
Dear Author,

Here are the proofs of your article.

• You can submit your corrections online, via e-mail or by fax.

• For online submission please insert your corrections in the online correction form. Always
indicate the line number to which the correction refers.

• You can also insert your corrections in the proof PDF and email the annotated PDF.

• For fax submission, please ensure that your corrections are clearly legible. Use a fine black
pen and write the correction in the margin, not too close to the edge of the page.

• Remember to note the journal title, article number, and your name when sending your
response via e-mail or fax.

• Check the metadata sheet to make sure that the header information, especially author names
and the corresponding affiliations are correctly shown.

• Check the questions that may have arisen during copy editing and insert your answers/
corrections.

• Check that the text is complete and that all figures, tables and their legends are included. Also
check the accuracy of special characters, equations, and electronic supplementary material if
applicable. If necessary refer to the Edited manuscript.

• The publication of inaccurate data such as dosages and units can have serious consequences.
Please take particular care that all such details are correct.

• Please do not make changes that involve only matters of style. We have generally introduced
forms that follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not
allowed without the approval of the responsible editor. In such a case, please contact the
Editorial Office and return his/her consent together with the proof.

• If we do not receive your corrections within 48 hours, we will send you a reminder.

• Your article will be published Online First approximately one week after receipt of your
corrected proofs. This is the official first publication citable with the DOI. Further changes
are, therefore, not possible.

• The printed version will follow in a forthcoming issue.

Please note
After online publication, subscribers (personal/institutional) to this journal will have access to the
complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free
alert service. For registration and further information go to: http://www.link.springer.com.
Due to the electronic nature of the procedure, the manuscript and the original figures will only be
returned to you on special request. When you return your corrections, please inform us if you would
like to have these documents returned.

http://www.link.springer.com


Metadata of the article that will be visualized in
OnlineFirst

Please note: Images will appear in color online but will be printed in black and white.
ArticleTitle Finding short and implementation-friendly addition chains with evolutionary algorithms
Article Sub-Title

Article CopyRight Springer Science+Business Media, LLC
(This will be the copyright line in the final PDF)

Journal Name Journal of Heuristics

Corresponding Author Family Name Picek
Particle

Given Name Stjepan
Suffix

Division ESAT/COSIC and imec

Organization KU Leuven

Address Kasteelpark Arenberg 10, bus 2452, 3001, Leuven-Heverlee, Belgium

Phone

Fax

Email stjepan@computer.org

URL

ORCID

Author Family Name Coello
Particle

Given Name Carlos A. Coello
Suffix

Division Department of Computer Science

Organization CINVESTAV-IPN

Address Av. IPN No. 2508, Col. San Pedro Zacatenco, 07360, Mexico, D.F., Mexico

Phone

Fax

Email ccoello@cs.cinvestav.mx

URL

ORCID

Author Family Name Jakobovic
Particle

Given Name Domagoj
Suffix

Division Faculty of Electrical Engineering and Computing

Organization University of Zagreb

Address Zagreb, Croatia

Phone

Fax

Email domagoj.jakobovic@fer.hr



URL

ORCID

Author Family Name Mentens
Particle

Given Name Nele
Suffix

Division ESAT/COSIC and imec

Organization KU Leuven

Address Kasteelpark Arenberg 10, bus 2452, 3001, Leuven-Heverlee, Belgium

Phone

Fax

Email Nele.Mentens@kuleuven.be

URL

ORCID

Schedule

Received 4 August 2016

Revised 18 May 2017

Accepted 10 June 2017

Abstract Finding the shortest addition chain for a given exponent is a significant problem in cryptography. In this
work, we present a genetic algorithm with a novel encoding of solutions and new crossover and mutation
operators to minimize the length of the addition chains corresponding to a given exponent. We also
develop a repair strategy that significantly enhances the performance of our approach. The results are
compared with respect to those generated by other metaheuristics for exponents of moderate size, but we
also investigate values up to . For numbers of such size, we were unable to find any results
produced by other metaheuristics which could be used for comparison purposes. Therefore, we decided to
add three additional strategies to serve as benchmarks. Our results indicate that the proposed approach is a
very promising alternative to deal with this problem. We also consider a more practical perspective by
taking into account the implementation cost of the chains: we optimize the addition chains with regards to
the type of operations as well as the number of instructions required for the implementation.

Keywords (separated by '-') Addition chains - Genetic algorithms - Cryptography - Optimization - Implementation

Footnote Information



u
n
co

rr
ec

te
d

p
ro

o
f

J Heuristics
DOI 10.1007/s10732-017-9340-2

Finding short and implementation-friendly addition

chains with evolutionary algorithms

Stjepan Picek1
· Carlos A. Coello Coello2

·

Domagoj Jakobovic3
· Nele Mentens1

Received: 4 August 2016 / Revised: 18 May 2017 / Accepted: 10 June 2017

© Springer Science+Business Media, LLC 2017

Abstract Finding the shortest addition chain for a given exponent is a significant 11

problem in cryptography. In this work, we present a genetic algorithm with a novel2

encoding of solutions and new crossover and mutation operators to minimize the3

length of the addition chains corresponding to a given exponent. We also develop a4

repair strategy that significantly enhances the performance of our approach. The results5

are compared with respect to those generated by other metaheuristics for exponents6

of moderate size, but we also investigate values up to 2255 − 21. For numbers of7

such size, we were unable to find any results produced by other metaheuristics which8

could be used for comparison purposes. Therefore, we decided to add three additional9

strategies to serve as benchmarks. Our results indicate that the proposed approach is a10

very promising alternative to deal with this problem. We also consider a more practical11

perspective by taking into account the implementation cost of the chains: we optimize12

B Stjepan Picek

stjepan@computer.org

Carlos A. Coello Coello

ccoello@cs.cinvestav.mx

Domagoj Jakobovic

domagoj.jakobovic@fer.hr

Nele Mentens

Nele.Mentens@kuleuven.be

1 ESAT/COSIC and imec, KU Leuven, Kasteelpark Arenberg 10, bus 2452, 3001

Leuven-Heverlee, Belgium

2 Department of Computer Science, CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro

Zacatenco, 07360 Mexico, D.F., Mexico

3 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-017-9340-2&domain=pdf


u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

the addition chains with regards to the type of operations as well as the number of13

instructions required for the implementation.2 14

Keywords Addition chains · Genetic algorithms · Cryptography · Optimization ·15

Implementation16

1 Introduction17

Field or modular exponentiation has several important applications in error-correcting18

codes and cryptography. Well-known public-key cryptosystems such as Rivest–19

Shamir–Adleman (RSA) (Rivest et al. 1978) adopt modular exponentiation. However,20

those operations are often the most expensive ones in cryptosystems and naturally one21

aims to make them as efficient as possible. In a simplified way, modular exponentiation22

can be defined as the problem of finding the (unique) integer B ∈ [1, . . . , p − 1] that23

satisfies:24

B = Ac mod p, (1)25

where A is an integer in the range [1, . . . , p − 1], c is an arbitrary positive integer,26

and p is a large prime number. One possible way of reducing the computational load27

of Eq. (1) is to minimize the total number of multiplications required to compute the28

exponentiation.29

Since the exponent in Eq. (1) is additive, the problem of computing powers of the30

base element A can also be formulated as an addition calculation, for which so-called31

addition chains are used. Informally speaking, an addition chain for the exponent c32

of length l is a sequence V of positive integers v0 = 1, . . . , vl = c, such that for each33

i > 1, vi = v j +vk for some j and k with 0 ≤ j ≤ k < i . An addition chain provides34

the correct sequence of multiplications required for performing an exponentiation.35

Thus, given an addition chain V that computes the exponent c as indicated before, we36

can find B = Ac by successively computing: A, Av1 , . . . , Avl−1 , Ac.37

As an example, consider A60, where the naive procedure would require 59 (c − 1)38

multiplications. One simple algorithm that can be used (although, it will often be the39

case that it does not give optimal results) works in the following way. First, write40

the exponent in its binary representation. Then, replace each occurrence of the digit41

1 with the letters “DA” and each occurrence of the digit 0 with the letter “D”. After42

all digits are replaced, remove the first “DA” that appears on the left. What remains43

represents a rule to calculate the exponent, since the letter “A” stands for addition44

