of the optimal control problem
requires the solution of the first-order stationary condi-
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tions, or Euler-Lagrange equations. This is a two-point
boundary-value problem and is difficult to solve numeri-
cally. Various methods of numerical solution of the opti-
mal control problem have therefore been developed, such
as gradient algorithms [1], reduction of the optimal con-
trol problem to a nonlinear programming one [2], discrete
dynamic programming, quasi-linearisation algorithms [3],
discrete time maximum principle [4], etc.
A good compromise between the accuracy of the solution

and speed of convergence toward the optimal solution on
the one hand and the computational cost and algorithm
complexity on the other hand is to use the gradient algo-
rithm [5]-[8] for the nonlinear programming representation
of the optimal control problem [2], [9].
A standard method for reducing the optimal control

problem to a nonlinear one is adding the penalty function
for plant equation constraints to the cost function, and op-
timising the total cost function according to the control and
state vector. The problem formulated in this way is numer-
ically very unstable and has slow convergence (due to ad-
ditional equality constraints for plant equation). However,
the problem can be avoided by using the backpropagation
through-time (BPTT) algorithm.
The BPTT algorithm, [10]-[12], is time generalization of

the backpropagation algorithm (BP), in case when the er-
ror which is minimised is given along the specified time
interval. The essence of the BP algorithm is a simple and
precise calculation of derivations of the cost function in
relation to system parameters. The BPTT algorithm ex-
pands this method through application to dynamic systems
for which direct calculation of derivations can be very com-
plex. A solution to this problem lies in the chain rule for
ordered derivations [8], [10], [11], which results in error
backpropagation, i.e. parameter adjustment backward in
time.

II. Optimal Control Problem Formulation

A. Continuous Optimal Control Problem

We consider a nonlinear continuous optimal control prob-
lem with a fixed beginning and terminal time, which con-
sists of choosing control vector u(t) and parameter vector
p to minimize the cost function

J0 = min
u(t),p

∫ tf

t0

F̂ (x(t),u(t))dt , (1)

subject to the constraints defined by the plant equations

ẋ(t) = f̂(x(t),u(t)), (2)
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and the initial and final condition of the state vector

x(t0) = x0(p), x(tf ) = xf (p), (3)

which depend on the parameter vector, subject to the con-
trol and state vector inequality constraints

g(x(t),u(t)) ≥ 0, (4)

the parameter vector inequality constraints

r(p) ≥ 0, (5)

and the control and state vector equality constraints

h(x(t),u(t)) = 0, (6)

where x(t) is n-dimensional state vector, u(t) is m-
dimensional control vector, p is Np-dimensional parameter
vector, g(·) is Ng -dimensional vector function of inequal-
ity constraints, r(·) is Nr -dimensional vector function of
parameter vector inequality constraints, and h(·) is Nh-
dimensional vector function of equality constraints.

B. Time Discretization and Penalty Method Approach

The next step is time discretization of the problem (1)
to (6). The result is

J0 = min
u(i),p

τ
N−1∑
i=0

F̂ (x(i),u(i)), (7)

x(i + 1) = f(x(i),u(i)), (8)

x(0) = x0(p), x(N ) = xf (p), (9)

g(x(i),u(i)) ≥ 0, (10)

r(p) ≥ 0, (11)

h(x(i),u(i)) = 0, (12)

for i = 0, 1, ..., N − 1, where N is the number of sampling
intervals, τ = (tf − t0)/N is the sampling interval, while
x(i) ≡ x(t0 + iτ ),

f(x(i),u(i)) = x(i) + τ f̂ (x(i),u(i)).

