
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER's THESIS No. 1413

Identification of 1D-Signal Types Using

Unsupervised Deep Learning

Jan Tomljanović

Zagreb, June 2017.

Contents

 Introduction...1

1. Overview...2

1.1. DNA sequencing..2

1.2. Overlap-layout-consensus...2

1.3. Types of reads..3

1.3.1. Regular read..3

1.3.2. Chimeric read..4

1.3.3. Repeat read..6

2. Dataset..8

2.1. Finding overlaps..8

2.2. Balancing the dataset...8

2.3. Heuristic algorithm...9

3. Methods...11

3.1. Machine learning..11

3.2. Supervised Learning...12

3.3. Artificial neural network (ANN)...14

3.4. Training the ANN...16

3.5. Deep learning..16

3.6. Autoencoder..17

3.7. Variational autoencoder..18

3.7.1. Manifold hypothesis..18

3.7.2. Decoder..20

3.7.3. Encoder..22

3.7.4. Training the variational autoencoder..............................22

3.7.5. Reparametrization trick...26

3.8. Denoising Autoencoder...27

3.9. K-means clustering algorithm..28

3.10. Spectral clustering..30

3.11. Overview of approach...33

4. Results and discussion..34

4.1. K-means along variational autoencoder...............................34

4.1.1. Results...34

4.1.2. Discussion...39

4.2. K-means along denoising autoencoder................................41

4.2.1. Results...41

4.2.2. Discussion...46

4.3. Spectral clustering along variational autoencoder..................48

4.3.1. Results...48

4.3.2. Discussion...52

4.4. Comparison...54

4.5. Application..55

 Conclusion..56

 Bibliography...57

Introduction

In bioinformatics, de novo genome assembly is a process of creating a genome

sequence out of small fragments (Šikić et al, 2013). This process is needed

because DNA sequencing technology cannot read the whole genome, but rather

only a small part of it. To reconstruct the whole DNA sequence, many of these

small parts must be put together to form the whole genome. In this process, one of

the steps is observing overlaps between these small fragments. Using overlaps, it

is possible to chain fragments together. For each read (small fragment gathered

using DNA sequencer) it is possible to construct a coverage graph in which it can

be seen how well each segment of that read overlaps with others. This coverage

graph can be analysed as a 1D-signal. Multiple types of signals are known, as

they represent different types of reads. Knowing which read is of which type is

important during the process of chaining reads together.

After generating signals, it is possible to approach classification of signals

into different classes (types) in many different ways. Often algorithms based on

heuristics are used since this is a novel problem and there is no general

agreement on which approach works best. In this thesis, the idea is to explore how

well clustering, i.e. unsupervised learning, works to separate different types of

signals. This way, we hope clusters of signals which naturally emerge from the

data will correspond to the types we know. In the case they don't, perhaps new

types of reads could be discovered.

Chapter 1 gives an overview of the topic and explains known types of reads

in detail. The topic of Chapter 2 is data used in this thesis and how it is obtained.

Chapter 3 describes methods used to encode the data and then cluster it. Results

along with discussion are presented in Chapter 4.

1

1. Overview

1.1. DNA sequencing

DNA sequencing is a process whose goal is to obtain the order of nucleotides

within a DNA molecule. DNA sequencer is an instrument that can extract reads

(small fragments of the DNA sequence) from a molecule as textual data.

Throughout last couple of decades three generations of DNA sequencers

appeared. The first generation used Sanger sequencing method (Metzker, 2005)

which was used in humane genome project in 2001. Today, sequencers which use

this type of technology can achieve read length of around 1 000 bp (base pairs)

with 99.99% accuracy. Cost of these sequencers is about $0.5 per kilobase

(Shendure et al, 2008). There are multiple second generation DNA sequencing

technologies and their read length is much lower, ranging from 13 bp to 350 bp

(Shendure et al, 2008). But they are much cheaper then the previous technology

as price per megabase ranges from $1 to $60. Recently, third generation DNA

sequencers have been created, such as SMRT (Single molecule real time

sequencing). Using this technology, obtained reads are longer, ranging from about

1 000 bp to 7 000 bp.

Since the goal of DNA sequencing is to produce the full genome, which is

usually longer than 100 000 bp, reads which are obtained by any of the DNA

sequencers mentioned still need to be assembled.

1.2. Overlap-layout-consensus

Overlap-layout-consensus (OLC) method is used for genome assembly which

works with reads provided by the DNA sequencer (Šikić et al, 2013). As the name

says, it consists of three steps:

2

1. Overlap – overlaps between reads are calculated and overlap graph is built

2. Layout – overlap graph is simplified

3. Consensus – remaining uncertain parts of the graph are decided

Complications during the first step of the method are the motivation for this thesis.

Multiple different types of reads can result in different coverage graphs, which are

built to show number of overlaps (per each base in the read) between the read in

question and others. Some types of reads can cause coverage graphs which can

significantly complicate the overlap graph and/or even make it completely

incorrect. The matter in question is how to identify those reads using their

coverage graphs.

1.3. Types of reads

Here, reads are classified into types according to their coverage graphs, therefore

this is also the classification of the coverage graphs themselves.

1.3.1. Regular read

Regular reads are the “good” type of reads, meaning there are no specific

problems regarding them. Regular read occurs when DNA sequencer reads a part

of the genome, as can be seen in Figure 1.1.

3

Figure 1.1. Regular read

When generating the coverage graph of a regular read, on average, all

parts of the read will overlap with about the same number of other reads, making

the graph more or less flat. Example of a coverage graph for a regular read is

presented below in Figure 1.2. X-axis represents the read, for instance first

position represents the first base of the read. Value on the y-axis represents a

number of overlaps which contain the corresponding base. Values on axes are

intentionally left behind since the focus is on the shape of the signal, values

themselves have little meaning in this context.

1.3.2. Chimeric read

Chimeric reads can pose a significant problem when creating the overlap graph.

Chimeric read is created when DNA sequencer unexpectedly skips a part of the

genome and continues reading. This jump creates a read which has two parts

which map to different parts of the genome. Creation of a chimeric read is shown

in Figure 1.3.

4

Figure 1.2. Coverage graph of a regular read

Chimeric read can lead to problems when linking reads together, as it connects

two parts of the genome that shouldn't be connected. Fortunately, chimeric reads

are moderately rare, for instance in some datasets it is estimated they make up

only 0.2% of the data. Nonetheless, detection of chimeric reads is necessary since

each occurrence can lead to errors.

Coverage graph of a chimeric read is usually split in two ways by a very

steep drop of the signal followed by an immediate steep rise. This occurs since left

and right part of the read overlap with other reads. But almost no overlap is found

along the part of the graph which connects left and right part. Example of the

coverage graph of the chimeric read is given in Figure 1.4.

5

Figure 1.3. Chimeric read

1.3.3. Repeat read

Repeat read is no different than a regular read regarding how it is created. It is a

valid part of the genome. But what makes it special is the fact that a significant

part of that read, in most cases its left or right side, is repeated throughout the rest

of the genome and therefore can be found in other reads. Figure 1.5. shows how a

left repeat is produced.

6

Figure 1.5. Repeat read

Figure 1.4. Coverage graph of a chimeric read

When coverage graph of a repeat read is generated, coverage will be

higher on one side of the graph since more overlaps with other reads are found for

that area. Example of a coverage graph of a left read is shown in Figure 1.6.

Repeat reads can cause problems in the overlap graph as well. For

instance, it is difficult to connect the left part of the left read with the rest of the

genome, since there are multiple places where it can potentially fit. Repeat reads

are less common than regular reads, but much more common than chimeric

reads.

