
UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS num. 1417

Deep Learning Model for Base
Calling of MinION Nanopore Reads

Marko Ratković
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1. Introduction

In recent years, deep learning methods significantly improved the state-of-the-art in multi-

ple domains such as computer vision, speech recognition, and natural language processing

[1][2]. In this thesis, we present application of deep learning in the field of Bioinformatics

for analysis of DNA sequencing data.

DNA is a molecule that makes up the genetic material of a cell, and it is responsible

for carrying the information needed for survival, growth, and reproduction of an organism.

DNA is a long polymer of simple blocks called nucleotides connected together forming two

spiraling strands to a structure called a double helix. Possible nucleotide bases of a DNA

strand are adenine, cytosine, guanine, thymine usually represented with letters A, C, G, and

T. The order of these bases is what defines genetic code.

DNA sequencing is the process of determining this sequence of nucleotides. Originally

sequencing was an expensive process, but during the last couple of decades, the price of

sequencing has drastically decreased. A significant breakthrough occurred in May 2015 with

the release of MinION sequencer by Oxford Nanopore making DNA sequencing inexpensive

and more available, even for small research teams.

Base calling is a process assigning sequence of nucleotides (letters) to the raw data gen-

erated by the sequencing device. Simply put, it is a process of decoding the output from the

sequencer.

1.1. Objectives

The goal of this thesis is to show that the accuracy of sequencing data is not only limited

by sequencing technology, but also by the underlying software used for base calling and can

be further improved using different machine learning concepts. A novel approach for base

calling of raw data using convolutional neural networks is introduced.
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1.2. Organization

Chapter 2 gives more detailed explanation of the problem, background on nanopore sequenc-

ing and overview of state-of-the-art basecallers.

Chapter 3 describes in detail deep learning concepts used in later chapters.

Chapter 4 goes into implementation details, preprocessing methods and training of the

deep learning model.

Chapter 5 explains the methodology used to evaluate obtained results and the results

of testing performed on different datasets as well as comparison with state-of-the-art base-

callers.

In the end, Chapter 6 gives a brief conclusion and possible future work and improvements

of the developed basecaller.
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2. Background

2.1. Sequencing

All sequencing technologies to date have constraints on the length of the strand they can pro-

cess, which are much smaller than the genome for a majority of organisms, making sequenc-

ing the entire genome of an organism a difficult problem. To resolve this problem whole

genome shotgun sequencing approach is used, in which multiple copies of the genome are

broken randomly into numerous small fragments that can be processed by the sequencer.

Sequenced fragments are called reads.

Genome assembly is the process of reconstructing the original genome from reads and

usually starts with finding overlaps between reads. The quality of reconstruction heavily

depends on the length and the quality (accuracy) of the reads produced by the sequencer.

Figure 2.1 depicts process of sequencing.

Figure 2.1: Depiction of the sequencing process

Development of sequencing started with work of Frederick Sanger [3] [4]. In 1977, he

developed the first sequencing method which allowed read lengths up to 1000 bases with

very high accuracy (99.9%) at the cost of 1$ per 1000 bases. Second generation sequencing
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(IAN Torrent and Illumina devices) reduced the price of sequencing while maintaining high

accuracy. Mayor disadvantage of these devices is read length of only a few hundred base

pairs. Short reads make resolving repetitive regions practically impossible.

The need for technology able of producing longer reads led to the development of so-

called third generation sequencing technologies. PacBio developed sequencing method that

allowed read lengths up to several thousand bases but at the cost of smaller accuracy. Error

Rates of PacBio devices are ~10-15%.

Cost makes the biggest obstacle stopping widespread genome sequencing. The release

of, previously mentioned, MinION sequencer made sequencing less expensive and even

portable.

2.2. Oxford Nanopore MinION

The MinION device by Oxford Nanopore Technologies is the first portable DNA sequencing

device. Its small weight, low cost, and long read length combined with decent accuracy

yield promising results in various applications including full human genome assembly [5]

what could potentially lead to personalized genomic medicine.

2.2.1. Technology

As its name says, nanoscaled pores are used to sequence DNA. An electrical potential is

applied over a membrane in which a pore is inserted. As the DNA passes through the pore,

the sensor detects changes in ionic current caused by different nucleotides present in the pore.

Figure 2.2 shows the change of ionic current as DNA strain is pulled through a nanopore.