(multiplication) and the letter “D” for doubling (squaring). If we consider again the45

example A60, the exponent 60 in binary representation equals “111100”. After the46

replacement and the removal of “DA” at the left, the “DADADADD” sequence remains.47

Thus, the rule is: square, multiply, square, multiply, square, multiply, square, square48

(1 → 2 → 3 → 6 → 7 → 14 → 15 → 30 → 60).49

This simple example describes the so-called binary or square-and-multiply method.50

However, this method does not always result in the shortest chain (cf. with the chain51

given in Eq. (2). In fact, even for the value 15, the binary method will not produce52

the shortest chain (Knuth 1997). Still, it can be generalized to some more powerful53

methods such as those presented in Sect. 2. Another option is to use the addition chain54

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

[1 → 2 → 4 → 6 → 12 → 24 → 30 → 60], for which we see that only seven55

multiplications are required:56

A1; A2 = A1 A1; A4 = A2 A2; A6 = A4 A2; A12 = A6 A6;57

A24 = A12 A12; A30 = A24 A6; A60 = A30 A30. (2)58

Thus, the length of the addition chain defines the number of multiplications required59

for computing the exponentiation. The aim is to find the shortest addition chain for a60

given exponent c (many addition chains can be produced for the same exponent and a61

number of them can have the same length). Naturally, as the exponent value grows, it62

becomes more difficult to find a chain that forms the exponent in a minimal number of63

steps. Moreover, there exists an argument that finding the shortest addition chain is an64

NP-complete problem (Knuth 1997). One possible way of tackling difficult problems65

is to use metaheuristics. To that end, we propose a genetic algorithm to find short66

addition chains for a given exponent.67

This work is based on the paper “Evolutionary Algorithms for Finding Short Addi-68

tion Chains: Going the Distance” (Picek et al. 2016). We optimize the algorithm69

introduced in (Picek et al. 2016) in order to be able to handle even larger exponent70

values. The source code of the evolutionary algorithms is available as a part of the71

ECF framework Jakobovic (2016). In this paper we present new results for a number72

of random values in order to test our algorithm in the case when there is no perceived73

structure in the exponent value. We also conduct tests for values that consist of a rel-74

atively large number of small steps which constitutes them as difficult values to find75

shortest addition chains. Besides the experiments for the 2127 − 3 value, we add an76

additional real-world case, namely the value 2255 − 21, on which we run extensive77

experiments. Finally, we also consider the implementation perspective by evolving78

addition chains with a minimal runtime on embedded software or hardware platforms79

as an optimization goal.80

The remainder of this paper is organized as follows. Section 2 provides some back-81

ground information on addition chains, as well as on possible chain elements, and82

different types of chains. Furthermore, we discuss several techniques for exponentia-83

tion, relevant from a cryptographic perspective. In Sect. 3, we provide an overview of84

related work in which heuristics have been used to find short chains. Section 4 presents85

our design goals as well as the algorithm that we propose. In Sect. 5, we report exten-86

sive results for various test cases and exponent sizes. Following that, in Sect. 6, we87

present two important modifications of the problem where we do not only consider88

finding the shortest chains, but also finding chains that are “cheap” for embedded soft-89

ware or hardware implementations. In Sect. 7, we give a discussion about the results90

we obtained as well as some possible future research directions. Finally, in Sect. 8,91

we conclude the paper. An example of the code listing all necessary instructions for a92

chain of interest is given in Appendix A.93

2 On addition chains94

We start this section with some basic notions about addition chains. Afterwards, we95

give several important results that we use when designing our evolutionary algorithm.96

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

Next, we briefly discuss algorithms that are commonly used to compute exponentia-97

tions. In this work, we follow the notation and theoretical results presented in “The98

Art of Computer Programming, Volume 2: Seminumerical Algorithms” (Knuth 1997).99

For more detailed information about addition chains, we refer the readers to Chapter100

4.6.3. “Evaluation of Powers” (Knuth 1997).101

Let n be the exponent value and ν(n) be the number of ones in the binary repre-102

sentation of that exponent, i.e., ν(n) represents the Hamming weight of a number n.103

The number of bits necessary to represent the exponent (integer) value n is denoted104

as λ(n) + 1, where λ(n) = ⌊log2(n)⌋.105

2.1 Theoretical background106

Definition 1 An addition chain is a sequence a0 = 1, a1, . . . , ar = n with107

ai = a j + ak, for some k ≤ j < i. (3)108

Definition 2 An addition chain is called ascending if109

1 = a0 < a1 < a2 < · · · < ar = n. (4)110

In this work, we focus only on ascending chains. From this point on, when we talk111

about addition chains, we consider ascending addition chains. The shortest length of112

any valid addition chain for a value n is denoted as l(n). In the length of a chain, the113

initial step that has the value one is not counted.114

Next, it is possible to define different types of steps in the addition chain based on115

Eq. (3):116

– Doubling step when j = k = i − 1. This step always gives the maximal possible117

value at the position i .118

– Star step when j but not necessarily k equals i − 1.119

– Small step when λ(ai ) = λ(ai−1).120

– Standard step when ai = a j + ak where i > j > k.121

On the basis of the aforementioned steps, it is easy to infer the following conclu-122

sions (Knuth 1997):123

– The first step is always a doubling step.124

– A doubling step is always a star step and never a small step.125

– A doubling step must be followed by a star step.126

– If step i is not a small step, then step i + 1 is either a small step or a star step, or127

both.128

Now, we focus on the shortest addition chains. Trivially, the shortest chain for any129

number n must have at least log2(n) steps. To be more precise, any chain length is130

equal to log2(n) plus the number of small steps (Knuth 1997).131

When ν(n) ≥ 9, there are at least four small steps in any chain for exponent132

length n (Thurber 1973b). That statement can be also generalized with the following133

definition (Thurber 1973b):134

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

Definition 3 If ν(n) ≥ 24·m−1 + 1, then l(n) ≥ log2(n) + m + 3 where m is a135

nonnegative value.136

A star chain is a chain that involves only star operations. The minimal length of a137

star chain is denoted as l∗(n) and the following holds (Knuth 1997):138

l(n) ≤ l∗(n). (5)139

Although it seems intuitive that the shortest addition chain is also a star chain,140

in 1958, Walter Hansen proved that for certain large exponents n, the value of l(n)141

is smaller than l∗(n) (Knuth 1997). The smallest of such exponent values n equals142

12 509.143

Albeit counterintuitive, there also exist values of n for which l(n) = l(2n) with144

the smallest example being n = 191. Here, both n and 2n have length l equal to 11.145

Furthermore, there exist values of n for which l(n) > l(2n) (Clift 2011). The smallest146

of such values of n is 375 494 703 (Flammenkamp 2016).147

Finally, the length seems to be difficult to compute for a specific class of numbers:148

let c(r) be the smallest value of n such that l(n) = r (Knuth 1997). Therefore, c(r) is149

the first integer value requiring r steps in the shortest addition chain (Thurber 1973a).150

To obtain such shortest addition chains is regarded more difficult than to obtain the151

shortest addition chain for some other greater value.152

2.2 Techniques for exponentiation153

A number of techniques that are useful for cryptography, and that apply to both154

exponentiation in a multiplicative group and elliptic curve point multiplication, are155

explained in Menezes et al. (1996) and Gordon (1998) and can be divided into three156

categories:157

1. techniques for general exponentiation,158

2. techniques for fixed-base exponentiation, and159

3. techniques for fixed-exponent exponentiation.160

In the following paragraphs, we use the term exponentiation, but all principles hold161

for both exponentiation and elliptic curve point multiplication. In the first category, the162

most straightforward ways to perform an exponentiation or a point multiplication, are163

the left-to-right and right-to-left binary methods. With the aforementioned method, the164

length of a chain n is upper bounded by ν(n)+λ(n)−1. In the worst case scenario, the165

binary method needs 2λ(n) multiplications and 3λ(n)/2 on average Gordon (1998).166

An option for speeding up these algorithms consists of evaluating more than one167

bit of the exponent at a time after precomputing a number of multiples of the base.168