The next step is the expansion of the cost function (7)
by adding penalty functions for constraints

J = J0 + J1 + J2 + J3 + J4, (13)

where

J1 = KB

n∑
k=1

(xk(N)− xk(tf ))2, (14)

is the penalty function for the final boundary condition,
where KB is the coefficient of the penalty function and
xk(tf ) is the k -th component of the state vector in the
terminal time. Further,

J2 = K̂V

N−1∑
i=0

Ng∑
k=1

g2
k(x(i),u(i))H

−(gk (x(i),u(i))), (15)

is the penalty function for inequality constraints (10),
where H−(gk) is Heaviside step function defined as follows

H−(gk) =
{

0, if gk ≥ 0
1, if gk < 0 (16)

while K̂V is the coefficient of the penalty function for in-
equality constraints.
The penalty function for parameter vector inequality

constraints (11) is

J3 = K̂P

Nr∑
k=1

r2
k(p)H

−(rk (p)). (17)

Finally, there is the penalty function for equality con-
straints (12)

J4 = K̂E

N−1∑
i=0

Nh∑
k=1

h2
k(x(i),u(i)), (18)

where K̂E is the coefficient of the penalty function of equal-
ity constraints.
If K̂V = τKV and K̂E = τKE take in account then the

equation (13) can be expressed as

J = τ

N−1∑
i=0

F (x(i),u(i)) + J1 + J3, (19)

where

F (x(i),u(i)) = F̂ (x(i),u(i)) +

+KV

Ng∑
k=1

g2
k(x(i),u(i))H

−(gk (x(i),u(i)) +

+KE

Nh∑
k=1

h2
k(x(i),u(i)). (20)

On this way the problem (7) to (12) can be expressed in
the following form

J = min
u(i),p

(
τ

N−1∑
i=0

F (x(i),u(i)) + J1 + J3

)
, (21)

x(i + 1) = f(x(i),u(i)), x(0) = x0(p). (22)

C. Gradient Algorithm for Parameter Vector

The gradient descent algorithm according to the control
vector is given as follows:

u(l+1)(i) = u(l)(i) − ηu
∂J

∂u(l)(i)
(23)

p(l+1) = p(l) − ηp
∂J
∂p(l)

(24)

where i = 0, 1, . . . , N − 1, l = 1, 2, . . . ,M , while ηu and
ηp are the convergence coefficients, index l represents the
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l-th iteration of the gradient algorithm, M is the number
of iterations of the gradient algorithm.
The algorithm for the calculation of the optimal control

vector on the basis of expressions (21), (22) and (23) with
fixed initial and final conditions is considered in more detail
in [13]. The basic characteristic of this algorithm is deriva-
tion without using the calculus of variations and Lagrange
multiplier techniques. This fact provides an obvious geo-
metrical interpretation of the gradient algorithm, which on
the other hand, provides rough approximation of the gradi-
ent of the penalty function without losing accuracy of the
optimal solution.
This paper deals with the extension of the above-

mentioned algorithm for the case of optimal control with
unspecified initial and final condition. This means that the
initial and final state are parameterized with the parame-
ter vector of a coordinate transformations. In other words,
it will be shown the derivation of the optimal parameter
vector on the basis of the gradient algorithm (24).
The gradient of the cost function (21) according to the

parameter vector in l-th iteration of the gradient algorithm
is

∂J

∂pk
= τ

N−1∑
i=0

∂F (i)
∂pk

+
∂J1

∂pk
+

∂J3

∂pk
, (25)

where F (i) ≡ F (x(i),u(i)).
The next step is to determine the partial derivatives in

the sum on the right side of the expression (25). Function
F (i) depends directly on the components of the state vec-
tor in i-th time interval, which on the other hand depend
indirectly on the parameter vector through equation (22).
It follows that

∂F (i)
∂pk

=
n∑

r=1

∂F (i)
∂xr(i)

∂xr(i)
∂pk

. (26)

Furthermore, the calculation of partial derivatives ∂xr(i)
∂pk

follows on the basis of (22),

∂xr(i)
∂pk

=
n∑

q=1

∂fr(i− 1)
∂xq(i− 1)