Figure 2.2: DNA strain being pulled through a nanopore 1

1Figure adapted from https://nanoporetech.com/how-it-works
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Official software called MinKNOW outputs sequencing data in FAST5 (a variant of the

HDF5 standard) file format. It is a hierarchical file format with data arranged in a tree-

structure of groups. Metadata are stored in group and dataset attributes. The same file

format is during used different stages of analyses and groups, datasets and attributes are

added incrementally. Figure 2.3 shows raw signal being present in the FAST5 file.

Figure 2.3: Structure of FAST5 file and raw signal line plot show in HDFView 2

Minion offers the possibility of sequencing one or both strands of DNA. Sequencing

both strands and combining information results in reads of higher quality. Those reads are

called 2D (two-dimensional) reads. Otherwise, if the only single strand is sequenced 1D

(one-dimensional) reads are produced.

MinION devices can produce long reads, usually tens of thousand base pairs (with re-

ported reads lengths of 100 thousand [6] and even recently above 800 thousand base pairs

[7]), but with high sequencing error than older generations of sequencing technologies.

Switch from older R7.3 to R9 chemistry in 2016 increased accuracy of produced data. With

this change, the accuracy of 1D data increased from 70% to 85% and the accuracy of 2D

reads from 88% to 94% [8]. This increase of accuracy makes 1D reads usable for analysis

with benefits over 2D reads being faster sample preparation and faster sequencing. Devel-

oped tool in this thesis focuses on base calling 1D reads.

2.3. Existing basecallers

2.3.1. Official

Oxford Nanopore has, with the R9 version of the platform, introduced a variety of base

calling options. Some of those are production ready and some experimental. The majority

of information regarding differences, specifications and similar is only available through

Nanoporetech Community 3.
2https://support.hdfgroup.org/products/java/hdfview/
3https://community.nanoporetech.com/
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Metrichor is an Oxford Nanopore company that offers cloud-based platform EPI2ME for

analysis of nanopore data. Initially, base calling was only available by uploading data to the

platform - that being the reason why this basecaller is often called Metrichor even though it

is a name of the company.

The older version of Metrichor relied on hidden Markov models (HMM) to find the bio-

logical sequence corresponding to the signal. Preprocess included segmentation of the signal

into smaller chunks called events defined by start location of the chunk, length, mean value

and variance of the signal in the chunk. Metrichor than assumed that each event usually

corresponds to a context of 6 bases being present in the pore and that the context is typically

shifted by one base in each step. The states of HMM are modeled as a context present in the

pore and transition correspond to change of bases in the pore. During the transition from one

state to another, an event is emitted. Base calling is performed using the Viterbi algorithm

which determines the most likely sequence of states for the observed sequence of events.

This approach showed poor results when calling long homopolymer stretches as the context

in the pore remains the same [9][10].

With the release of R9 chemistry, this model was replaced by a more accurate recurrent

neural network (RNN) implementation. Currently, Oxford Nanopore offers several RNN-

based local basecaller versions under different names: Albacore, Nanonet and basecaller

integrated into MinKNOW [11].

Albacore is basecaller by Oxford Nanopore Technologies ready for production and ac-

tively supported. It is available to the Nanopore Community served as a binary. The source

code of Albacore was not provided and is only available through the ONT Developer Chan-

nel. Tool supports only R9.4 and future R9.5 version of the chemistry.

Nanonet4 uses the same neural network that is used in Albacore but it is continually under

development and does contain features such as error handling or logging needed for produc-

tion use. It uses CURRENNT library for running neural networks. It supportes basecalling

of both R9 and R9.4 chemistry versions.

Scrappie5 is another basecaller by Oxford Nanopore Technologies. Similar to Nanonet,

it is the platform for ongoing development. Scrappie is reported to be the first basecaller that

specifically address homopolymer base calling. It became publicly available just recently in

June, 2017 and supports R9.4 and future R9.5 data.

4https://github.com/nanoporetech/nanonet/
5https://github.com/nanoporetech/scrappie
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2.3.2. Third-party basecallers

Nanocall [12] was the first third-party open source basecaller for nanopore data. It uses

HMM approach like the original R7 Metrichor. Nanocall does not support newer chemistries

after R7.3.