7

Figure 1.6. Coverage graph of a repeat read

2. Dataset

2.1. Finding overlaps

Raw data that was available for this thesis were reads from many different

bacteria. First step in analysis was getting coverage graphs generated from these

reads. For that, graphmap tool (Sović et al, 2015) set to owler mode was used.

This step provided about 800k coverage graphs, to which it can also be referred to

as signals. As stated above, signals of regular, chimeric and repeat reads are not

equally represented in the dataset. Since this thesis uses deep learning methods,

balanced dataset is preferred (Dalyac et al, 2014) if we hope to identify coverage

graphs of regular, chimeric and repeat reads as different classes of signals.

2.2. Balancing the dataset

Balancing the dataset starts from the assumption about the classes which we

would like to find. Even though unsupervised algorithm is used that does not mean

we don't have any idea about which classes of signals we want to find. Supervised

approach would make more sense for the classification task, but that would

require manually labelling a huge amount of data. Using unsupervised approach,

the goal is to try to produce clusters we already know about, but with unlabelled

data and also to check whether it is possible to find some clusters in the data we

are not aware of. Based on visual identity four classes are identified:

• regular signals

• chimeric signals

• left repeat signals

• right repeat signals

8

where signals are named after the type of read they are based upon.

The original dataset, using a heuristic algorithm developed for this thesis

(Section 2.3.), was classified into those four classes thus dividing the dataset into

four parts. One of the goals of this thesis is to provide a much better classifier than

that algorithm whose accuracy can only be estimated since data is not labelled

(accuracy estimations range from 20% to 70%). Of the produced four parts of the

dataset, the one with the least amount of signals was taken whole and the rest

were reduced to having a similar number of signals as that part. That way, new

dataset containing 21 173 signals was created and it can be assumed that it is

somewhat balanced.

2.3. Heuristic algorithm

Heuristic algorithm was used as a classifier which decided whether signal is

regular, chimeric, left repeat or right repeat. Simple Pseudocode 2.1. follows:

input: signal

output: type of signal

classify (signal) :

if condition_one:

return determine_if_left_or_right_repeat(signal)

else if condition_two:

return "chimeric"

else:

return "regular"

Pseudocode 2.1. Classifier

Before applying classify function, each signal was preprocessed. First, edges of

the signal were removed, since signals often have a steep rise at the left side and

a steep drop at the right side, which are not specific for any type of signal, so they

are not useful for classification. After that, since signals differ in sizes on x-axis

(read length) and y-axis (overlap number) sampling and vector normalization are

9

applied, in that order. This way, only the shape of the signal is considered and

same criteria can be applied to all reads.

For determining whether signal is a repeat signal, condition_one was

used. That condition took the following values into account:

• number of different values in the signal

• local maximum drop and rise

• average signal value left and right of the local maximum drop and rise

• position of the maximum value in the signal

• position of the local maximum drop and rise

Conditions regarding these values were adjusted according to a very small

number of hand labelled data and put together as condition_one in Pseudocode

2.1. Deciding if a repeat signal is a left or right repeat was done simply by

checking the average values of the left and right part of the signal.

For determining whether signal should be classified as a chimeric signal,

condition_two was used. That condition took the following values into account:

• number of different values in the signal

• position of the local maximum drop

• steepness of the local maximum drop

• steepness of the possible rise that followed local maximum drop

Conditions regarding those values were adjusted in the same way as above.

10

3. Methods

3.1. Machine learning

Machine learning is a field within artificial intelligence that studies algorithms which

can learn how to make decisions based on data. Machine learning tasks can be

categorized in many ways.

Machine learning tasks can be split by the type of the feedback (or perhaps

equivalently, structure of data used for learning) which is provided. There are three

categories (Russell et al, 2009):

• supervised learning – algorithm learns how to make decisions based on

available input-output pairs

• unsupervised learning – algorithm tries to find hidden structure in input data

• reinforcement learning – algorithm actively interacts with the environment

and learns based on rewards and punishments

Both supervised and unsupervised learning are important for this thesis,

reinforcement learning is not discussed further.

Machine learning can also be categorized depending on the type of output which

is expected. Four categories are relevant for this thesis:

• classification – algorithm learns to assign class labels (from a certain set) to

inputs, therefore deciding which input is a part of which class; supervised

approach

• regression – unlike classification, where output is discrete, regression

produces continuous output

• clustering – algorithm divides data into clusters, but in an unsupervised

fashion as classes are previously unknown (contrary to classification)

11

• dimensionality reduction – input data is mapped into a lower dimensional

space

3.2. Supervised Learning

Goal of supervised learning is to train a certain model to learn the connection

between input and output data samples. It can be either a classifier connecting

input to a class from a predefined set of classes, or a trained model which does

regression connecting input to a continuous output. In this context, model is a tool

that has the possibility of learning input-output connections. There are many

different models which have their own advantages and limitations. Model learns

how to produce the output value based on an input value.

In order to learn these connections, model must be presented with

examples, i.e. data. Table 3.1. shows how data is structured.

Table 3.1. Data for supervised learning

Input Output

(x11, x12, ..., x1n) (y11, y12, …, y1r)

(x21, x22, ..., x2n) (y21, y22, …, y2r)

... ...

(xm1, xm2, ..., xmn) (ym1, ym2, …, ymr)

There are m examples, and each consists of input vector and output vector (often

output is only a single value). The simplest form of learning is presented in

Pseudocode 3.1., assuming the model tries to learn a single example at a time,

which isn't always the case.

12

while some condition:

for input, output in examples:

model.learn(input, output)

Pseudocode 3.1. Simple learning

Now, before addressing the stopping condition for learning, the question is how to

evaluate how well did the model learn the connection between input and output.

Would it be able to produce correct output for an input it hasn't seen before,

thereby showing that it "understands" the data? That is usually achieved by

separating a part of the available data and using it as a test set. Rest of the data is

used as a training set. Model is being learned only using the training set. After

learning, model is presented with input vectors of the test set. It produces the

output vector for each input vector. The error which model produces is calculated

by comparing those output vectors to known correct output vectors from the test

set.

Now the question of stopping condition for learning can be discussed. Is it

the case that more iterations of learning always produce better results on the test

set? The answer relies upon the model that is used, but from that it can be inferred

that generally answer is no. It can be the case that less iterations can produce

better results. That is the case if the used model is very “powerful” and if given

enough iterations it will learn the training set “by-heart”, instead of learning the

general connection between input and output. In that case, it is said the model has

been overfitted. That model applied on the test set will produce bad results. This

problem is often depicted in a graph, shown in Figure 3.1. X-axis represents the

number of iterations of learning, and y-axis represents the error. Red curve shows

the error on the test set, while the blue curve shows the error on the training set.

13

Figure 3.1. Bias – variance trade off graph

In order to find the spot on the graph where the model produces the smallest error,

one additional set of examples is used, called validation set. Therefore, for a single

learning run, data is split into three sets: training set, validation set and test set.

While showing the training set to the model, at some rate, model is tested using

the validation set. When it is noted that error on the validation set starts to rise

instead of drop, training is stopped. In that case, the red curve in the Figure 3.1. is

actually the error on the validation set. Model can then be tested using the test set

which the model had never seen before.

3.3. Artificial neural network (ANN)

Artificial neural network is a model used for machine learning. It imitates the

structure of neurons in a human brain. Single artificial neuron is shown in Figure

3.2. Neuron performs a function of the provided input. Input to the neuron is a

vector (x1, x2, ..., xn). Each component is multiplied by a corresponding factor wi,

often referred to as weight. Sum of the results and the bias component is made.

Activation function F is applied to the sum and the resulting value is the output of

the neuron. Activation function is non-linear, thus making the neuron a non-linear

function.