∂xq(i− 1)
∂pk

, (27)

for r = 1, 2, . . . , n, k = 1, 2, . . . , Np, i = 0, 1, . . . , N , where
fr(j) ≡ fr(x(j ),u(j )).
The above-mentioned iterative expression is the chain

rule for ordered derivatives and has the initial state ∂xq(0)
∂pk

,
which is determined from the equation (9).
What remains is the calculation of the gradient of the

penalty function J1. Following the similar reasoning it is
obtained

∂J1

∂pk
=

n∑
r=1

∂J1

∂xr(N)
∂xr(N)
∂pk

+
n∑

r=1

∂J1

∂xr(tf )
∂xr(tf )
∂pk

, (28)

where ∂xr(tf )
∂pk

follows from the equation (9).
By using equations (25) to (28), the matrix representa-

tion in Appendix I and the auxiliary variable

Sk(i) =
i∑

j=0

∂F (j)
∂pk

(29)

it is obtained the following algorithm:
1. Initialisation of the gradient algorithm. For control

vectors (u(0)
0 , u(0)

1 ,. . ., u(0)
N−1) and parameter vector p(0) we

put arbitrary values, which can be outside of the allowed
area defined by the constraints.
2. Calculation of the state vectors

x(l)(i + 1) = f(x(l)(i),u(l)(i)), x(l)(0) = x0(p(l))

for i = 0, 1, . . . , N − 1 in l-th iteration of the gradient al-
gorithm.
3. Calculation of the gradient

Jp ≡ ∂J
∂p(l)

for l-th iteration of the gradient algorithm.
3.1 Initialisation for i = 0.

S(0) = Xp
T(0) · Fx(0), (30)

3.2 Iteration for i = 1 to i = N − 1.

Xp(i) = X(i − 1) ·Xp(i − 1)

Fp(i) = X T
p (i) · Fx(i), (31)

S(i) = S(i − 1) + Fp(i)

3.3 Finalization for i = N .

Xp(N ) = X(N − 1) ·Xp(N − 1)

J1p = X T
p (N ) · J1N +X T

f · J1f (32)

Jp = τS(N − 1) + J1p + J3p

4. Calculation of the new iteration of parametar vectors
on the basis of the gradient algorithm

p(l+1) = p(l) − ηpJp, (33)

for l = 0, 1, ...,M . The index is shifted by one, l → l + 1
and go back to step two.

D. A Heuristic Approach to Time Optimal Control

The above-mentioned algorithm has been derived for the
fixed terminal time tf . This subsection describes briefly a
heuristic approach to solving the problem of time optimal
control (TOC), which is relatively effective in avoiding slow
convergence and stability problems and which is character-
istic for classical numerical methods in TOC. This method
uses the characteristics of penalty functions for boundary
conditions and constraints.
The minimum time, which is the solution of the TOC

problem, can be marked with tmin = Nτmin. The basic
idea is to keep the previously obtained algorithm for cal-
culating control vectors for the given constant sampling
interval, so that along with calculating control vectors in
every iteration of the gradient algorithm, the new value of
the sampling interval is being calculated. To emphasize the
variability of sampling interval τ we will hereinafter use the
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Fig. 1. Robotic manipulator with two degrees of freedom - rotation
and translation.

symbol τ → τ l, which represents the sampling interval in
l-th iteration of the gradient algorithm.
It is defined the new cost function as the sum of penalty

functions depending on the variable sampling interval in
l-th iteration of the gradient algorithm

JT (τ l) = J1 + J2 + J3 + J4, (34)

with the difference that the coefficients of penalty func-
tions K̂V and K̂E are defined as constant and independent
of sampling interval τ , so that the explicit dependence of
function JT (τ l) on τ is avoided. Further, we introduce Jε,
which is the measure of accuracy of the solution of the TOC
problem for the given τ . The lesser the value of the sum of
penalty functions, the closer the solution to the optimum.
On the basis of the above-mentioned values, it has been

employed the following heuristic algorithm

τ l+1 = τ l −∆τH− (JT (τ l)− Jε

)
, (35)

and initial condition τ0 > τmin. In other words, each time
the condition JT (τ l) < Jε is fulfilled, τ l decreases by the
constant value ∆τ . If function JT (τ l) doesn’t reach the
value of Jε after sufficiently high number of iteration, this
means that τ l < τmin, and τmin � τ l−1 is taken as an
approximation of the minimum-time.
This structure of the algorithm guarantees stability and

convergence toward τmin, because it does not change the
value of τ l until the value of function JT falls below the
given, sufficiently low value of Jε.
This form of algorithm for the TOC problem enables

simple generalization of the algorithm for the OC prob-
lem (with the given fixed control time interval) through
the expansion of the fourth step of the algorithm with the
expression (35).