DeepNano [13] was the first open-source basecaller based on neural networks. It uses

bidirectional recurrent neural networks implemented in Python, using the Theano library.

When released, originally only supported R7 chemistry, but support for R9 and R9.4 was

added recently.
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3. Methods

The process of base calling can be represented as the problem of machine translation where a

sentence is translated from one language to another. For base calling, the sequence of events

or current measurements is translated to the sequence of nucleotides (letters A, C, T, and G).

This section explains some key deep learning concepts needed to understand the final

model. It gives general idea behind recurrent neural networks used in a majority of existing

basecallers and possible problems that serve as motivation for the different approach - usage

of convolutional neural networks.

3.1. Architecture

3.1.1. RNN

Recurrent neural networks can be viewed as a simple feed-forward network with the differ-

ence that the current output does not only depend on the current input but previous inputs as

well. RNNs store that information in their hidden state which is updated in each step. The

figure shows simple RNN and the same RNN unfolded in time. Unrolling is a way of show-

ing how network processes each input in the sequence and updates its hidden state (show in

figure 3.1).

Figure 3.1: An unrolled recurrent neural network

These networks are trained using a variant of backpropagation called backpropagation

through time which is essentially the same as classical backpropagation on an unfolded net-
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work. The gradient is propagated through the entire recurrence relation, and the gradient

is multiplied in each step with the factor, depending on a scale it can make gradient vanish

(drop to 0) or exponentially grow each step and explode. Detailed explanation can be found

[14]. These issues are called the vanishing and exploding gradient and are generally resolved

by a variant of RNN called LSTM [15].

Bidirectional Recurrent Neural (BiRNN) networks are used when the current output not

only depends on the previous elements in the sequence but also future elements. The idea

is to combine two RNN (one in the positive direction, one in negative time direction) and

have an output of the current state expressed as a function of hidden states of both RNNs and

current input. This is the approach used in DeepNano [13].

One of the major drawbacks of all recurrent networks is computation time. RNNs operate

sequentially as the output for the second step depends on the first step and so on, which

makes parallelization capabilities of RNNs quite limited. This especially is the case for

Bidirectional RNNs.

3.1.2. CNN

Convolutional Neural Networks (CNNs) were responsible for major breakthroughs in Image

Classification and are the core of most Computer Vision systems today. More recently CNNs

are applied being to problems in Natural Language Processing and show promising results

[16][17].

Convolution can be easily explained as a sliding window function applied to a matrix or

in the case of base calling, signal. The sliding window is called a kernel or a filter. Figure 3.2

shows an example of convolution with kernel size 3 and how output is calculated as a sum

of element-wise multiplication of kernel elements and input vector. Stride defines by how

much filter is shifted at each step. Usually, to preserve the same dimension, padding with

zeros is added to the borders.
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Figure 3.2: Convolution layer, kernel size 3 with stride 1.

Activations

After each convolution layer, usually nonlinear layer (know as activation layer) is applied.

The purpose of this layer is to introduce nonlinearity to a system which consists of only linear

operations as convolution layers are nothing more than just element-wise multiplications and

summations. In classical neural networks, nonlinear functions like tanh and sigmoid were

often used, but because of the undesirable property of saturation (at either end of 0 or 1 for

sigmoid, -1 or 1 for tanh), other activations are more often used today with CNNs.

The Rectified Linear Unit (ReLU) has become very popular in the last few years. It is

shown in [2] that usage of ReLU greatly accelerates the convergence of stochastic gradient

descent compared to the sigmoid or tanh activations. Calculation of ReLU is much also more

efficient as it is is simply thresholding at zero.

ReLU(x) =

x, if x > 0

0, otherwise
(3.1)

The downside of ReLU is still saturation to the 0 on one side. Once in this state, the

neuron is unlikely to recover because the function gradient at 0 is also 0, so gradient descent

learning will not alter the weights. This is the problem known as dying ReLU. Different

variants of ReLU, PrRelu, and ELU are often used to resolve this problem [18][19].

PrELU(x) =

x, if x > 0

αx, otherwise
(3.2)

ELU(x) =

x, if x > 0

α(exp(x)− 1), otherwise
(3.3)

Figure 3.3 shows different activation functions.
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Figure 3.3: Activation functions

Pooling

The pooling layer is usually placed after the convolutional layer. Its primary utility lies in

reducing the spatial dimensions of the input for the next convolution layer while preserving

the most salient information. Pooling also provides basic invariance to translation.