14

These neurons are combined together in a structure to form a fully connected

neural network, as shown in Figure 3.3. The figure is shown only as an example,

number of layers can vary, as well as the number of neurons in each layer. As a

machine learning model used for supervised learning, artificial neural network

operates in a following way. Input vector acts as the first layer, thus providing the

data to the next layer. Output of the last layer is considered to be the output of the

model for the given input.

Figure 3.3. Artificial neural network

15

Figure 3.2. Artificial neuron structure

3.4. Training the ANN

In order for an ANN to learn the connections between the input and the output,

parameters of the network must be adjusted. Each neuron has the following

parameters:

• weights w1, w2, …, wn

• bias

It is assumed activation function is fixed and has no parameters. Training the

neural network is done as follows. First, some number of examples is chosen for a

single training step. All examples (whole training set) can be chosen, a batch of

examples or a single example. Single training step is explained as follows. For

each chosen example (input-output pair), neural network calculates its output

based on the input vector of the example. Error of the network is calculated by

comparing the output of the network and the correct output for chosen examples.

Since the error is indirectly the function of the parameters of the network, gradient

of the error with respect to each of the parameters of neurons in the network can

be found. At that moment, a step of a variation of the gradient descent method1 is

applied to parameters, thus adjusting them to try to decrease the error. This

process is called backpropagation2.

3.5. Deep learning

Deep learning is a part of machine learning which studies artificial neural networks

which contain more than one hidden layer. Today, deep learning approaches have

produced state-of-the-art results on many different tasks. Training of a neural

network with many hidden layers is done the same way as with a simple ANN, as

described above. There are additional challenges when dealing with deep neural

networks, like the choice of the activation function. Simple ANNs often used the

1 https://en.wikipedia.org/wiki/Gradient_descent

2 https://en.wikipedia.org/wiki/Backpropagation

16

https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Gradient_descent

sigmoid function3 as the activation function. But as more layers are added to the

network, backpropagation algorithm used for training the network becomes

extremely inefficient if sigmoid function is used. Therefore new activation functions

needed to be found. Today, perhaps the most commonly used activation function

is Rectified linear unit4 (ReLU) which improves the performances of the training

algorithm significantly.

3.6. Autoencoder

Autoencoder is an artificial neural network typically used for the purpose of

dimensionality reduction. Main idea of the autoencoder is to provide data as the

input to the ANN and to get the reconstructed input as the output of the network. If

the ANN has a layer where number of neurons is smaller then the dimension of

the input data, or if special learning techniques are used, information in that layer

will be a compressed representation of the input vector. That way dimensionality

reduction is achieved.

Figure 3.4. shows an example of the ANN used as an autoencoder. Vector

x = (x1, x2, x3, x4) is the input data. Vector x' = (x1', x2', x3', x4') is the output of the

network and reconstruction of the input data. Error of the network is zero if x = x'

and that is the best possible result. Training the ANN is done same as before

using the backpropagation algorithm, where the desired output is exactly the same

as input. But valuable information that can be gathered from this autoencoder are

actually stored in vector z = (z1, z2), since, ideally, it contains enough information to

reconstruct vector x, thus it is a compressed representation of vector x. Part of the

network which produces vector z, i.e. encodes x into z, is called encoder. Part of

the network which takes z as input and tries to reconstruct x is called decoder.

3 https://en.wikipedia.org/wiki/Sigmoid_function

4 https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

17

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Sigmoid_function

Figure 3.4. Autoencoder

In this thesis two different variants of autoencoders are used. They are

used as a tool to reduce the dimensionality of coverage graphs from the dataset

described in Section 2.

3.7. Variational autoencoder

3.7.1. Manifold hypothesis

Goal of the variational autoencoder is to successfully generate data which is very

similar to the data in available dataset. By reaching that goal, with certain

assumptions, variational autoencoder can then be used as a tool for

dimensionality reduction of data.

In order to generate data, it is assumed that data samples, which are high

dimensional vectors, are concentrated near a low dimensional manifold. This

18

assumption is called the manifold hypothesis. To demonstrate the assumption,

example of 2D data is shown in Figure 3.5.

Figure 3.5. Example of a dataset

There is no obvious way in how these data points are generated. But it is possible

to notice that they are distributed along a 1D manifold which is shown in Figure

3.6.

That 1D manifold is nothing but a number line shown in Figure 3.7.

Let the random variable which generates a data sample be represented as

x and random variable which generates a point on a manifold as z. Variational

autoencoder therefore states that there is a probability distribution pɸ(x|z) which

describes variable x if variable z is given, and conversely distribution pɸ(z|x) which

19

Figure 3.6. Data distributed along 1D

manifold (red)

Figure 3.7. Number line

describes variable z is x is given. These distributions are not independent and are

parametrized with parameter ɸ. Idea of a variational autoencoder is depicted in

Figure 3.8. There is a distribution pɸ(z|x) by which it is possible to generate a point

z on a manifold with the help of a given data sample x. Given that point z it is

possible to generate a data sample according to a distribution pɸ(x|z).

3.7.2. Decoder

Decoder needs to act according to a distribution pɸ(x|z). Since this probability

distribution is very complex and unknown, the idea is to approximate it using a

combination of a neural network and a normal distribution. What this

approximation actually does is assume that pɸ(x|z) can be described as a series of

normal distributions distributed along the low dimensional manifold. Figure 3.9.

shows this idea. For each point on the low dimensional manifold parameters of the

normal distribution can be found. That normal distribution is used to generate data.

To make decoder design fairly simple, normal distribution is assumed to have a

diagonal covariance matrix.

20

Figure 3.8. Variational autoencoder idea

Decoder is shown in Figure 3.10. Number of neurons in each layer

(including the first and the last) is chosen only as an example (here and in

following figures) and is very different (larger) in practice. Purpose of the neural

network is to calculate the parameters of the normal distribution given the point on

the manifold. Sampling from the normal distribution can then be done to acquire a

data sample.

Figure 3.10. Decoder (Dürr, 2016)

21

Figure 3.9. Approximation of a distribution – parameters of a normal distribution

which generates data can can calculated for each point on the manifold

3.7.3. Encoder

Task of the encoder is to find the point on the low dimensional manifold which

corresponds to the data sample. That point can be considered to be the latent

representation of that data sample. Vector space of the manifold is called latent

space. Probability distribution pɸ(z|x) describes this relationship. But again, this

distribution is very complex and is approximated as a series of normal distributions

which can generate points in latent space. Data sample is used to find parameters

of the normal distribution. Basically, the approach is the same as with the decoder,

but reversed.

Neural network is used to calculate the parameters and then latent

representation can be found via sampling. Outlook of the encoder is shown in

Figure 3.11.

Figure 3.11. Encoder (Dürr, 2016)

3.7.4. Training the variational autoencoder

Variational autoencoder is trained in a supervised fashion like a neural network

using the backpropagation algorithm, described in Section 3.4. The whole network

is shown in Figure 3.12. However, gradient cannot propagate backwards through

random sampling. Solution to that problem is presented later in Section 3.7.5.

22

Figure 3.12. Variational autoencoder (Dürr, 2016)

Question remains, how is the error of the network calculated. Idea of the network

is to maximize the probability that the sample shown to the network will be

generated as output. This approach is well known in statistics and is called MLE

(maximum likelihood estimation). By using MLE, error function of the network is

found. Error is also referred to as cost, and accordingly, error function is the cost

function.

First, log-likelihood of the random variable which represents the data sample x

(from the training set) being the output of the network is specified in equation (1)

(logarithm is applied because it makes the calculation easier). Goal of training the

neural network is to maximize that likelihood.

(1)

Distribution which approximates pɸ(z|x) is denoted as q(z|x). Parameters of

distribution q are now considered independent from the parameters of distribution

pɸ(x|z). Equation (1) can be multiplied by the integral over the entire space of q(z|

x), therefore, by one.