An example is the window or m-ary method that evaluates m bits of the exponent at a169

time. The precomputation of base multiples maximizes the speed by minimizing the170

number of multiplications. However, the optimizations require a larger memory usage171

for the storage of the precomputed values. When the base is fixed, the precomputed172

multiples of the base can be prestored.173

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

The m-ary method can be further generalized into sliding window methods and174

adaptive methods (Knuth 1997). Another way of minimizing the number of multipli-175

cations without storing precomputed multiples of the base is by exponent recoding,176

which uses a representation of the exponent that is different from the binary repre-177

sentation. The recoding of the exponent requires additional resources on a chip (logic178

gates) or a microprocessor (program memory).179

For elliptic curve cryptography, further speed optimizations are possible by con-180

sidering elliptic curves with special properties, like the Gallant–Lambert–Vanstone181

(GLV) curve (Gallant et al. 2001), the Galbraith–Lin–Scott (GLS) curve (Galbraith182

et al. 2011) or the FourQ curve (Costello and Longa 2015). In Faz-Hernández et al.183

(2014), side-channel security is taken into account in the derivation of efficient algo-184

rithms for scalar multiplication on GLS–GLV curves.185

In this paper, we focus on addition chains for fixed-exponent exponentiations or186

fixed-scalar point multiplication without taking into account optimizations using spe-187

cific fields or curves. We do not consider side-channel analysis, but we believe this188

does not undermine our results, since a number of side-channel countermeasures can189

be applied on top of the proposed addition chains. Examples are point blinding or190

randomized projective coordinates (Coron 1999).191

3 Related work192

In 1990, Bos and Coster presented the Makesequence algorithm that produces an193

addition sequence of a set of numbers (Bos and Coster 1990). The proposed method194

is able to find chains of large dimensions, and the authors conclude that their method195

is relatively more effective than the binary method. The heuristics in the algorithm196

choose, on the basis of a weight function, which method will be used to produce the197

sequence (the authors experimented with four methods). However, the authors report198

that their current weight function does not give satisfactory results and they decided199

to experiment with simulated annealing, but without success.200

Nedjah and de Macedo Mourelle experimented with a genetic algorithm (GA) in201

order to find minimal addition chains (Nedjah and de Macedo Mourelle 2002a). They202

used binary encoding where value 1 means that the entry number is in the chain, and203

0 means the opposite. This representation is not suitable for large numbers and the204

authors experimented with values of only up to 250. We note that the chromosome is205

of length 250 for that value, and for any value of practical interest the chromosome206

would amount to more than the memory of all computers in the world. The same207

authors focused on optimizing addition-subtraction chains with GAs (Nedjah and de208

Macedo Mourelle 2002b). They used the same representation and exponent values as209

in Nedjah and de Macedo Mourelle (2002a), which makes their work also far from210

applicable to real-world use cases. They also experimented with addition-subtraction211

chains with a maximal value of 343 (Nedjah and de Macedo Mourelle 2003).212

Nedjah and de Macedo Mourelle used Ant Colony Optimization to find minimal213

addition chains working with exponent sizes of up to 128 bits (Nedjah and de Macedo214

Mourelle 2004). However, since they do not provide the numbers themselves, but215

only their sizes, it is impossible to assess the quality of this approach besides the216

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

fact that they report that it is better than the binary, quaternary, and octal method.217

The same authors extended their work for exponent sizes up to 1 024 bits resulting in218

better results for the Ant Colony Optimization algorithm than in cases when binary,219

quaternary, octal, and GA methods are used (Nedjah and Macedo Mourelle 2006).220

Cortés et al. proposed a genetic algorithm approach for which the encoding is the221

chain itself (Cruz-Cortés et al. 2005). Besides that, the authors also proposed dedicated222

mutation and crossover operators. Using this approach, they report to successfully find223

minimal addition chains for numbers up to 14 143 037.224

Cortés, Rodríguez-Henríquez, and Coello presented an Artificial Immune System225

for generating short addition chains of sizes up to 14 143 037 (Cruz-Corteés et al.226

2008). With that approach, the authors were successful in finding almost all optimal227

addition chains for exponents e < 4 096.228

Osorio-Hern et al. (2009) proposed a genetic algorithm coupled with a local search229

algorithm and repair mechanism in order to find minimal short addition chains. This230

work is of high relevance since it clearly discusses the need for a repair mechanism231

when using heuristics for the addition chains problem.232

León-Javier et al. (2009) experimented with the Particle Swarm Optimization algo-233

rithm in order to find optimal short addition chains.234

Nedjah and Macedo Mourelle (2011) implemented the Ant Colony Optimization235

algorithm on a SoC in order to speed up the modular exponentiation in cryptographic236

applications.237

Sarkar and Mandal (2012) used Particle Swarm Optimization to obtain faster mod-238

ular multiplication in cryptographic applications for wireless communications.239

Rodriguez-Cristerna and Torres-Jimenez (2013) used a GA to find minimal Brauer240

chains, where a Brauer chain is an addition chain in which each member uses the241

previous member as a summand.242

Domínguez-Isidro et al. (2011); Dománguez-Isidro et al. (2015) investigated the243

usage of evolutionary programming for minimizing the length of addition chains.244

Finally, Picek et al. used genetic algorithms with customized operators to evolve245

short addition chains for values up to 2127 − 3. This work also discusses several246

drawbacks appearing in related work as well as some of their possible solutions (Picek247

et al. 2016).248

4 The design of the proposed algorithm249

Before discussing the choice of the algorithm, we briefly enumerate some basic rules250

our chains need to fulfill:251

1. Every chain (solution) needs to be an ascending chain.252

2. Every chain needs to be non-redundant, i.e., there should not be two identical253

numbers in a chain.254

3. Every chain needs to be valid, i.e., every number in a chain needs to be the sum255

of two previously appearing numbers.256

4. Every chain needs to start with the value one and finish with the desired exponent257

value.258

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

When choosing the appropriate algorithm for the evolution of chains, we start with259

the considerations about the representation. If we disregard the approach where one260

encodes individuals in a binary way (i.e., for each possible value, we use either 0 if261

it is not a part of the chain, or 1 when it is a part of the chain), up to now there is262

not much of a choice. Indeed, encoding solutions as integer values where each value263

represents the number that occurs in the chain seems rather natural. Accordingly, we264

also use that representation, which we denote as encoding with chain values.265

However, internally, our algorithm works with one more representation where we266

represent each value n as a pair of positions i1 and i2 that hold the previous values n1267

and n2 forming the value n, which is denoted as encoding with summand positions.268

Although such position-based encoding gives longer chromosomes, for large expo-269

nents the encoded values are much smaller and the memory requirements for storing270

an individual are consequently smaller. Furthermore, it is possible to use operators271

that work on the positions and to give an algorithm more options to combine solutions272

(since we have two positions for every number, the length of a chain encoded with273

positions is always twice as long as the one encoded with chain values).274

For both representations, a GA seems a natural choice, but there is one important275

difference in both approaches. When using the representation based on chain values276

for large numbers, the chromosome encoding needs to support large numbers, while in277

the representation based on summand positions we only need to support large numbers278

for calculating the chain elements, but not for storing them.279

However, one cannot aim to fulfill the aforementioned rules and use a standard280

GA. Therefore, we need to design a custom initialization procedure, mutation, and281

crossover operators. In fact, only the selection algorithm can be used as in the standard282

GA. In all our experiments, we work with k-tournament selection where k = 3. In each283

tournament, the worst of k randomly selected individuals is replaced by the offspring of284

the best two from the same tournament. This selection scheme not only eliminates the285

need for crossover probability, but has produced good results in different applications,286

in our experience.287

Since initialization and variation operators are expected to produce many invalid288

solutions (in fact, for larger chains our experiments showed that it is highly unlikely289

that genetic operators will produce valid solutions) we also need to design a repair290

strategy. The repair strategy can be incorporated in each of the previous parts or to be291

considered as a special kind of operator, which is the approach we opted to follow.292

Next, we present the operators we use in our GA.293

4.1 Initialization algorithm294

We designed the initialization algorithm aiming to maintain as much diversity as295

possible. We accomplished this by analyzing a number of known optimal chains (both296

star and standard chains) and checking the necessary steps to obtain them. Here, we297

note that if the initialization can produce only star chains and the mutation can generate298

only star steps, the whole algorithm will be able to produce only star chains. Naturally,299

one could circumvent this by adding additional steps in the repair mechanism. In300

that case, the model would not follow the intuition, since one expects that the repair301