Similar to the convolution layer described previously, the pooling layer also uses sliding

window or a certain size that is moved across the input transforming the values. Usually,

larger strides are used then in the convolution layers, as the purpose of this layer is subsam-

pling. Most ofter, maximum value operation on the values in the window (max pooling) is

used, but other transformations are possible (average pooling, L2-norm, or stochastic pool-

ing). Figure 3.4 show dimensionality reduction by factor 2 using pooling with kernel size 2

with stride 2.

Figure 3.4: Dimensionality reduction by pooling (kernel size 2, stride 2)

Comparision with RNN

During calculation, each patch a convolutional kernel operates on is independent of the other,

meaning that the entire input layer can be processed concurrently making CNNs usually more

efficient than RNNs.
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When compared with RNN in which output can depend on the entire sequence, in convo-

lution layer, single output sees only limited window in the previous layer defined by kernel

size. This is called the receptive field of the convolution. Figure 3.5 shows each new lay-

ers depends on larger portion of the input (zi sees 5 elements of input). Lower layers see

limited spatial information and are able to detect simple features like edges but through a

series of convolutional layers, later layers can detect more abstract concepts using interme-

diate features detected from the whole input, or the signal in our case. This is the motivation

behind deep convolution neural networks and why they are so popular in the field of image

processing.

Figure 3.5: Receptive field after 2 layers of convolutions with kernel size 3

Stacking layers increases computational time as the input signal has to pass through the

entire network but calculations at each layer can happen concurrently and each individual

computation is small. In practice, even deep CNNs still have a big speed up over RNNS.

During the forward pass, input flows and is transformed, hopefully becoming a represen-

tation that is more suitable for the task. During the back phase, the gradient is propagated

back through the network. Just like in RNNs, this signal gets multiplied and depending on

the scales it can vanish resulting in no gradient flow to lower layers and no parameter up-

grades. This limits the depth of the network. Resnet arhitecture [20] with its residual layers

address this issue and allows deep architectures with steady gradient flow.

3.1.3. Residual Networks

A Residual Network or ResNet is a neural network architecture which solves the problem

of vanishing gradients using a simple trick. Figure 3.6 shows on the left classical CNN

that takes input and transforms it using convolution layers and activations. This can be rep-

resented as some nonlinear function H(x). H(x) can be written as a sum of some other

nonlinear function F (X) and linear member x. F (X) is called the residual. Detailed expla-

nation and comparisons are included in the original paper.
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Figure 3.6: Comparison between classical CNN and CNN with the residual connection 1

Instead of learning H(X), network learns residual and at the output x is simply summed

up to the F (x) as shown in the figure. By stacking these layers, the gradient could theoreti-

cally skip over all the intermediate nonlinear layers and reach the bottom without vanishing.

3.2. CTC Loss

As mentioned previously, the goal of this thesis is to design model which can convert from a

sequence of current measurements into a sequence of base pairs.

Suppose that we have an input sequence X (signal data) and the desired output sequence

Y (nucleotides). X and Y will be of different lengths as the sequence of base pairs is always

shorter than the length of the signal.

Instead of having a variable size of the output from the neural network, we can limit it to

the length m and have sequences of variable length decoded from those outputs. The neural

network can be considered to be simply a function that takes in some input sequence X (of

length n) and generates sequence O (of length m). Output sequence of variable length Y is

later decoded from O.

3.2.1. Definition

They key idea behind Connectionist Temporal Classification(CTC) [21] is that instead of di-

rectly generating output sequence Y as output from the neural network, we generate a prob-

ability distribution at every output length (from t=1 to t=m) that after decoding gives max-

imum likelihood output sequence Y . Finally, the network is trained using training dataset

D = {(Xi, Yi)} by creating an objective function that restricts the maximum likelihood

decoding for a given sequence Xi to correspond to our desired target sequence Yi.

Given an input sequence X of length n, the network generates probabilities over all pos-

sible labels (A, C, T, and G) with an extra symbol "-" representing a blank at each timestep.

Σ = {A,C, T,G} ∪ {−} (3.4)

1Figure adapted from the original paper [20]
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Possible output generated by the network is called path. Path is defined by the sequence

of its elements π = (π1, π2, ..., πm) where πi is from Σ. The probability of a given path π,

given input sequence X , can then be expressed as the product of probabilities for each of its

forming elements.