(2)

Then, a series of simple transformations are done:

23

(3)

(4)

(5)

(6)

The first term LV is called lower variational bound of the likelihood. Second term

DKL is the Kullback-Leibler divergence5 which measures the similarity of behaviour

between two distributions. Here, it measures how well does q(z|x) approximates

p(z|x). To maximize the likelihood it is necessary to maximize the lower variational

bound. Therefore, lower variational bound is further analysed.

(7)

(8)

(9)

(10)

The left term in (10) is the Kullback-Leibler divergence which measures the

similarity between q(z|x) and p(z). Distribution p(z) can be freely chosen but is

usually normal distribution with zero mean and unit variance. It this context this

term acts as a regularization term. Second term is the reconstruction quality of the

autoencoder. It measures how well the approximation of p(x|z) produces data

sample from the given latent state. Maximization of both of those terms is the goal

of training the network.

5 https://en.wikipedia.org/wiki/Kullback–Leibler_divergence

24

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

First term DKL(q(z|x)||p(z)) can be calculated using equation (11) (Dürr,

2016), since q(z|x) is a normal distribution with parameters μz, σz (vectors)

produced by the encoder. Variable J is the size of the latent space, thus the

dimension of mentioned vectors.

(11)

In order to calculate the second term sampling of latent variable is needed.

After sampling the latent variable many times, the average of log probability over

all the samples should be calculated to estimate the expectation. But usually, as

(mini) batch learning is used, only a single sample is enough for training to work

well. Therefore, only the log probability remains to be calculated using the sample

taken from the latent space. The calculation can be done in the following way by

using the expression for the probability distribution of a normal distribution p(x|z)

(Dürr, 2016):

(12)

Parameters μx, σx (vectors) are produced by the decoder and D is the dimension

of the data.

Both expressions on the right hand side in (11) and (12) need to be

maximized in order maximize the likelihood of the data sample. Thus, the cost

function is the sum of those two expressions multiplied by minus one:

(13)

Function (13) is a cost function for a single data sample. Usually, for a single step

of training, cost function is calculated for a batch of instances from the available

training set. Total cost is then calculated as the average cost among the batch.

25

3.7.5. Reparametrization trick

As mentioned before, it is impossible to calculate the gradient of the cost function

with respect to parameters of the encoder because we don't know how to calculate

gradient of the random sampling function. To solve this problem the

reparametrization trick is used (Kingma et all, 2014).

Figure 3.13. demonstrates the idea. Instead of calculating latent representation z

as the sample taken from the normal distribution, z is calculated as follows:

(14)

This way gradient of the cost function with respect to μz and σz can be calculated

and therefore can be propagated further down the encoder network.

26

Figure 3.13. Reparametrization trick

3.8. Denoising Autoencoder

Denoising autoencoder is a neural network whose goal is the same as explained

in Section 3.6., generating output as similar as possible to the input. But at the

input layer of the network corrupted version of the input is provided. Therefore, in

order for the autoencoder to learn the correct output, it must focus on important

aspects of the data. Figure 3.14. shows an example of a denoising autoencoder.

As with the figures of variational autoencoder, this figure is just an example and

number of neurons through layers is different in practice.

The figure shows how noise is added to each component of the input vector.

Multiple types of noise can be used and are discussed below. After the input

vector is corrupted, it is provided to the neural network which tries to learn how to

reconstruct the original non-corrupted data. Error/cost function of the neural

network is calculated with respect to difference between the output of the network

and the original input vector (before adding noise).

Role of the latent representation of data is assigned to a single hidden layer

in the network, usually the one with the least amount of neurons (marked as z in

27

Figure 3.14. Denoising autoencoder

the figure). Vector whose components are the results of the neurons in that layer is

considered to be the representation of the input example, thus providing the effect

of dimensionality reduction.

In this thesis, cost function is mean squared error (15) where D stands for

dimension of input and output vectors, x is the original data vector and vector x' is

the output of the neural network.

(15)

Three types of noise can be used as suggested in (Vincent et al, 2010):

• Gaussian noise: vector whose components are taken from a normal

distribution with zero mean and variance σ is added to the original input

vector

• Masking noise: fraction c of components (chosen randomly) of the original

input vector is set to zero

• Salt-and-pepper noise: fraction c of components (chosen randomly) of the

original input vector is set to minimum or maximum possible value

(randomly chosen)

Gaussian noise has a hyperparameter σ (variance), while latter two have a

hyperparameter c, often referred to as corruption level.

3.9. K-means clustering algorithm

K-means clustering, a typical example of unsupervised learning, is a popular

clustering algorithm which divides data into a previously specified number of

clusters. Goal of the algorithm is to place each data sample xi into one of k

clusters in such a way that sum of square differences between data samples and

their mean μi within each cluster is minimal. Given Si denotes i-th set which

28

represents a cluster, algorithm minimizes the following function by changing the

placement of data samples along clusters:

(16)

Algorithms works as follows (Arthur et al, 2007):

1. Using some technique, pick k points which represent means μ1, μ2, ... μk of

k clusters

2. Assign each data sample x into the cluster with the closest mean (using

Euclidean distance)

3. Update the mean of each cluster by calculating it as the average of all

points currently placed into the corresponding cluster

4. Go to step two if number of iterations is not yet reached

In step one, it is unspecified how starting means are chosen. There are many

different approaches to how those are picked (Celebi et al, 2012). In this thesis k-

means++ method is chosen as it is widely available and is known to perform well.

K-means++ works as follows (Arthur et al, 2007):

1. Select the mean of the first cluster uniformly at random from the data

samples

2. For every data sample x, calculate D(x), the distance between x and the

closest already chosen cluster mean

3. Choose one data sample as mean of the next cluster, choosing a data

sample x with a probability proportional to square of D(x)

4. Go to step two until k means have been chosen for k clusters

Since k-means++ algorithm for choosing starting means is non-deterministic,

results of k-means algorithm can vary. To reduce the impact of non-deterministic

behaviour on results, k-means is often carried out a number of times and clusters

which produce minimal value of the function (16) are taken as a final result.

29

By minimizing the function (16), k-means algorithm assumes clusters are

spherical. Therefore it works badly on clusters which are elongated or shaped in

some other way.

3.10. Spectral clustering

Spectral clustering is a clustering algorithm which has the same purpose as k-

means, dividing the data into clusters in an unsupervised way. Just like with k-

means, number of clusters is decided prior to running the algorithm. Unlike k-

means, spectral clustering does not assume any specific cluster shape. Therefore

it usually does better then k-means on datasets where possible cluster shapes

are, for example, elongated, circular or other.

Spectral clustering algorithm can be divided into three steps:

1. Construct similarity graph from the given dataset

2. Reduce data dimensionality using the graph adjacency matrix

3. Cluster obtained vectors, usually using k-means

This shows that spectral clustering is a combination of a dimensionality reduction

and clustering algorithm. Instead of clustering points in their original space,

clustering is performed after applying dimensionality reduction, in hope that

clustering in reduced space will be easier and clusters will emerge more naturally.

Spectral clustering focuses on data connectivity when deciding on clusters,

instead of assuming that a cluster is a set of points which occupy similar area.

The first task is the construction of a similarity graph from the dataset. Each

vertex of the graph represents a single data sample from the dataset. There are a

couple of popular ways of doing so, explained in (Luxburg, 2006). Perhaps the

most usual choice are k-nearest neighbour graphs. They connect vertex v to

vertex u if vertex u is among the k-nearest neighbours of v. The resulting graph is

directed which is not the desired result. Therefore, to make the graph undirected, it

is possible to just connect two points with an undirected edge if one of the vertices

30

is among the k-nearest neighbours of the other. This type of graph is called k-

nearest neighbour graph. Another way is to connect two points only if they are

both among the k-nearest neighbours of the other. This type of graph is called

mutual k-nearest neighbour graph. To have more information about how close

neighbours are to each other, each edge, in both graph types, is weighted by the

similarity of adjacent vertices. To calculate the similarity of two vectors many

functions are available. Example of a such function is the Gaussian similarity

function (17). Parameters σ is used to manipulate the width of the neighbourhood.