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

mechanism only repairs the chains and it should not possess additional mechanisms302

for the generation of new values.303

The initial population is generated via a set of hardcoded values that are positioned304

at the beginning of the chain together with randomly generated chain sequences as305

presented below. The probability values are selected on the basis of a set of tuning306

experiments.307

– Set the zeroth element to one and the first element to two.308

– Uniformly at random select between all minimal subchains consisting of three309

elements (i.e., the second, third, and fourth positions in the chain) and a random310

choice of the second element (according to the rules, either the value three or four).311

– With a probability equal to 3/5, double the elements until they reach half of the312

exponent size.313

– Check whether the current element and any previous element sum up to the expo-314

nent value.315

– Uniformly at random, choose from among the following mechanisms to obtain316

the next value in the chain, under the constraint that it needs to be smaller than the317

exponent value:318

1. Sum two preceding elements of the chain.319

2. Sum the previous element and a random element.320

3. Sum two random elements. One random element is chosen between the zeroth321

position and the element in the middle of the chain and the second one is chosen322

between the middle element and the final (exponent) value.323

4. Loop from the element on the position i − 1 until the largest element that can324

be summed up with the last element is found.325

4.2 Variation operators326

Next, we present the mutation and crossover operators we use. They are very similar to327

the operators provided, for instance, in Cruz-Cortés et al. (2005), Cruz-Corteés et al.328

(2008). For such a specific problem as the one we study here, the task of devising new329

operators is difficult. Furthermore, many operators reduce to the ones described here.330

For instance, we present here something that is analogous to a single-point mutation,331

but since the change in a single position will invalidate the chain, after the repair332

mechanism, the mutation can also be regarded as a mixed mutation. Therefore, the333

number of mutation points is irrelevant since a single point change brings changes in334

every position until the end of the chain.335

Since we have several branches in the mutation operator, one can say that those336

branches could be separated into different mutation operators. We note that there are337

more possibilities on how to combine two values to form a new value in a sequence338

and there could be possibilities for additional mutation operators. On the other hand,339

we implemented two crossover operators and we consider advantageous to use both340

of them, since this promotes diversity. However, identifying which of them is better341

than the other is hard, since this depends on the exponent value that we aim to reach.342

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

4.2.1 Crossover343

We implemented two versions of the crossover operator: one-point crossover and two-344

point crossover. We provide the pseudocode for one-point crossover in Algorithm 1345

and the two-point version is analogous. The selection of which crossover is used is346

done uniformly at random for each call of the crossover operator. Here, the function347

Find Lowest Pair(P, i, pair1, pair2) determines the pair of elements with lowest348

indexes (pair1, pair2) which give the target element i in a chain P . The dominant349

difference between the mutation operator and the crossover operator lies in the fact350

that in the crossover, we have defined the rules on how to build elements while in the351

mutation we do not have such strict rules. However, since both require the usage of352

the repair mechanism, that difference can become rather blurred.353

Algorithm 1 Crossover operator.

Require: Exponent exp > 0, Parent addition chains P1, P2

rand = random(3, exp − 1)

for all i such that 0 ≤ i ≤ rand do

ei = P1i

end for

for all i such that rand ≤ i + 1 ≤ n do

Find Lowest Pair(P2, i, pair1, pair2)

ei = epair1
+ epair2

end for

RepairChain(e, exp)

return e = e0, e1, ..., en

4.2.2 Mutation354

The mutation operator is again similar to those presented in the related literature, but355

we allow more diversity in the generation process as presented in Algorithm 2. As356

already stated, since the mutation invalidates the chain, it is impossible to expect small357

changes (except when the mutation point is at the end of the chain) and therefore, this358

is actually a macromutation operator.359

Algorithm 2 Mutation operator.

Require: Exponent exp > 0, e = e0, e1, ..., en

rand = random(2, exp − 1)

rand2 = random(0, 1)

if rand2 == 1 then

erand = erand−1 + erand−2

else

rand3 = random(2, rand − 1)

erand = erand−1 + erand3
end if

RepairChain(e, exp)

return e = e0, e1, ..., en

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

4.3 The repair algorithm360

Function RepairChain(e, exp) takes the chain e and repairs it in the following way:361

1. Delete duplicate elements in the chain.362

2. Delete elements greater than the exp value.363

3. Check that all elements are in ascending order, if not, sort them.364

4. Ensure that the chain finishes with the exp value by repeating operations in the365

following order:366

(a) Try to find two elements in the chain that result in exp.367

(b) Uniformly at random apply:368

i. Double the last element of the chain while it is smaller than exp.369

ii. Add the last element and a random element.370

iii. Add two random elements.371

This function is in many ways similar to the Initialization procedure, but in this372

case, the primary goal is removing redundant chain elements, rather than maximizing373

diversity as is the case in the Initialization.374

There are several places in our algorithm where we choose what branch to enter375

based on random values. We decided to use uniform random values where each branch376

has the same probability to be chosen. We believe this mechanism can be further377

improved. One trivial modification would be with regards to whether one wants to378

obtain a star chain or not. In the case when only star chains are wanted, then the379

branches that cannot result in a star step can be set either to a zero or some small380

value, analogous for the case when we want to have a larger number of standard steps.381

The number of independent runs for each experiment is 50. For the stopping crite-382

rion we use stagnation, which we set to 100 generations without improvement. We set383

the total number of generations to 1 500. The population size is set to 300 in all exper-384

iments. We note that larger population sizes perform even better thanks to increased385

diversity from the initialization mechanism, but for large exponent values the evolution386

takes a long time. With the current setting, even for relatively large exponent size, one387

evolutionary run finishes in less than one hour. We note that all listed parameters are388

selected based on a tuning phase, whose results we do not give here due to the lack389

of space. For all the experiments, we use the Evolutionary Computation Framework390

(ECF) (Jakobovic 2016).391

5 Finding short addition chains392

In this section, we concentrate on a number of scenarios where the goal is to find the393

shortest addition chains.394

5.1 The fitness function395

In all the experiments in this section, we use a simple fitness function where the goal is396

minimization. The number of elements in the chain (i.e., the length len of an addition397

chain chain for an exponent value n) is minimized as given by the equation:398

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

fitness(chain) = len(chain). (6)399

5.2 Tests based on a comparison with previous work400

For the first category, we use a set of exponent values that are also used in previous401

work. Namely, those are the exponents belonging to the class that is difficult to calculate402

according to Knuth (1997). Recall, those values are the minimal integers that form an403

addition chain of a certain length i . Up to now, experiments had been done for values404

of i up to 30 (Cruz-Cortés et al. 2005; Cruz-Corteés et al. 2008). However, in an effort405

to evaluate the performance of our algorithm with even higher values we experimented406

with values up to i = 40. Furthermore, for each of those values we give statistical407

indicators in order to understand better the performance of our algorithm as well as to408

serve as a reference for future work.409

We note that any comparison with previous work is difficult since other authors410

only report the value (and the chain) that presents the best obtained solution. From the411

reproducibility and the efficiency side, we find those approaches somewhat incomplete412

since it makes a big difference if the algorithm found the best possible value in one413

instance out of 100 runs or in 90 instances out of 100 runs.414

We note that for exponent values n < 227 one can find optimal chains online Flam-415

menkamp (2016), while values up to n = 231 can be downloaded from the same416

web page. Besides our algorithm, we implemented the binary algorithm as well as417

two variants of the window method. In the first m-window method (called Window418

method in tables), we set the value of k to four in the expression m = 2k . It has been419

shown (Thurber 1973a) that with this method the length of the chain is:420

l(n) ≤ log2(n) + 2k−1 − (k − 1) + ⌊log2(n)/k⌋, ∀k. (7)421

The second version of the window method (called Opt. window method in tables)422

tries to optimize Eq. (7) by choosing the value k that minimizes 2k−1 − (k − 1) +423