P (π|X) =
m∏
t=1

ot(πt),

where ot(πt) is probability of element πt being tth element on path π

(3.5)

Real output sequence, for given path, is obtained by traversing the path and removing all

blanks and duplicate letters. Let decode(π) be the output sequence corresponding to a path

π. As seen in expression 3.6 multiple path correspond to the same sequence Y = ”ACT”.

ACT =



decode(A,A,A,C, T )

decode(A,A,C,−, T )

decode(−, A, C, T, T )

decode(−,−, A, C, T )

decode(A,C,C,C, T )
...

decode(A,C, T,−,−)

(3.6)

The probability of output sequence Y is then the sum of probabilities of all paths that

decode to Y :
P (Y |X) =

∑
π∈decode−1(Y )

P (π|X) (3.7)

3.2.2. Objective

Given the dataset D = {(Xi, Yi)}, training objective is the maximization of the likelihood of

each training sample which is the same as the minimization of negative log likelihood:

L(D) = −
∑

(X,Y )∈D

lnP (Y |X) (3.8)

3.2.3. Output decoding

Given the probability distribution P (Y |X) and given input sequence X , most likely Y ∗ can

be computed.

Y ∗ = argmax
Y ∈Lm

P (Y |X) = argmax
Y ∈Lm

∑
π∈decode−1(Y )

P (π|X),

where Lm set of all possible sequences over alphabet L

with length less than or equals to m

(3.9)
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The probability of a single output sequence Y is the sum of probabilities of all paths that

decode to Y and the most probable sequence is selected as the output. Calculation of all pos-

sible sequences is computationally intractable but exist several algorithms that approximate

this decoding.

The naive possibility is to take the most probable path and say that output sequence

corresponds to that path. This is not necessarily correct. For example, suppose we have

one path with probability 0.1 corresponding to sequence A, and ten paths with probabilities

0.05 each corresponding to sequence B. Label B is preferable one since it has an overall

probability of 0.5; however, this naive best path decoding would select label A, whose single

path has higher probability the those for label B. This method is called best path decoding.

Better approximations can be calculated using beam search decoding proposed in paper

[22]. The idea is an incremental construction of the most probable sequences in step t using

N most probable sequences from the previous step. Parameter N is called beam width.

Probability of Y being extended with character c in step t is expressed like:

P (c, Y, t) = P (Y, t− 1) ∗ p(c, t|X),

where p(c, t|X) is probability of c being t-th output from the network in t-th step.
(3.10)

Lets label with Ŷ prefix of Y without last symbol and Y e as last symbol in Y .

Y = Ŷ + Y e, where + is concatanation operator (3.11)

We can get Y by having Ŷ in previous step and network output Y e or simply by already

having Y in previous step and network output blank(−) or Y e as blanks and repeats are

merged during decoding.

P (Y, t) = P (Y, t− 1)p(−, t|X) + P (Y, t− 1)p(Y e, t|X) + P (Ŷ , t− 1)p(Y e, Y, t)

(3.12)

Using this expression, using dynamic programing can efficiently be determine probability of

some sequence Y .

Beam search decoder keeps set B of N most probable sequences. B is initially a set

consisting of a single blank. In each time step t (from t=1 to t=m) all sequences from B are

expanded and probabilities of new sequences are calculated using recursive relation 3.12.

Expanded sequences are placed in the new set B′. At the end of each step, B is replaced by

B′ and truncated by keeping N most probable sequences. After last time step, the sequence

in B with the highest probability is chosen as the final output. Full pseudocode can be found

in original paper [22]. Detailed explanation and calculation of gradient can be found in

original CTC paper [21], or this very detailed blog post [23].
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3.3. Batch normalization

Batch normalization is method proposed in paper [24] that accelerates learning process. Dur-

ing training, parameters are updated, and distribution of outputs of each layer keep changing.

A small change in the distribution of outputs in early layers can cause a drastic change in later

layers, and those layers need to adapt to the new scale of their inputs. This change of dis-

tribution is called the internal covariate shift and results in slows learning. This is solved by

centering each output from activations of the training batch to zero-mean and unit variance.

After that learned scale and offset are applied. This process is called batch normalization.