(17)

Another way of constructing a similarity graph is to assume a fully-connected

graph and weigh each edge using similarity metric between adjacent vertices.

The second step is reducing data dimensionality using the adjacency matrix

of the graph. The adjacency matrix is a matrix of size N × N, where N is the

number of vertices (therefore, number of data samples in the dataset), and its

element wij is the weight of the edge between two vertices (zero if there is no

edge). Goal of dimensionality reduction is to map each data sample xi to yi where

yi has k components, k being the number of clusters, in such a way that minimizes

function (18). The reason why dimension k is chosen is discussed later.

(18)

Why minimization of this function is chosen can be seen through two cases. First,

if wij is zero or very small that means data samples xi and xj are dissimilar. In that

case, squared difference between yi and yj is considered irrelevant since function

minimization has no significant effect on that difference. This is not ideal, since in

the ideal case difference between yi and yj should be increased. But here, it is

hoped that since minimizing the function won't as a rule minimize the difference

between yi and yj when wij is zero or very small, this difference would usually be

larger than the difference in the other case. And in that other case, wij is large

31

which means data samples xi and xj are similar. Minimizing this function results in

minimizing the squared difference between yi and yj, which is what is wanted. If

two data samples are similar, goal of the algorithm is to keep them similar while

reducing the dimensionality of the data.

It can be shown that minimization of function (18) is equivalent to

minimizing expression (19) over Y (Luxburg, 2006)

(19)

where Y is a N × k matrix in which row i represents yi and L is a graph Laplacian6

of the graph adjacency matrix and Tr denotes trace of the matrix (Luxburg, 2006).

Solution for this minimization problem is a known result from graph theory which

states columns of Y should correspond to the first k smallest eigenvectors of L

(eigenvectors are compared according to their eigenvalues) (Luxburg, 2006). This

is how mapping from xi to yi is obtained.

Now it can be discussed why dimension k is chosen for yi. There is another

way of looking at step two and three of spectral clustering algorithm. Specifically,

for dividing data into only two clusters we look to cut the similarity graph into two

components in a way that sum of weights of edges which are removed is minimal

and so that two components have approximately the same number of vertices.

This approach is called finding the ratio cut of the graph (Luxburg, 2006). This

problem is NP-hard but when relaxed in a certain way it becomes exactly the

same problem as minimizing (18) and (19) with k = 1. In this special case, the

second smallest eigenvector is used as a indicator vector from which it is easy to

determine which point belongs to which cluster (Luxburg, 2006). Taking the first

smallest k or k-1 eigenvectors is a heuristic for trying to extend this approach of

considering indicator vectors for k clusters.

Third step is the one where actual clustering happens. Vectors yi which are

low dimensional representations of xi can be clustered using any clustering

algorithm. K-means is often used.

6 https://en.wikipedia.org/wiki/Laplacian_matrix

32

https://en.wikipedia.org/wiki/Laplacian_matrix

3.11. Overview of approach

Goal of this thesis is to cluster signals which represent coverage graphs of reads

to check if any group of signals we are unaware of will emerge and to also create

a classifier for known classes using only unsupervised learning. Full outline of our

approach follows:

1. Generate coverage graphs from the available data (Section 2.1.)

2. Create a balanced dataset fit for deep learning (Section 2.2.)

3. Train an autoencoder using balanced dataset

4. Encode data samples using trained autoencoder to achieve dimensionality

reduction

5. Cluster encoded data

First two steps are covered in Section 2. Before the third step, minor

preprocessing is applied to data. First, since signal lengths are varying each signal

is sampled in order to achieve equal signal length among the dataset. Then, data

is normalized in order to bring all values to be within the range [0, 1]. This is done

by the formula (20) which was applied to every component of each vector.

(20)

In the fourth step, a variational (Section 3.7.) or denoising autoencoder (Section

3.8.) was trained. After that, trained autoencoder, specifically the encoder part, is

used to encode data to lower dimensional space. Then in step five, k-means

(Section 3.9.) or spectral clustering algorithm (Section 3.10.) is applied to encoded

data and clusters are observed.

33

4. Results and discussion

All used models which produced the results presented in this section are publicly

available at https://github.com/jantomlj/Experimenting-with-signal-clustering.

4.1. K-means along variational autoencoder

4.1.1. Results

Results presented in this section are achieved using variational autoencoder and

k-means clustering algorithm. First, hyperparameters are organized in Table 4.1.

Hyperparameters are set to the combination of values that resulted in the best or

the most interesting results but since the number of different combinations of

hyperparameters is so high, only a small portion of combinations was tested.

Dataset size is 21 173 signals.

34

https://github.com/jantomlj/Experimenting-with-signal-clustering

Table 4.1. Hyperparameters

Hyperparameter Value

Signal length 250

Batch size for training variational autoencoder 25

Number of training epochs for variational autoencoder 20

Activation function of the autoencoder neural network ReLU

Gradient descent optimization algorithm Adam7

Learning rate of variational autoencoder 0.00005

Number of encoder layers 4

Number of decoder layers 4

Encoder layer sizes [250, 200, 150, 100]

Decoder layer sizes [100, 150, 200, 250]

Latent representation vector dimension 10

Initialization of kmeans k-means++

Number of iterations of kmeans algorithm 300

Number of times kmeans was restarted 20

Number of clusters 4, 5

Examples which show reconstruction quality using variational autoencoder

on unseen data are shown in Figure 4.1. Almost all data was used for training the

variational autoencoder but 4 sets of 60 data samples (sets representing chimeric,

left repeat, right repeat and regular signals) which were manually labelled and

used as a test set.

7 https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam

35

https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam

Figure 4.1. Reconstruction quality using variational autoencoder (blue line – signal, green

line – reconstruction)

Same training and test set split was used for clustering as was for training

the variational autoencoder. K-means model that was the result of clustering the

data was applied to the test set to see how well do its clusters correspond to 4

classes we are aware exist. K-means model places an unseen data sample to the

cluster with the mean closest to the data sample. We distinguish two cases, the

one where data was divided into four clusters and second where data was divided

into five clusters. For each case the process of training the variational autoencoder

and clustering the data was run five times.

For the first case, confusion matrix obtained by classifying data samples

from the test set is presented in Table 4.2.a). The most representative example of

the matrix is chosen after running the algorithm five times. Columns represent

chimeric, left repeat, right repeat and regular classes of signals in that order from

left to right. Prior to running the algorithm we don't know which cluster will

correspond to which class. Therefore matching the cluster to class is done after

36

seeing how data samples from the test set are distributed among clusters. Each

cluster is named after the class which is most represented in it. This is done

because that is the way classes would be decided if this k-means model was to be

used as a classifier in the future and that is because this choice is the one which

produces best results.

Table 4.2. Confusion matrices obtained by dividing the data into a) four clusters and b)

five clusters

a)

True labels

ch lr rr re

P
re

d
ic

te
d

 la
b

e
ls

ch 7 0 6 2

lr 17 55 1 0

rr 12 1 50 0

re
24 4 3 58

b)

True labels

ch lr rr re

P
re

d
ic

te
d

 la
b

e
ls

ch 41 1 9 0

lr 7 54 0 0

rr 2 0 48 0

re

8 5 0 56

2 0 3 4

Representative example of the confusion matrix for the second case is shown in

Table 4.2.b). Test samples are distributed among five clusters. Four clusters are

named in the same manner as in Table 4.2.a). Remaining fifth cluster isn't named

and what it represents is discussed later.