III. Example: Minimum-Time Control of Robot

with Two Degrees of Freedom

In this section, the derived algorithm will be applied to
minimum-time control of a robot with two degrees of free-
dom.

1p

2p
X

Y

)( 03 tx

)( 01 tx

)(1 ftx

)(3 ftx

)(ˆ 01 tx)(1̂ ftx

)(ˆ 03 tx

X̂

Ŷ )(ˆ3 ftx

Fig. 2. Coordinate transformation of the initial coordinate system
X − Y (p1 = p2 = 0) to the optimal coordinate system X̂ − Ŷ .
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Fig. 3. Time dependence of control functions for p1 = p2 = 0, and
tmin = 1.41s.

The optimal control of the non-linear robot model with
a defined optimal criterion is still a relatively difficult task.
The problem becomes more complex when two or more
robots work in cooperation on a common task sharing
workspace, time, constraints, and the cost function.

A. Dynamics of the Robot with Two Degrees of Freedom

The non-linear dynamic model of the manipulator with
two degrees of freedom, [14] is presented through cylindrical
coordinates in the form of[

M11(q) 0
0 M22(q)

] [
q̈1
q̈2

]
+
[
N1(q, q̇)
N2(q, q̇)

]
=
[
P1(t)
P2(t)

]
, (36)

where

M11 = I1 + I2 + (m+M)q2
2 + 2Maq2 +Ma2,

M22 = m+M,

N1 = 2[(m+M)q2 +Ma]q̇1q̇2,
N2 = −[mq2 +M(a+ q2)]q̇2

1 ,

where q = [q1 q2]T are cylindrical coordinates of the cen-
ter of the mass of link 3, (Fig. 1), M is total mass (ma-
nipulator hand and load), m is link mass, I1 is the total
moment of inertia of links 1 and 2 in relation to axis Z,
I2 is the moment of inertia of link 3 in relation to the axis
which is parallel to axis Y and goes through point S, a is
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Fig. 4. Dependence of a) JT and b) Nτ on the number of iterations
for ∆τ = 0.000001 s, N = 1000 and Jε = 0.001.

the distance between the center of mass M and point S.
P1(t) stands for the control moment of rotation q1, while
P2(t) is the control force of the translation q2. The numer-
ical values of the above-mentioned parameters are:
M = 50kg, m = 97kg, I1 + I2 = 193kgm2, a = 1.1m,
Pmax

1 = 600Nm, Pmax
2 = 500N ,

where Pmax
1 is the maximum allowed moment and Pmax

2 is
the maximum allowed force. If the above-mentioned system
of the second-order differential equations is transformed in-
to the system of the first-order differential equations, the
following coordinate transformation is introduced:
x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2,
u1 = P1, u2 = P2,

and, for the sake of a more elegant expression, the following
constants are introduced:
A1 = I1 + I2 +Ma2, A2 = 2Ma, A3 = m+M .

Thus, final form of the manipulator model is given by the
equations

ẋ1 = x2

ẋ2 = −2A3x2x3x4 −A2x2x4

A1 +A2x3 +A3x
2
3

+ u1

A1 +A2x3 +A3x
2
3

ẋ3 = x4

ẋ4 = x3x
2
2 − A2

2A3
x2

2 +
u2
A3

(37)

Here we have transformed the dynamics of the robot with
two degrees of freedom to a system of four non-linear first-
order differential equations.

B. Problem Formulation and Optimization Results

We should determine control functions u1(t) and u2(t)
and parameters p1 and p2 of the coordinate transformations
(Fig. 2)

x̂ = x3(θ) cos x1(θ)− p1,

ŷ = x3(θ) sin x1(θ) − p2,
(38)

x̂1(θ) = arctan(ŷ/x̂),

x̂3(θ) =
√
x̂2 + ŷ2,

(39)

where θ = t0, tf , for the transformation of the robot state
from the initial

0.0 0.2 0.4 0.6 0.8 1.0

-600

-400

-200

0

200

400

600

t [s]

u1  [Nm]
u2  [N]