After training, mean and variance for each activation are computed on the whole training

dataset rather than on mini-batches during training.

Batch normalization offers several advantages other than reducing internal covariant shift

including more robust learning process by reducing reliance on the scale of the parameters

and their initial values allowing the usage of larger learning rates and faster learning alto-

gether. It is shown in the original paper that batch normalization also regularizes the model

that could potentially improve the performance of the model.
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4. Implementation

4.1. Data

Both used datasets show in table 4.1 be previously have passed through MinKNOW and had

been basecalled by Metrichor. As 1D read analysis was the focus of this thesis, only those

reads were used.

Table 4.1: Used datasets

Number of reads Total bases [bp]1 Whole genome size [bp]

E. Coli2 164471 1 481 687 490 4 639 675

lambda3 86 466 465 48 502

Figure 4.1 shows data present inside FAST5 file after being base calling by Metrichor.

For each basecalled event, model_state field contains the most likely sequence of bases in

the pore. How many bases have passed through the pore between two consecutive events is

defined by the move field.

4.1.1. File formats

Descriptions of various file formats used later in descriptions of preprocessing of training

data and evaluation are given in this section.

FASTA

FASTA is widely used file format for reference sequences. Usual file extensions are .fasta

or .fa). Sequence representation consists of header line containing description starting with
1Total number of bases calle by Metrichor
2R9 sequencing data from http://lab.loman.net/2016/07/30/

nanopore-r9-data-release/, reference taken from https://www.ncbi.nlm.nih.gov/

nuccore/48994873
3Internal dataset, reference taken from https://www.ncbi.nlm.nih.gov/nuccore/NC_

001416.1

17



Figure 4.1: Basecall information produced by Metrichor show in HDFView

character >, followed by line(s) of sequence data represented by letters. Full file specifica-

tion can be found at NCBI site4. Figure 4.2 shows example of sequence stored in FASTA file

format.

Figure 4.2: Example of FASTA file

FASTQ format

Reads are usually stored in FASTQ file format. Each read in the file is stored in following

way:

1. character "@" followed by a sequence identifier and an optional description

2. sequence

3. character "+" character and is optionally followed by the same sequence identifier and

description.

4http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
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4. quality score for each base

Quality is represented by ASCII printable characters where the character "!" represents the

lowest quality while "~" is the highest. Figure 4.3 shows example of read stored in FASTQ

file format.

Figure 4.3: Example of FASTQ file

SAM format

The Sequence Alignment/Map (SAM) format is a generic format for storing reads alignments

against the reference sequences. It is a TAB-delimited text format consisting of header sec-

tion and an alignments section. Detailed information about SAM specification can be found

on SAMTools website5. Among other information, alignment start position is included, flag

stating if read aligned as the template of as the reverse complement and CIGAR string de-

scribing the alignment. Figure 4.4 shows simple alignment and CIGAR string. There are

several possible letters that can appear in CIGAR string but most importantly matches, mis-

matches, insertions and deletions are represented by letters "=", "X", "I" and "D".

Figure 4.4: Example of simple alignment and CIGAR string

4.2. Data preprocess

To help training process, the raw signal is split into smaller blocks that are used as inputs.

For each Metrichor basecalled event is easy to determine the block it falls into using start
5https://samtools.github.io/hts-specs/SAMv1.pdf
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field. Using this information output given by Metrichor can be determined for each block.

To correct errors produced by Metrichor and possibly increase the quality of data, each read

is aligned to the reference. This is done using aligner GraphMap [25] that returns the best

position in the genome, hopefully, the part of the genome from which read came from. Align-

ment part in the genome is used as a target. Using CIGAR string returned by aligner we can

correct Metrichor data and get target output for each block. This process is shown in figure

4.5.

Figure 4.5: Dataset preparation

To eliminate the possibility of overfitting to the known reference, the model is trained

and tested on reads from different organisms. Due to limited amount of public available raw

nanopore sequence data, ecoli was divided into two regions. Reads were split into train and

test portions, depending on which region of ecoli they align. If read aligns inside first 70%

of the ecoli, it is placed into train set, and if it aligns to the second portion, it is placed into

test set. Reads whose alignment overlaps train and test region are not used. Important to

note that ecoli genome, and genomes of the majority of other bacteria, is cyclical, so reads

with alignments that wrap over edges are also discarded. Total train set consist of over 110

thousand reads. Overview of the entire learning pipeline is shown in figure 4.6.
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Figure 4.6: Overview of training pipeline

4.3. Deep Learning model

The final model is a residual neural network consisting of 72 residual blocks that are depicted

in figure 4.7. The used model is a variant of architecture proposed in paper [26] with the

difference of ELU being used as activation instead of ReLU as it is reported [27] to speeds

up the learning process and improve accuracy as the depth increase.