It is possible to calculate accuracy and F-score8 of the k-means model

which is being used as a classifier for four known classes only. Macro-averaged

F1 score is used (Asch, 2013). Samples classified as members of the fifth,

unlabelled cluster affect the recall, but not the precision of the classifier. Averages

and standard deviations over five runs are presented in Table 4.3.

8 https://en.wikipedia.org/wiki/F1_score

37

https://en.wikipedia.org/wiki/F1_score

Table 4.3. Scores

Four clusters Five clusters

Accuracy 0.74 ± 0.09 0.82 ± 0.05

Macro F1 score 0.6 ± 0.1 0.82 ± 0.06

Data visualisation algorithm t-SNE was used to create two dimensional

visualisation of the data. The t-SNE algorithm is a dimensionality reduction

algorithm which is primarily used to map data to two or three dimensional space

(Maaten et al, 2008). Following figures were generated as follows. Encoded (using

the encoder of the trained variational autoencoder) part of training or test set was

provided to t-SNE algorithm which mapped each data point to two dimensional

space. Points were then labelled according to the cluster k-means algorithm

placed them into.

In the first case, shown in Figure 4.2., k-means divided data into 4 clusters.

The graph on the left hand side is obtained by providing an encoded sample from

the training data to the t-SNE algorithm. The graph on the right hand side is

obtained by using 240 encoded examples of the test set as input to the t-SNE

algorithm.

38

Figure 4.2. t-SNE of four clusters (blue – right repeat, green – regular, red – chimeric,

cyan – left repeat)

Same procedure was done in the second case where five clusters are

assumed. Results are shown in Figure 4.3.

Figure 4.3. t-SNE of five clusters (blue – unknown, green – left repeat, red – right repeat,

cyan - chimeric, magenta - regular)

4.1.2. Discussion

In Figure 4.1. it can be seen that the general shape of the signal is present in the

reconstruction, but details are not perfectly preserved. This is expected in some

amount due to information loss as a result of compression. Left repeat, right repeat

and regular signals seem to be reconstructed better than chimeric signals.

Chimeric signals are often characterized by a very steep drop and rise of the

signal, but that steepness disappears in the reconstruction. As can be seen in

confusion matrices in Table 4.2., that results in worse results when classifying

chimeric signals.

Confusion matrices show that cluster which represents regular signals is

usually of very high quality, meaning in this case, that it contains most of the

regular signals from the data and almost nothing else. This can be useful if this

was used as a classifier which extracts only regular signals, for they are most

useful and reliable when reconstructing genomes.

39

When comparing confusion matrices along with accuracy and F-score

between clustering into four and five clusters it can be observed that k-means

model acts as a better classifier in the latter case. In the case of four clusters

performance is significantly worse then in the case of five clusters. It can be

argued that that is the case because there is a fifth type of signal in the data so the

clustering algorithm works worse when it is made to deal with only four clusters.

Furthermore, confusion matrix with five clusters could also be viewed from that

perspective, since there is a very small number of samples put into that fifth cluster

and we know that the test set is made up of only obvious cases of the four known

clusters. To investigate, signals from the training set which were put into that fifth

cluster were thoroughly examined. But it turned out to be very difficult to

characterize this cluster. There are many very different signals in it and a new

special form of signal isn't observed. Still it can be seen that signal curve usually

has larger values on the right hand side, but it is difficult to detect if those signals

are right repeat signals. Some definitely are, but most are ambiguous as can often

be the case for these signals when trying to classify them using the naked eye.

There is also a smaller but significant number of chimeric signals which have a

steep drop and rise on the far left hand side and then the signal gradually rises on

the right side. So this cluster can perhaps be characterized as containing mainly

questionable signals which have larger values on the right hand side. That is

probably the reason why scores are better if five clusters are used, since the

signals in the fifth cluster are difficult to classify among four known classes. Two

examples are shown in Figure 4.4.

40

Figure 4.4. Signals from the fifth cluster

t-SNE in Figure 4.2. which is done with four clusters shows a very good

separation of three classes on training data and on test data as well. Those are left

repeat, right repeat and regular signals. But chimeric signals are very scattered.

Most interesting about the Figure 4.3., which shows t-SNE done after clustering

into five clusters, are blue dots of the fifth cluster. They seem to be a combination

of right repeat, chimeric and regular signals (in case of the four clusters

assumption) which corresponds well to what was observed in the previous

paragraph.

4.2. K-means along denoising autoencoder

4.2.1. Results

All comments and procedures from Section 4.1.1. apply here with the distinction

that denoising autoencoder is used instead of variational. Hyperparameters are

presented in Table 4.4.

41

Table 4.4. Hyperparameters

Hyperparameter Value

Signal length 250

Batch size for training denoising autoencoder 20

Number of training epochs for denoising autoencoder 25

Activation function of the autoencoder neural network ReLU

Gradient descent optimization algorithm Adam

Learning rate of denoising autoencoder 0.00005

Noise type Masked noise

Corruption level 0.2

Number of encoder layers 4

Number of decoder layers 4

Encoder layer sizes [250, 220, 200, 150]

Decoder layer sizes [150, 200, 220, 250]

Latent representation vector dimension 12

Initialization of kmeans k-means++

Number of iterations of kmeans algorithm 300

Number of times kmeans was restarted 20

Number of clusters 4, 5, 6

Examples which show reconstruction quality using variational autoencoder on

unseen data are shown in Figure 4.5.

42

Representative examples of confusion matrices after five runs are shown in Table

4.5.

43

Figure 4.5. Reconstruction quality using denoising autoencoder (blue line – signal,

green line – reconstruction)

Table 4.5. Confusion matrices obtained by dividing the data into a) four clusters, b) five

clusters and c) six clusters

a)

True labels

ch lr rr re

P
re

d
ic

te
d

 la
b

e
ls

ch 49 7 5 3

lr 1 51 1 0

rr 8 1 54 0

re
2 1 0 57

b)

True labels

ch lr rr re

P
re

d
ic

te
d

 la
b

e
ls

49 7 5 2

2 50 0 0

2 1 47 0

2 2 0 57

5 0 8 1

c)

True labels

ch lr rr reP
re

d
ic

te
d

 la
b

e
ls

43 0 6 0

0 40 1 0

2 0 44 0

1 0 0 59

8 19 0 1

6 1 9 0

44

Accuracy and F-score averaged over five runs are presented in Table 4.6.

Table 4.6. Scores

Four clusters Five clusters Six clusters

Accuracy 0.85 ± 0.04 0.81 ± 0.07 0.7 ± 0.1

Macro F1 score 0.83 ± 0.05 0.8 ± 0.1 0.7 ± 0.1

t-SNE graphs are shown in Figure 4.6. (four clusters), Figure 4.7. (five clusters)

and Figure 4.8. (six clusters).

45

Figure 4.6. t-SNE of four clusters (blue – right repeat, green – regular, red – chimeric,

cyan – left repeat)

4.2.2. Discussion

Signal reconstruction done by the denoising autoencoder presented in Figure 4.5.

shows similar characteristics as was the case with variational autoencoder.

General shape of the signal is present but lacks details. Same conclusions as in

46

Figure 4.7. t-SNE of five clusters (blue – left repeat, green – chimeric, red – regular, cyan

– right repeat, magenta - unknown)

Figure 4.8. t-SNE of six clusters (blue – right repeat, green – chimeric, red – unknown,

cyan – left repeat, magenta – regular, yellow - unknown)

4.1.2. can be made. It can be observed that reconstruction quality is slightly lower

than in the case of variational autoencoder.