⌊log2(n)/k⌋. We emphasize that none of the aforementioned methods should be424

regarded as the state-of-the-art, but only as methods that give good results and should425

serve as the baseline cases.426

The results are given in Table 1 where it is easy to observe that the GA performs427

better than the binary, window, and optimized window methods. In Figure 1 we depict428

a comparison between the GA and the Optimized window method for c(r) values.429

5.3 Testing random values430

Up to now, we investigated a number of values of various sizes where we observe431

that the GA approach performs very well. However, the investigated values have a432

certain structure, i.e., they are not randomly chosen. Our goal in this set of experi-433

ments is to check how the GA performs when we look for the shortest addition chains434

for random values of various sizes. In order to obtain such values, we use the infras-435

tructure from RANDOM.ORG (2016) where the only constraint we enforce is to use436

odd values. Furthermore, we experiment with values between 220 and 231 in order to437

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

Table 1 c(r) family of the exponent values

r c(r) Binary Window Opt. window GA

Min Avg Stdev

30 14,143,037 38 40 34 30 30.92 0.60

31 25,450,463 38 42 35 31 32.62 0.66

32 46,444,543 42 43 36 32 33.50 0.54

33 89,209,343 42 44 38 33 34.46 0.81

34 155,691,199 42 45 39 34 35.44 1.03

35 298,695,487 46 47 41 35 35.67 0.74

36 550,040,063 45 47 41 36 37.96 0.83

37 994,660,991 46 48 42 37 38.76 1.47

38 1,886,023,151 48 48 42 38 40.28 1.21

39 3,502,562,143 48 49 43 39 41.36 1.19

40 6,490,123,999 52 52 45 41 41.77 0.63

Fig. 1 Efficiency comparison, GA and Optimized window approach, c(r) values

be able to compare with the experimentally validated shortest addition chains (Flam-438

menkamp 2016). The results are given in Table 2 while in Figure 2 we display the439

comparison between the GA and the Optimized window approaches. Note that for the440

last three values we write N/A in the l(n) column since those values are too large to441

be obtained from RANDOM.ORG (2016). As in the previous scenario, we see that442

the GA approach is by far the best out of those tested here.443

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

Table 2 Testing random values

n l(n) Binary Window Opt. window GA

Min Avg Stdev

488,705 23 26 33 27 23 23.53 0.51

1,273,909 25 29 36 30 25 25.87 0.63

3,399,779 25 31 37 31 25 26.87 0.87

5,425,679 27 32 38 32 28 28.23 0.50

9,264,263 28 34 40 34 28 29.63 0.67

20,279,147 29 39 42 36 30 31.07 0.52

51,950,083 30 34 42 36 30 31.20 0.55

115,216,741 31 39 44 38 32 33.60 1.01

159,963,579 N/A 41 45 39 34 35.20 0.85

310,469,637 N/A 36 46 39 34 34.23 0.43

1,073,740,801 N/A 49 47 41 35 35.26 0.45

Fig. 2 Efficiency comparison, GA and Optimized window approach, random values

5.4 Testing “difficult” values444

In this section, we test several values that can be regarded as difficult. That difficulty445

stems from the fact that all experiments done up to now indicate those numbers have446

a small number of optimal addition chains (i.e., there are only a few options on how447

to build optimal addition chains). Furthermore, those numbers have a relatively large448

number of small steps (cf. with the value n = 2k that has only one optimal addition449

chain but is simple due to the lack of small steps). The results are given in Table 3450

and Fig. 3. The values in the table are experimentally shown to have 7 small steps451

and in total a length of 41 steps. Note that although the GA outperforms the other452

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

Table 3 “Difficult” values

n Binary Window Opt. window GA

Min Avg Stdev

17,180,843,711 50 51 45 42 43.93 0.96

17,181,535,967 49 52 46 42 45.16 1.45

17,181,824,999 50 52 46 42 44.40 1.08

17,181,857,663 50 52 46 41 44.46 1.24

17,181,878,143 50 52 46 42 44.45 1.07

17,181,921,023 51 52 46 42 44.16 1.27

17,181,425,531 51 52 46 43 44.06 0.78

17,181,433,703 50 52 46 42 43.80 0.69

17,181,750,911 49 52 46 42 44.35 1.27

17,181,793,151 50 52 46 42 44.96 1.21

17,181,963,167 51 52 46 42 43.99 1.02

17,182,209,983 50 52 46 42 44.83 1.36

17,182,210,751 49 52 46 42 44.65 1.07

17,182,215,157 48 52 46 42 44.48 1.14

17,182,219,767 50 52 46 43 44.55 1.03

17,182,226,303 51 52 46 42 44.49 1.01

17,182,318,319 49 52 46 42 44.77 1.20

Fig. 3 Efficiency comparison, GA and Optimized window approach, “difficult” values

tested methods, it is still not able to reach optimal addition chains (except in one case).453

Furthermore, here we can observe a relatively small difference in the performance454

between the GA and the Optimized window method.455

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

5.5 Real-world benchmark tests456

Finally, as a real-world benchmark, we investigate two values that are used in practice:457

2127 − 3 and 2255 − 21. The first value has applications in certain high-speed Diffie-458

Hellman implementations (Bernstein et al. 2014) while the latter one is used in the459

inversion part in the 25519 curve (Bernstein 2006). To provide additional experiments460

for a comparison, we start with much smaller values and we gradually progress by461

increasing the exponent in steps of ten, i.e., the value following 237 −3 equals 247 −3.462

We finish the experiments with the exponent values 2127 −3 and 2255 −21. The results463

are given in Tables 4 and 5. Similarly as in the previous cases, the GA approach is464

again superior while the differences between the results are even more striking than465

Table 4 Exponents up to 2127 − 3

Exponent Binary Window Opt. window GA

Min Avg Stdev

237 − 3 71 57 51 43 45.32 0.99

247 − 3 91 69 63 54 56.25 1.11

257 − 3 111 82 76 64 64.90 0.87

267 − 3 131 94 88 73 73.22 0.43

277 − 3 151 107 101 85 85.44 0.51

287 − 3 171 119 113 97 104.36 3.56

297 − 3 191 132 126 106 107.27 0.91

2107 − 3 211 144 138 115 115.71 0.75

2117 − 3 231 157 151 126 126.68 0.89

2127 − 3 251 169 163 136 136.83 0.83

Table 5 Exponents up to 2255 − 21

Exponent Binary Window Opt. window GA

Min Avg Stdev

2165 − 21 326 217 211 176 178.21 1.81

2175 − 21 346 229 223 187 191.28 2.97

2185 − 21 366 242 236 198 198.90 0.88

2195 − 21 386 254 248 210 211.94 1.85

2205 − 21 406 267 261 217 219.84 1.87

2215 − 21 426 279 273 228 231.72 2.54

2225 − 21 446 292 286 239 242.03 2.67

2235 − 21 466 304 298 250 253.52 2.27

2245 − 21 486 317 311 258 261.55 2.41

2255 − 21 506 329 323 269 273.81 2.57

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

Fig. 4 Efficiency comparison, GA and the Optimized window approaches. a Values up to 2127 − 3. b

Values up to 2255 − 21

before. We note that for the 2127 − 3 value, the GA found a chain of the same length466

as the currently shortest known. On the other hand, for the value 2255 − 21 our best467

results equals 269 steps while the best known result is only 265 steps. In Fig. 4a and b468

we give a comparison between the GA and the Optimized window approaches for469

values from Tables 4 and 5, respectively.470

6 On the implementation perspective471

Up to now, our experiments investigated only the evolution of the shortest addition472

chains. However, in realistic scenarios, addition chains also have an important per-473

spective that concerns implementation details. Accordingly, here we concentrate on474

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

two such implementation scenarios where we start with the motivation for each prob-475

lem and then we present the obtained results. Note that we disregard certain aspects476

of the problem and we concentrate only on the addition chains perspective.477

6.1 Adding the weights of operations478

As already said, finding the shortest addition chains can be an extremely difficult479

problem. However, one can also consider how many shortest addition chains are there480

for a certain value and whether all those chains are equivalent. The number of the481

shortest chains for a given value depends on the specific value. From the theoretical482

perspective all chains of the same size are equally good/optimal. However, since those483

chains often need to be implemented in hardware or embedded software, we need to484

consider the implementation cost where the multiplication operation is more expensive485

than the squaring operation.486

To elaborate on this further, we start with a small example, namely the value 511. By487

checking the online repository of the shortest addition chains (Flammenkamp 2016)488

we see that the length of that addition chain equals 12. Furthermore, we run GA for489