Figure 4.7: Used residual block

Each residual block contains two convolution layers making a total number of convolu-

tions 144. Each convolutional layer in this models uses 64 kernels of 3. Because sequenced

read is always shorter than the raw signal, pooling with kernel size two is used every 48 lay-

ers resulting in a reduction of dimensionality by factor 8. This is used reduce computation
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effort and to help training by reducing the number of required blank labels outputed by the

network. This network has two million parameters that are learned during training.

Training the model is the minimization of previously described CTC loss. It was done

using Adam [28], stochastic gradient descent algorithm based on an estimation of first and

second-order moments. It is often used as it offers fast and stable convergence. Default

parameters of Adam were used ( β1 = 0.9 and β2 = 0.999). Initial learning rate was set

to 1e-3 with exponential decay. Batch size was set to 8 mostly due to limited hardware

resources. As noisy batches could potentially cause gradients to explode, gradient clipped

to a range [-2, 2] was used. Learning curve is show on figure 4.8. Occasional spikes of

training loss are explained by small batch size and presence of noise in the signal. Learning

curve shows no sign of overfitting as modes shows similar performance on both train and

validation sets.

Figure 4.8: Learning curve in TensorBoard

Training process is implemented as producers/consumer pattern with communication

done using FIFO6 queue. Multiple producer threads, running on the CPU, load FAST5 and

alimnment batch data, preprocess it and convert to required objects, while single GPU worker

takes batch from the queue and computes forwards and backward passes on the network. This

is done to reduce time between batches and maximize GPU utilization during training.

4.4. Technologies

Overall solution was implemented in Python programing language. Described model is im-

plemented using TensorFlow. It is an open source software library for numerical computation

using data flow graphs developed by Google. TensorFlow, even though is considered low-

level framework, offers implementations of many higher level concepts (layers, losses, and

6FIFO is an acronym for first in, first out
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optimizers) which makes it great for prototyping while keeping it modular and extensible for

highly specific tasks as well.

TensorFlow offers efficient GPU implementations of various layers and losses but as of

version 1.2 still lacks GPU implementation of used CTC loss, so WARP-CTC7 was used. It

offers both GPU and CPU implementations as well as bindings for TensorFlow.

For alignment tasks, developed tool offers support for GraphMap and BWA but can easily

be extended with support any other aligner that outputs results in SAM file format.

SAMTools8 and Python bindings PySam9 were used for conversions between various file

formats used in Bioinformatics.

Docker was used for automating the deployment on different machines. It helps to re-

solve problem know as dependency hell10 keeping all dependencies in single container thus

eliminating possible conflict between packages on host OS. Nvidia Docker11 was used for

GPU support inside docker containers.

Training and all evaluations were done on the server with Intel(R) Xeon(R) E5-2640

CPU, 600 GB of RAM and NVIDIA TITAN X Black with 6GB of GDDR5 memory and 2880

CUDA cores.

All developed and used code, including utility scripts is publicly available on GitHub12

under the MIT Licence.

7https://github.com/baidu-research/warp-ctc
8http://www.htslib.org/
9https://github.com/pysam-developers/pysam

10https://en.wikipedia.org/wiki/Dependency_hell
11https://github.com/NVIDIA/nvidia-docker
12https://github.com/mratkovic/masters-thesis
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5. Results

Developed tool was compared with other available basecallers that support R9 chemistry.

This includes third-party basically DeepNano and official basecallers by Oxford Nanopore

(cloud-based Metrichor and Nanonet). The fact that ground truth is not known makes eval-

uation difficult. Different methods for evaluation were used to get clearer information about

each basecaller. In all tables and figures, developed model is addressed as resdeep simply

due to the fact it is a deep residual neural network.

5.1. Error rates per read

Basecalled reads are aligned to the reference using GraphMap and alignments are analyzed.