Furthermore, same conclusions as in 4.1.2. can be made about the high

quality of the cluster which represents regular signals.

Looking at the relation between classifications scores and number of

clusters it can be observed that scores drop as number of clusters is increased. It

seems that four clusters are the most natural option here as they correspond well

to four clusters we know about. After looking closely at the fifth and the sixth

cluster it is observed that fifth cluster is very similar to the one found in Section

4.1. and sixth cluster can be considered a mirror image of the fifth cluster. The

most likely classification of samples in the fifth cluster would be right repeat and

the most likely classification of samples in the sixth cluster would be left repeat,

but it is more difficult to conclusively decide which type of signals they are than it is

for the samples in other clusters. Proposed names for the fifth and sixth cluster are

soft right repeat and soft left repeat respectively. Typical examples from left

repeat, soft left repeat, soft right repeat and right repeat clusters are shown in

Figure 4.9.

47

t-SNE graphs reflect that dividing the data into six clusters appears messy

and clusters look very scattered in that case. Cases of four and five clusters

appear to be more coherent.

4.3. Spectral clustering along variational autoencoder

4.3.1. Results

All comments and procedures from Section 4.1.1. apply here with the distinction

that spectral clustering is used instead of k-means. Specific differences in the

details of approach are emphasized below. Hyperparameters are presented in

Table 4.7.

48

Figure 4.9. Variations of repeat clusters

Table 4.7. Hyperparameters

Hyperparameter Value

Signal length 250

Batch size for training variational autoencoder 20

Number of training epochs for variational autoencoder 25

Activation function of the autoencoder neural network ReLU

Gradient descent optimization algorithm Adam

Learning rate of variational autoencoder 0.00005

Number of encoder layers 4

Number of decoder layers 4

Encoder layer sizes [250, 220, 200, 150]

Decoder layer sizes [150, 200, 220, 250]

Latent representation vector dimension 12

Graph construction algorithm k-nearest neighbours

Number of neighbours k 10

Algorithm used for final clustering step k-means

Number of times k-means was restarted 10

Number of clusters 3, 4

Examples which show reconstruction quality using variational autoencoder on

unseen data are shown in Figure 4.10.

49

Representative examples of confusion matrices after five runs are shown in Table

4.8. Spectral clustering can not first cluster the training data and then place

samples from the test set into best fitted clusters as k-means can, it can only form

clusters and distribute all input data among them. For that reason test samples

were merged with the training set and clustered together. Then labels of the

samples from the test set were considered to form confusion matrices.

50

Figure 4.10. Reconstruction quality using variational autoencoder (blue line – signal,

green line – reconstruction)

Table 4.8. Confusion matrices obtained by dividing data into a) three clusters and b) four

clusters

a)

True labels

ch lr rr re

P
re

d
ic

te
d

la
b

e
ls

lr 39 60 1 1

rr 17 0 58 0

re

4 0 1 59

b)

True labels

ch lr rr re

P
re

d
ic

te
d

 la
b

e
ls

0 0 0 3

lr 37 60 0 1

rr 23 0 60 4

re

0 0 0 52

Accuracy and F-score averaged over five runs are presented in Table 4.9.

Table 4.9. Scores

Three clusters Four clusters

Accuracy 0.73 ± 0.04 0.73 ± 0.05

Macro F1 score 0.61 ± 0.08 0.62 ± 0.08

t-SNE graphs are shown in Figure 4.11. (three clusters) and Figure 4.12. (four

clusters).

51

4.3.2. Discussion

Reconstruction quality is similar to the one in 4.1., but since different parameters

for variational autoencoder are used it is not the same. Same conclusions about

reconstruction quality as in 4.1.2. can be made.

52

Figure 4.11. t-SNE of three clusters (blue – left repeat, green – regular, red – right repeat)

Figure 4.12. t-SNE of four clusters (blue – left repeat, green – regular, red – unknown,

cyan – right repeat)

By first running spectral clustering algorithm using four clusters it was

obvious that the algorithm only saw three clusters. Fourth cluster was very small

and specific so very few samples from the test set were placed into it. The next

step was running the algorithm using only three clusters to see how well separated

they are and what they represent. The best achieved accuracy and F-score are

significantly lower than in Section 4.1. and Section 4.2. That is the result of found

clusters not matching our idea of the four known clusters.

After manually looking at the three clusters, no connections were found

between the shape of the signal and the cluster the signal belongs to. Clusters can

almost seem random. But t-SNE graph shows very clear separation between the

three clusters. This leads to the conclusion that there is some solid criteria by

which they are distributed into clusters, it is just unknown to us. Results from the

confusion matrices suggest that three clusters are left repeat, right repeat and

regular, with chimeric signals being divided between the left repeat and the right

repeat clusters. But manual inspection of clusters does not confirm this. For

instance, cluster which should represent regular signals contains a lot of chimeric,

left repeat and right repeat signals from the training set, unlike the confusion

matrix would lead to believe. The only possible conclusion here is that applying

spectral clustering dimension reduction algorithm to already compressed data

produces unexpected results. Patterns found in the data are not connected to the

shape of the signal, at least not in a way that we can easily observe.

Spectral clustering algorithm was likewise run along denoising autoencoder,

but results were very similar, meaning three clusters were found but connection

between signal shapes and clusters was not found. Therefore, same conclusions

apply.

53

4.4. Comparison

Specific clusters found using different algorithms were discussed separately. Here,

the aim is to compare classification scores between different clustering models

used as classifiers. Table 4.10. shows all gathered results.

Table 4.10. Classification results

3 clusters 4 clusters 5 clusters 6 clusters

K
-m

ea
n

s +

V
a. A

E
.

accuracy - 0.74 ± 0.09 0.82 ± 0.05 -

Macro F1 score - 0.6 ± 0.1 0.82 ± 0.06 -

K
-m

ea
n

s +

D
e

. A
E

.

accuracy - 0.85 ± 0.04 0.81 ± 0.07 0.7 ± 0.1

Macro F1 score - 0.83 ± 0.05 0.8 ± 0.1 0.7 ± 0.1

S
p

e
ctra

l +

V
a. A

E
.

accuracy 0.73 ± 0.04 0.73 ± 0.05 - -

Macro F1 score 0.61 ± 0.08 0.62 ± 0.08 - -

Note that number of clusters affects the potential process of classification greatly,

assuming the goal is to classify each signal into one of the four known classes. If

only three clusters are used there are only three classes as options for the model,

which means no data will be classified into the fourth class. On the other hand, if

five or six clusters are used, of which we consider four to represent our four known

classes of signals, data classified into fifth and sixth cluster will be, in fact, left

unclassified.

Looking at the Table 4.10. we can single out two best approaches. Using

the combination of the denoising autoencoder along k-means algorithm with four

clusters produces scores of about 85% accuracy and 0.83 F-score. Since exactly

four clusters are used, all data can automatically be classified. Using the

combination of variational autoencoder along k-means algorithm with five clusters

54

produces similar scores. But here, data classified into the fifth cluster would stay

unclassified and some other method or manual classification would need to be

applied to classify the full dataset.

4.5. Application

Combination of the denoising autoencoder along k-means algorithm was used to

help generating an overlap graph for four bacteria from NCTC bacteria collection9.

Again, graphmap tool was used to generate overlaps from which coverage graphs

were calculated. Our trained model classified all coverage graphs of these bacteria

as regular, left repeat, right repeat or chimeric. Chimeric signals and overlaps

between left and right repeat signals were filtered out before generating the

overlap graph. The results obtained by using this technique are compared to the

results obtained by using all coverage graphs in the Table 4.11.