30 times, resulting in 30 optimal chains of length 12. However, when inspecting those490

solutions we see that there are 20 unique solutions, all of them reaching the value 511491

in 12 steps. Out of those 20 solutions, we obtain 3 solutions with 4 multiplications,492

12 solutions with 5 multiplications, and 5 solutions with 6 multiplications. Next, we493

give examples of each of the categories discussed:494

1 → 2 → 3 → 6 → 12 → 15 → 30 → 60 → 120 → 240 → 480 → 510 → 511.495

1 → 2 → 4 → 6 → 10 → 20 → 30 → 60 → 120 → 240 → 480 → 510 → 511.496

1 → 2 → 3 → 6 → 12 → 18 → 30 → 31 → 60 → 120 → 240 → 480 → 511.497

All three previous solutions represent the shortest addition chains for a value 511,498

but from the implementation perspective, the first solution is the cheapest, while the499

last one is the most expensive. In this section, our goal is to find the shortest addition500

chains, but also the chains that are as “cheap” as possible for the value 2127−3. In order501

to do so, we first need to determine how much more expensive the multiplication is502

compared with the squaring. In general, the multiplication operation is more expensive503

than the squaring operation where the exact cost ratio depends on several factors. For504

instance, in Bernstein (2006), the author writes that general multiplication costs 243505

floating-point operations and squaring costs 162 floating point operations, which gives506

a ratio of 0.67. On the other hand, L. Duc-Phong estimates that the squaring costs 0.8507

multiplications on a software platform (Le 2011). In this set of experiments, we follow508

the latter estimate, but our approach can be applied to any implementation platform,509

as long as the cost ratio of multiplications and squarings is known.510

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

6.1.1 The fitness function511

In this set of experiments, our fitness function aims to minimize the total cost of512

instructions:513

fitness(chain) = a ×
∑

squaring + b ×
∑

multiplication, (8)514

where a = 0.8 and b = 1.515

We note that instead of immediately trying to find chains that are as short as possible516

and having as small number of multiplications as possible, we could had first aimed517

to find the shortest chains and then try to improve on the type of operations while518

maintaining the chain length. However, we considered this option to be much harder519

for that GA so we did not pursue it further.520

6.1.2 Results521

Due to the size of the obtained solutions, we do not list the whole addition chains here,522

but instead, we discuss their lengths and the number of the each type of operations.523

We obtained 12 different chains with the total length of 136 steps (therefore, with524

the shortest known length). Out of those 12 chains, 10 chains consist of 125 squaring525

operations and 11 multiplication operations while 2 chains consist of 126 squaring526

operations and only 10 multiplications. Therefore, we succeeded in obtaining two527

chains that are faster on embedded software platforms compared to other evolved528

chains of length 136. Finally, we note that we did not find any chain of length 136 that529

has more than 11 multiplications.530

6.2 Extending the operations set531

In the second implementation scenario, we consider the case when a certain532

addition chain is to be implemented. We use here the example of inversion in533

G F(2127) (Bernstein 2006). The optimal chain for the value 127 is trivial to find534

and it equals (Flammenkamp 2016):535

1 → 2 → 3 → 6 → 12 → 15 → 30 → 60 → 63 → 126 → 127.536

Let us consider how such a chain would be implemented with an example from537

Sage (Stein et al. 2013):538

def Inversion (din): r0 = r1*r0 r0 = r1*r0539

r0 = din r1 = r0ˆ(2ˆ6) r1 = r0ˆ(2ˆ3)540

r1 = r0ˆ(2ˆ1) r0 = r1*r0 r0 = r1*r3541

r0 = r1*r0 r1 = r0ˆ(2ˆ3) r1 = r0ˆ(2ˆ63)542

r1 = r0ˆ(2ˆ1) r0 = r1*r3 r0 = r1*r0543

r0 = r1*din r1 = r0ˆ(2ˆ15) r0 = r0ˆ(2ˆ1)544

r3 = r0 r0 = r1*r0 return r0545

r1 = r0ˆ(2ˆ3) r1 = r0ˆ(2ˆ30)546

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

We see there are in total 9 multiplications and 10 squaring operations. However,547

for instance to calculate r1 = r2126

0 it would require that we either have the value548

r1 = r263

0 stored in the memory or to find it on-the-fly. An obvious technique to549

circumvent this problem is to use a number of operations that can reach the desired550

value faster than the multiplication or squaring operations. Here, we concentrate on551

an example where such operations are implemented in an FPGA core. As already552

said, besides the multiplication and squaring operations we can implement also a553

small number of additional operations. Since squaring operations are much cheaper554

(the exact ratio depends on the implementation) than the multiplications, we ideally555

want those additional operations to be the powers of the squaring operation, i.e., the556

squaring equals x21
and additional operations are of the form x22

, x23
, x24

, . . . , x2z
,557

where z cannot be too large, so we limit it to values smaller than 10. Note that besides558

the constraint that z cannot be too large, we also need to limit the number of additional559

operations we have at our disposal due to implementation constraints. In accordance560

with that, we select our squaring operations set size to the maximal value of 4 (note561

that x21
must be used which means we have only up to three more possible squaring562

operations to choose). One rather standard choice for the squaring operations is to use563

powers of two, i.e., x21
, x22

, x24
, x28

. Now, we consider how to calculate r1 = r0263
564

with the aforesaid operations:565

r1 = r0ˆ(2ˆ8) r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ2)566

r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ1)567

r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ8)568

r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ4)569

Note that we need 10 instructions to calculate the value r1 = r263

0 and, in total,570

we need 30 instructions to calculate all squaring operations in the I nversion func-571

tion given above. Besides that, it becomes evident from the above example that we572

additionally require 9 multiplications to calculate the chain. As already said, squaring573

operations are cheaper than multiplication operations but the exact ratio depends on574

the implementation scenario. We work here with the assumption that the multiplica-575

tion has a cost which is the double of the squaring cost. Therefore, if we set the cost576

of squaring to 1 and multiplication to 2, it means that the above chain has a total cost577

of 48 instructions. We formulate the problem in two possible scenarios:578

– Find a different addition chain that uses operations x21
, x22

, x24
, x28

and results579

in a smaller number of operations.580

– Use the default addition chain but select different squaring operations that will581

result in a smaller number of instructions.582

6.2.1 Finding different addition chains583

When finding different addition chains that use the predefined set of squaring opera-584

tions, we can use a fitness function that minimizes the number of instructions necessary585

to build a chain:586

fitness(chain) =
∑

instructions_in_squaring + 2 ×
∑

multiplication. (9)587

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

Note that we multiply the multiplication instructions by 2 since we said they are588

twice as expensive as the squaring instructions. To test which number of operations is589

necessary for each squaring value, we simply run repeated division processes with all590

the values in the operations set (from the largest to the smallest, i.e., 8, 4, 2, 1) while591

the squaring value is larger than 0.592

With this approach we are able to find a number of chains that require 20 instructions593

for all squaring values. However, all those chains require 2 multiplications more than594

the original chain. We give an example of such an evolved chain: 1 → 2 → 4 →595

8 → 16 → 32 → 64 → 88 → 120 → 124 → 126 → 127.596

Note that although the number of multiplications is larger and the chain is longer597

than the shortest chain possible, still this chain requires less operations to implement598

– 11 multiplication operations and 20 squaring operations, which equals in total 42599

instructions. Note that this chain requires a smaller number of operations than the600

default chain even if the multiplication operation is 4 times more expensive than the601

squaring operation. We believe this scenario represents an interesting example on how602

sometimes even larger chains can be optimal from the implementation perspective603

when compared to the shortest addition chains.604

6.2.2 Finding different squaring operations605

In this scenario, we use the default (i.e., the shortest) addition chain and we investigate606

which squaring operations are to be used to minimize the cost of the whole chain when607

considering the number of instructions. Recall that we limit the number of squaring608

operations to 4 and the power of the largest squaring operation to 9. However, this609

represents only one practical example and we note that further investigation with a610

different number of squaring operations and their dimensions would constitute an611

interesting research direction.612

Since here we already have an addition chain that we need to use and we are looking613

for a set of values representing power operations, we do not use our custom-made GA.614

Instead, we use a standard GA that has a permutations encoding, and we limit the615

number of operations that can be used to 4 out of 9 possible. To state it differently, our616

encoding will contain 4 values that represent the optimal choice of the power values.617