Fig. 5. Time dependence of control variables for p1 = −0.90313 m,
p2 = 1.2625 m, and tmin = 0.933s.

x1(0) = π/18 rad, x2(0) = 0 rad · s−1,
x3(0) = 1m, x4(0) = 0m · s−1,

to the final one
x1(tf ) = 4π/9 rad, x2(tf ) = 0 rad · s−1,
x3(tf ) = 1m, x4(tf ) = 0m · s−1,

for minimum time tmin ≡ tf , with control constraints

| u1(t) | ≤ umax
1 ,

| u2(t) | ≤ umax
2 ,

(40)

where umax
1 = 600N ·m, umax

2 = 500N .
Fig. 3 represents the solution of the problem with fixed

robot placement, i.e. without optimization according to the
parameters of the coordinate transformation, p1 = p2 =
0. In this case, the minimum time is tmin = 1.41 s and
control function u2(t) does not have the form of the bang-
bang solution, which means that the available energy is not
completely usable.
By using the algorithm for the calculation of the optimal

parameter vector obtained are control and state variables
which are shown in Fig. 5 and Fig. 6 for minimum time
tmin = 0.933 s. As can be seen in Fig. 4, with ∆τ =
0.000001 s, N = 1000 and the given accuracy Jε = 0.001,
obtained is the minimum time tmin = 0.933 s, i.e. τmin =
0.000933 s.
The values of the optimal parameters are
p1 = −0.90313m, p2 = 1.2625m

(stationary state in Fig. 7. a). Convergence properties of
the algorithm are illustrated in Fig. 7. b.
As can be seen in Fig. 5, control functions are in the form

of the bang-bang solution, which means that the available
energy is completely usable.

IV. Conclusions

In this paper it is presented an off-line algorithm for solv-
ing the problem of open-loop optimal control for nonlin-
ear dynamic plants with unspecified initial and final condi-
tions which are parameterized with a coordinate transfor-
mations. Also, it is derived a simple heuristic extension of
that algorithm for the time optimal control problem. The
specific application of the derived algorithm is demonstrat-
ed on the problem of minimum-time robot control.
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It can be seen that coordinate transformations of the
robot placement provides an overall bang-bang solution of
the minimum-time problem, which means that the avail-
able energy is completely usable. In other words, if robot
placement is not strictly determined, only the appropri-
ate coordinate transformations of the robot placement will
guarantee the bang-bang solution of the minimum-time
problem. Any other solution, which is not in the form
of bang-bang control, can be considered as suboptimal.

The speed of convergence of the algorithm does not de-
pend so much on the order of the system as it depends on
the number of constraints, i.e. penalty functions.

Since proving the existence of a solution to the opti-
mal control constraints problem is generally a very diffi-
cult problem, treating constraints with penalty functions
is very useful also as an indication that the problem can be
solved. If the penalty function does not converge to zero
(for a stable algorithm with a constant convergence coeffi-
cient), this is a definite sign that the problem does not have
a solution within the given constraints. Exactly this prop-
erty of penalty functions has been used in the algorithm
for time-optimal control.

Appendix I: Matrix Notation

X(i) = [Xlr (i)]n×n , Xlr (i) =
∂fl (i)
∂xr(i)

Xp(i) = [Xp,rk(i)]n×Np , Xp,rk(i) =
∂xr (i)
∂pk

Xf(i) = [Xf,rk(i)]n×Np , Xf,rk(i) =
∂xr (tf )
∂pk

Fx(i) = [Fx,k (i)]n×1, Fx,k (i) =
∂F (i)
∂xk (i)

Fp(i) = [Fp,k(i)]Np×1, Fp,k (i) =
∂F (i)
∂pk

Jp = [Jp,k ]Np×1, Jp,k =
∂J
∂pk

J1p = [J1p,k ]Np×1, J1p,k =
∂J1

∂pk

J3p = [J3p,k ]Np×1, J3p,k =
∂J3

∂pk

J1N = [J1N,k ]n×1, J1N,k =
∂J1

∂xk(N )

J1f = [J1f,k ]n×1, J1f,k =
∂J1

∂xk(tf )
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