Table 4.11. Comparison of the qualities of overlap graphs

bacteria NCTC74 NCTC86 NCTC129 NCTC204

Using all coverage

graphs

number of contigs10 21 126 36 39

NG5011 546k 75k 270k 320k

Using coverage graphs

selected by our model

number of contigs 20 54 12 38

NG50 553k 216k 1132k 271k

Since the number of contigs can be understood as a measure of the complexity of

the overlap graph, it can be observed that our model, in some cases, reduces that

complexity, which can make the following steps of the genome assembly process

simpler.

9 https://www.phe-culturecollections.org.uk/collections/nctc.aspx

10 https://en.wikipedia.org/wiki/Contig

11 https://en.wikipedia.org/wiki/N50,_L50,_and_related_statistics#NG50

55

https://en.wikipedia.org/wiki/N50,_L50,_and_related_statistics#NG50
https://en.wikipedia.org/wiki/Contig
https://www.phe-culturecollections.org.uk/collections/nctc.aspx

Conclusion

This thesis deals with signals, i.e. coverage graphs, generated using overlaps of

reads. Shape of the coverage graph of a read reflects how that read was created

and thereby which type of a read it is. It is assumed we are aware of four different

types of reads and, by extension, coverage graphs. Thesis explores how do

clusters of signals found by different approaches correspond to our knowledge of

types of reads and how well can signals be classified using only unsupervised

learning.

The approach used was to first compress signals into a lower dimensional

space and then apply a clustering algorithm to those compressed signals. Two

types of autoencoders, variational autoencoder and denoising autoencoder, were

used as feature extractors which compressed signals. Clustering was performed

by two standard unsupervised learning algorithms: k-means and spectral

clustering.

Three combinations of algorithms specified above were used and in two

cases found clusters correspond relatively well to the four assumed clusters. But

one or two potential additional clusters can be observed. In the third case clusters

found were completely unrelated to the four assumed clusters and a simple criteria

for dividing signals into those clusters was not found. Quality of classification

achieved shows that decent results can be obtained but it is questionable whether

these results are good enough to be used in genome reconstruction algorithms.

Further work can be focused on researching whether additional clusters

found could signalize a specific type of read yet unspecified. In the above

mentioned third case, semantics of found clusters can be studied further. In order

to achieve better classification results, supervised or semi-supervised learning

should be an improvement over the conducted unsupervised approach.

56

Bibliography

Šikić M., Domazet-Lošo M., "Bioinformatika”, 2013,

https://www.fer.unizg.hr/_download/repository/bioinformatika_skripta_v1.2.pdf

Metzker M.L., "Emerging technologies in DNA sequencing", Genome Res. 15:

1767–1776, 2005

Shendure J., Hanlee J., “Next generation DNA sequencing”, Nat. Biotechnol. 26:

1135–1145, 2008

Sović I., Šikić M., Wilm A., Fenlon S.N., Chen S., Nagarajan N., “Fast and

sensitive mapping of nanopore sequencing reads with GraphMap”, Nature

Communications 7, 2015

Dalyac A., Shanahan M., Kelly J., “Tackling Class Imbalance with Deep

Convolutional Neural Networks”, 2014

Russell S.J., Norvig P., “Artificial Intelligence: A Modern Approach”, 2009

Dürr O., “Introduction to variational autoencoders”, 2016,

https://home.zhaw.ch/~dueo/bbs/files/vae.pdf

Kingma D.P., Welling M., “Auto-Encoding Variational Bayes”, 2014

Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P.A., “Stacked

Denoising Autoencoders: Learning Useful Representations in a Deep Network

with a Local Denoising Criterion”, The Journal of Machine Learning Research Vol.

11: 3371-3408, 2010

Celebi M. E., Kingravi H. A., Vela P. A., “A Comparative Study of Efficient

Initialization Methods for the K-Means Clustering Algorithm”, Expert Systems with

Applications 40: 200-210, 2012

57

https://home.zhaw.ch/~dueo/bbs/files/vae.pdf
https://www.fer.unizg.hr/_download/repository/bioinformatika_skripta_v1.2.pdf

Arthur D., Vassilvitskii S., “k-means: The advantages of careful seeding”,

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, Society for Industrial and Applied Mathematics, 2007

Luxburg U., “A Tutorial on Spectral Clustering”, Max Planck Institute for

Biological Cybernetics, 2006

Van der Maaten L.J.P., Hinton G.E., “Visualising High-Dimensional Data Using t-

SNE”, Journal of Machine Learning Research 9: 2579-2605, 2008

Van Asch V., “Macro- and micro-averaged evaluation measures”,

http://www.clips.uantwerpen.be/~vincent/pdf/microaverage.pdf , 2013

58

http://www.clips.uantwerpen.be/~vincent/pdf/microaverage.pdf

Identification of 1D-Signal Types Using Unsupervised Deep Learning

Abstract

During de novo genome assembly process, certain types of sequenced reads can

cause problems during genome reconstruction. Goal of this thesis is to learn more

about possible types of reads and classification of those reads using unsupervised

learning. Coverage graphs of reads are generated using read overlaps and those

coverage graphs are further analysed. Autoencoder is used to compress the

signal, i.e. the coverage graph, and clustering algorithm is then applied to the

compressed data. Variational and denoising autoencoders along with k-means

and spectral clustering algorithms are used. Visualisation of found clusters is

performed along with semantic analysis. Signal classification quality using

unsupervised learning is estimated.

Keywords: bioinformatics, unsupervised learning, deep learning, autoencoders

Identifikacija tipova 1D-signala pomoću nenadziranog dubokog učenja

Sažetak

Tijekom de novo procesa sastavljanja genoma određene tipovi očitanja mogu

uzrokovati probleme prilikom rekonstrukcije genoma. Cilj ovog rada je naučiti više

o mogućim tipovima očitanja te kako klasificirati očitanja koristeći nenadzirano

učenje. Koristeći preklapanja među očitanjima, za svako očitanje generiran je graf

pokrivenosti i oni su dalje analizirani. Autoenkoder je korišten s ciljem sažimanja

signala, tj. grafa pokrivenosti, i zatim je nad sažetim prikazom podataka obavljeno

grupiranje. Korišeni su varijacijski i denoising autoencoder te algoritmi grupiranja

k-means i spektralno grupiranje. Nađene grupe signala su vizualizirane te je

provedena semantička analiza grupa. Procjenjena je kvaliteta klasifikacije signala

korištenjem nenadziranog učenja.

Ključne riječi: bioinformatika, nenadzirano učenje, duboko učenje, autoenkoderi

	Introduction
	1. Overview
	1.1. DNA sequencing
	1.2. Overlap-layout-consensus
	1.3. Types of reads
	1.3.1. Regular read
	1.3.2. Chimeric read
	1.3.3. Repeat read

	2. Dataset
	2.1. Finding overlaps
	2.2. Balancing the dataset
	2.3. Heuristic algorithm

	3. Methods
	3.1. Machine learning
	3.2. Supervised Learning
	3.3. Artificial neural network (ANN)
	3.4. Training the ANN
	3.5. Deep learning
	3.6. Autoencoder
	3.7. Variational autoencoder
	3.7.1. Manifold hypothesis
	3.7.2. Decoder
	3.7.3. Encoder
	3.7.4. Training the variational autoencoder
	3.7.5. Reparametrization trick

	3.8. Denoising Autoencoder
	3.9. K-means clustering algorithm
	3.10. Spectral clustering
	3.11. Overview of approach

	4. Results and discussion
	4.1. K-means along variational autoencoder
	4.1.1. Results
	4.1.2. Discussion

	4.2. K-means along denoising autoencoder
	4.2.1. Results
	4.2.2. Discussion

	4.3. Spectral clustering along variational autoencoder
	4.3.1. Results
	4.3.2. Discussion

	4.4. Comparison
	4.5. Application

	Conclusion
	Bibliography