All the other GA parameters are kept the same as in the previous experiments. The618

fitness function aims to minimize the number of instructions necessary to build all619

squaring operations. Here, we can disregard the multiplication part since it is fixed620

(i.e., our chain consists of 9 multiplications):621

fitness(chain) =
∑

instructions_in_squaring. (10)622

The results show that the optimal set of operations is x21
, x23

, x26
, x29

, which results623

in a total of 20 squaring instructions and 9 multiplications. Therefore, our chain built624

with those instructions requires in total 38 instructions.625

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

7 Discussion626

In this paper, we conduct an extensive analysis on the efficiency of the GA approach627

when finding shortest addition chains or addition chains that lead to fast imple-628

mentations.. When comparing our approach with previous work as well as several629

deterministic algorithms, we see that the GA performs extremely well. From the results630

obtained we see that the c(r) family of numbers, although usually perceived as very631

difficult to calculate, does not provide much difficulty for the GA. The motivation632

behind Random Values testing stems from the fact that we want to check whether our633

approach favors some structure (regardless of how complex that structure may be),634

and whether it has difficulties with random values that presumably do not possess635

any specific structure. Our experiments show that yet again the GA is easily able to636

reach optimal solutions. Finally, we tested a new set of numbers for which it should637

be difficult to find shortest chains because it is believed that those numbers have only638

a few optimal chains as well as that they have relatively many small steps. This is the639

first test suite where our approach could not find optimal solutions, but was usually off640

by one step. Therefore, we believe these numbers should represent the future reference641

point when investigating the performance of metaheuristic techniques in the evolution642

of shortest addition chains.643

We notice that the real-world numbers (2127 − 3 and 2255 − 21) are much longer644

than those usually tested with metaheuristics. Our experiments show that despite the645

(extreme) size of the numbers, the GA is again performing very well compared to646

deterministic algorithms. For the value 2127 − 3, the shortest known chain has 136647

elements, which is the same value our algorithm reached. The question is whether this648

should be regarded as a success or a failure. In a sense, it depends on the perspective;649

if one knows that the value 136 was obtained (somewhat surprising) by a pen-and-650

paper approach in a matter of a few hours by an expert, then our result does not651

seem impressive. However, recall Definition 3 which states it is easy to calculate that652

n = (2127 − 3) has a chain of a length at least equal to 130 since the exponent has 125653

ones in its binary representation. This means that even if our solution does not have654

the optimal length, it is quite close to that value. For the value 2255 − 21, our shortest655

chain has length 269, which is a huge improvement over all three tested deterministic656

methods. However, again, the shortest obtained chain by a pen-and-paper method for657

that value has length of 265. Therefore, our algorithm for this test case obviously658

cannot compete with the knowledge of an expert. Still, we note that our results are659

competitive due to the relatively high speed of the evolution process as well as the fact660

that we are able to obtain multiple chains of size 269. Furthermore, we note that the661

chains obtained by pen and paper utilize expert knowledge of the numbers’ structure;662

we do not use this knowledge in our black-box optimization.663

As the main future research challenge, we see the need to increase the speed of664

the evolution process in order to be able to offer our GA as an on-the-fly generation665

mechanism. One option would be to write a custom implementation of large number666

arithmetic that could utilize full support of modern processors. The second option667

would be to use some faster evolutionary algorithm like Evolution Strategy (ES). Our668

preliminary experiments with ES show potential since this algorithm is able to reach669

optimal values for many of the tested numbers. Finally, it should be possible to use a670

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

smarter seeding technique where the initial population would be obtained by various671

deterministic methods and possibly small mutations in order to increase the diversity.672

Besides the experiments dealing with the evolution of the shortest addition chains,673

we introduced here a scenario where we try to optimize the chain from the imple-674

mentation perspective. We experimented with two scenarios where in the first one we675

fixed the addition chain and tried to find a set of additional instructions to make the676

implementation faster. On the other hand, in the second scenario we fixed a small set677

of additional operations and then tried to find a chain that has a smaller number of678

instructions. Both scenarios yielded good results which constitutes heuristics a good679

choice for realistic settings. We especially note the interesting case in which we man-680

aged to find an addition chain consisting of more operations than the shortest addition681

chain, but featuring a smaller number of operations than the shortest addition chain.682

8 Conclusions683

In this work, we showed that GAs can be used to find the shortest addition chains for684

a wide set of exponent sizes. However, we note this problem is not as easy as could685

be perceived from a number of related publications. Indeed, the first step is the design686

of a custom Genetic Algorithm and then one needs to carefully tune the parameters.687

We managed to find chains that are either optimal (where it was possible to confirm688

based on related work) or as short as possible for a number of values.689

From that perspective, we also see this work as a reference work against which new690

heuristics should be tested, since it is undoubtedly possible to compare the results.691

Furthermore, we present a set of numbers that seem to be especially difficult for692

heuristic search techniques, which will make an interesting future benchmark suite. As693

far as we know, we are the first to investigate these kind of heuristics for exponent values694

that have a real-world usage. Besides the evolution of the shortest addition chains, we695

were also able to find addition chains that are extremely fast implementations, which696

opens a complete new research perspective for metaheuristics and addition chains.697

Acknowledgements This work has been supported in part by Croatian Science Foundation under the698

Project IP-2014-09-4882. The second author acknowledges support from CONACyT Project No. 221551.699

This work was supported in part by the Research Council KU Leuven (C16/15/058) and IOF project EDA-700

DSE (HB/13/020).701

A Sage example with the optimal set of squaring instructions702

Here we give an example of the inversion built with x21
, x23

, x26
, x29

instructions703

that has in total 9 multiplications operations (18 multiplication instructions) and 20704

squaring instructions. The lines beginning with # denote comments.705

def Inversion (din): r0 = r1*r3 r0 = r1*r3706

r0 = din # r1 = r0ˆ(2ˆ15) # r1 = r0ˆ(2ˆ63)707

r1 = r0ˆ(2ˆ1) r1 = r0ˆ(2ˆ9) r1 = r0ˆ(2ˆ9)708

r0 = r1*r0 r1 = r1ˆ(2ˆ6) r1 = r0ˆ(2ˆ9)709

r1 = r0ˆ(2ˆ1) r0 = r1*r0 r1 = r0ˆ(2ˆ9)710

r0 = r1*din # r1 = r0ˆ(2ˆ30) r1 = r0ˆ(2ˆ9)711

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

S. Picek et al.

r3 = r0 r1 = r0ˆ(2ˆ9) r1 = r0ˆ(2ˆ9)712

r1 = r0ˆ(2ˆ3) r1 = r0ˆ(2ˆ9) r1 = r0ˆ(2ˆ9)713

r0 = r1*r0 r1 = r0ˆ(2ˆ9) r1 = r0ˆ(2ˆ9)714

r1 = r0ˆ(2ˆ6) r1 = r0ˆ(2ˆ3) r0 = r1*r0715

r0 = r1*r0 r0 = r1*r0 r0 = r0ˆ(2ˆ1)716

r1 = r0ˆ(2ˆ3) r1 = r0ˆ(2ˆ3) return r0717

References718

Bernstein, D.J.: Curve25519: New diffie–hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A.,719

Malkin, T. (eds.) Public Key Cryptography - PKC 2006: 9th International Conference on Theory and720

Practice in Public-Key Cryptography, New York, USA, April 24–26, 2006. Proceedings, pp. 207–228.721

Springer Berlin (2006)722

Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes back: new DH speed records.723

In: Iwata, T., Sarkar, P. (eds.) Advances in Cryptology-EUROCRYPT 2015. Lecture Notes in Computer724

Science, vol. 8873, pp. 317–337. Springer-Verlag, Berlin (2014)725

Bos, J., Coster, M.: Addition chain heuristics. In: Brassard, G. (ed.) Advances in Cryptology-CRYPTO’89726

Proceedings. Lecture Notes in Computer Science, vol. 435, pp. 400–407. Springer, New York (1990)727

Clift, N.M.: Calculating optimal addition chains. Computing 91(3), 265–284 (2011)728

Coron, J.S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, e., Paar729

C. (eds.) Cryptographic Hardware and Embedded Systems. Lecture Notes in Computer Science, vol.730

1717, pp. 292–302. Springer (1999)731

Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve over the Mersenne prime.732

Cryptology ePrint Archive, Report 2015/565 (2015). http://eprint.iacr.org/733

Cruz-Corteés, N., Rodriguez-Henriquez, F., Coello Coello, C.: An artificial immune system heuristic for734

generating short addition chains. IEEE Trans. Evolut. Comput. 12(1), 1–24 (2008)735

Cruz-Cortés, N., Rodrguez-Henrquez, F., Juárez-Morales, R., Coello Coello, C.: Finding optimal addition736

chains using a genetic algorithm approach. In: Hao, Y., Liu, J., Wang, Y., Cheung, Y.m., Yin, H., Jiao,737

L., Ma, J., Jiao, Y.C. (eds.) Computational Intelligence and Security. Lecture Notes in Computer738

Science, vol. 3801, pp. 208–215. Springer Berlin (2005)739

Domínguez-Isidro, S., Mezura-Montes, E., Osorio-Hernández, L.G.: Addition chain length minimization740

with evolutionary programming. In: 13th Annual Genetic and Evolutionary Computation Conference,741

GECCO 2011, Companion Material Proceedings, Dublin, Ireland, July 12–16, 2011, pp. 59–60 (2011)742

Dománguez-Isidro, S., Mezura-Montes, E., Osorio-Hernández, L.G.: Evolutionary programming for the743

length minimization of addition chains. Eng. Appl. Artif. Intell. 37, 125–134 (2015)3 744

Faz-Hernández, A., Longa, P., Sánchez, A.: Efficient and secure algorithms for GLV-based scalar multi-745

plication and their implementation on GLV–GLS Curves. In: Benaloh, J. (ed.) Topics in Cryptology746

CT-RSA 2014. Lecture Notes in Computer Science, vol. 8366, pp. 1–27. Springer International Pub-747

lishing (2014)748

Flammenkamp, A.: Shortest addition chains (2016). http://wwwhomes.uni-bielefeld.de/achim/addition_749

chain.html750

Galbraith, S., Lin, X., Scott, M.: Endomorphisms for Faster elliptic curve cryptography on a large class of751

curves. J. Cryptol. 24(3), 446–469 (2011)752

Gallant, R., Lambert, R., Vanstone, S.: Faster Point multiplication on elliptic curves with efficient endo-753

morphisms. In: Kilian, J. (ed.) Advances in Cryptology CRYPTO 2001. Lecture Notes in Computer754

Science, vol. 2139, pp. 190–200. Springer, Berlin (2001)755

Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27, 129–146 (1998)756

https://www.random.org/ : RANDOM.ORG (2016). https://www.random.org/757

Jakobovic, D., et al.: Evolutionary computation framework (2016). http://gp.zemris.fer.hr/ecf/758

Knuth, D.E.: The Art of Computer Programming : Seminumerical Algorithms, vol. 2, 3rd edn. Addison-759

Wesley Longman Publishing, Boston (1997)760

Le, D.P.: Fast quadrupling of a point in elliptic curve cryptography. Cryptology ePrint archive, report761

2011/039 (2011). http://eprint.iacr.org/2011/039762

León-Javier, A., Cruz-Cortés, N., Moreno-Armendáriz, M., Orantes-Jiménez, S.: Finding minimal addition763

chains with a particle swarm optimization algorithm. MICAI 2009: Advances in Artificial Intelligence.764

Lecture Notes in Computer Science, vol. 5845, pp. 680–691. Springer, Berlin (2009)4 765

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f

http://eprint.iacr.org/
http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
https://www.random.org/
https://www.random.org/
http://gp.zemris.fer.hr/ecf/
http://eprint.iacr.org/2011/039


u
n
co

rr
ec

te
d

p
ro

o
f

Finding short and implementation-friendly...

Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton766

(1996)767

Nedjah, N., de Macedo Mourelle, L.: Minimal addition chain for efficient modular exponentiation using768

genetic algorithms. In: Hendtlass, T., Ali, M. (eds.) Developments in Applied Artificial Intelligence.769

Lecture Notes in Computer Science, vol. 2358, pp. 88–98. Springer, Berlin (2002a)770

Nedjah, N., de Macedo Mourelle, L.: Minimal addition–subtraction chains using genetic algorithms. In:771

Advances in Information Systems. Lecture Notes in Computer Science, vol. 2457, pp. 303–313.772

Springer (2002b)773

Nedjah, N., de Macedo Mourelle, L.: Minimal addition-subtraction sequences for efficient pre-processing in774

large window-based modular exponentiation using genetic algorithms. In: Liu, J., Cheung, Y.m., Yin,775

H. (eds.) Intelligent Data Engineering and Automated Learning, Lecture Notes in Computer Science,776

vol. 2690, pp. 329–336. Springer (2003)777

Nedjah, N., de Macedo Mourelle, L.: Finding minimal addition chains using ant colony. In: Yang, Z., Yin,778

H., Everson, R. (eds.) Intelligent Data Engineering and Automated Learning - IDEAL 2004. Lecture779

Notes in Computer Science, vol. 3177, pp. 642–647. Springer, Berlin Heidelberg (2004)780

Nedjah, N., de Macedo Mourelle, L.: Towards minimal addition chains using ant colony optimisation. J.781

Math. Model. Algorithms 5(4), 525–543 (2006)782

Nedjah, N., de Macedo Mourelle, L.: High-performance SoC-based Implementation of modular expo-783

nentiation using evolutionary addition chains for efficient cryptography. Appl. Soft Comput. 11(7),784

4302–4311 (2011)785

Osorio-Hernández, L.G., Mezura-Montes, E., Cortés, N.C., Rodríguez-Henríquez, F.: A genetic algorithm786

with repair and local search mechanisms able to find minimal length addition chains for small expo-787

nents. In: Proceedings IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21788

May, pp. 1422–1429 (2009)789

Picek, S., Coello, C.A.C., Jakobovic, D., Mentens, N.: Evolutionary algorithms for finding short addition790

chains: going the distance. In: Evolutionary Computation in Combinatorial Optimization-16th Euro-791

pean Conference, EvoCOP 2016, Porto, Portugal, March 30–April 1, 2016, Proceedings, pp. 121–137792

(2016)793

Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems.794

Commun. ACM 21(2), 120–126 (1978)795

Rodriguez-Cristerna, A., Torres-Jimenez, J.: A genetic algorithm for the problem of minimal brauer chains.796

In: Recent Advances on Hybrid Intelligent Systems, Studies in Compter Intelligence, vol. 451, pp.797

481–500. Springer Berlin (2013)798

Sarkar, A., Mandal, J.: Swarm Intelligence based faster public-key cryptography in wireless communication799

(SIFPKC). Int. J. Comput. Sci. Eng. Technol. (IJCSET) 3(7), 267–273 (2012)800

Stein, W.A., et al.: Sage mathematics software (Version 5.10). The Sage Development Team (2013). http://801

www.sagemath.org802

Thurber, E.G.: On addition chains 1(mn) ≤ 1(n) − b and lower bounds for c(r). Duke Math. J. 40(4),803

907–913 (1973)804

Thurber, E.G.: The scholz-brauer problem on addition chains. Pac. J. Math. 49(1), 229–242 (1973)805

123

Journal: 10732 Article No.: 9340 TYPESET DISK LE CP Disp.:2017/6/13 Pages: 25 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f

http://www.sagemath.org
http://www.sagemath.org


u
n
co

rr
ec

te
d

p
ro

o
f

Journal: 10732

Article: 9340

Author Query Form

Please ensure you fill out your response to the queries raised below

and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please

check your typeset proof carefully against the queries listed below and mark the

necessary changes either directly on the proof/online grid or in the ‘Author’s response’

area provided below

Query Details required Author’s response

1. Kindly check and confirm the corre-

sponding author is correctly identified

and amend if necessary.

2. Kindly check and confirm inserted

orgdiv and orgname are correctly

identified.

3. Kindly check and confirm edit made

in the journal title is correct for the ref-

erence Dominguez-Isidro et al. (2015)

4. Kindly provide editor name for the

references Leon-Javier et al. (2009)

and Nedjah and de Macedo Mourelle

(2002).

A
u

th
o

r
 P

r
o

o
f