If the whole sequencing is done correctly and quality basecaller is used, all reads should

align to the reference. Mismatches, insertions, and deletions, in that case, should be due to

limitations of sequencing technology and noise in the signal.

A portion of the read length that aligns as correctly is called match_rate. Same goes for

mismatches and insertions. Sum of all matches, mismatches, and insertions is equal to the

reads length 5.1.

read_len = n_matches+ n_mismatches+ n_insertions (5.1)

match_rate =
n_matches
read_length

(5.2)

missmatch_rate =
n_mismatches
read_length

(5.3)

insertion_rate =
n_insertions
read_length

(5.4)

match_rate+ snp_rate+ insertion_rate = 1 (5.5)

Deletion rate is defined as a total number of deletions in the alignment over the length of

the aligned read.

deletion_rate =
n_deletion
read_length

(5.6)
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To get reliable results, this is done on both ecoli test dataset and lambda dataset. For each

basecaller, median, mean and variance of all aligned reads are calculated. To summarize the

results, the median is used as a single value as it is robust and even more informative in the

case of skewed distributions like these. Results expressed as percentages are shown in the

table 5.1 for ecoli and table 5.3 for lambda dataset.

Developed tool shows promising results by having better match rate and smaller mis-

match rate than the others. Both datasets show all basecallers being biased towards deletions

than insertions but this possibly is the bias of the used aligner. To eliminate that possibility,

tests were repeated using BWA mem aligner1 with almost identical results. Results using

BWA aligner are shown in tables 5.2 and 5.4. Results are consistent on both datasets using

both aligners.

Table 5.1: Alignment specifications of Ecoli R9 basecalled reads using GraphMap

Match %
(median)

Mismatch %
(median)

Insertion %
(median)

Deletion %
(median)

DeepNano 90.254762 6.452852 3.274420 11.829965

Metrichor 90.560455 5.688105 3.660381 8.328271

Nanonet 90.607674 5.608912 3.652791 8.299046

resdeep 91.408591 5.019141 3.477739 7.471608

Table 5.2: Alignment specifications of Ecoli R9 basecalled reads using BWA mem

Match %
(median)

Mismatch %
(median)

Insertion %
(median)

Deletion %
(median)

DeepNano 90.254762 6.452852 3.274420 11.829965

Metrichor 90.595441 6.869543 2.531646 7.567381

Nanonet 90.988989 6.674760 2.348552 7.698530

resdeep 91.470588 5.929204 2.477283 6.970362

1https://github.com/lh3/bwa
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Table 5.3: Alignment specifications of Ecoli R9 basecalled reads using GraphMap

Match %
(median)

Mismatch %
(median)

Insertion %
(median)

Deletion %
(median)

DeepNano 86.997687 9.623494 3.442490 16.052830

Metrichor 87.714988 7.835052 4.093851 10.757491
Nanonet 88.415611 8.178372 3.629653 11.793022

resdeep 89.694482 7.238095 3.078796 13.450292

Table 5.4: Alignment specifications of lambda R9 basecalled reads using BWA mem

Match %
(median)

Mismatch %
(median)

Insertion %
(median)

Deletion %
(median)

DeepNano 86.625973 11.288361 2.098225 14.648308

Metrichor 87.294093 10.109186 2.376476 9.645323
Nanonet 87.767037 10.017598 2.354248 10.597232

resdeep 89.049870 9.480883 1.615188 12.962441

Distribution of these percentages per reads are shown using histogram plot on figure 5.3

and the KDE (kernel density estimate) plot on igures 5.2 and 5.4. Like the histogram, the

KDE plot encodes the density of observations, but curve approximation is used instead of

bins resulting in less cluttered comparison. It is important to note that lambda is small dataset

and more samples are needed to get a better approximation of distribution.
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Figure 5.1: Histogram showing distribution of percentage of alimnment operations for ecoli

Figure 5.2: KDE plot for distribution of percentage of alimnment operations for ecoli
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Figure 5.3: Histogram showing distribution of percentage of alimnment operations for lambda

Figure 5.4: KDE plot for distribution of percentage of alimnment operations for lambda
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The histogram on figure 5.5 shows how matches, mismatches, insertions, and deletions

are distributed across the read. It is shown that mismatches and insertion occur more fre-

quently at the beginnings and the ends of the reads. This is not only the case for the devel-

oped basecaller, but all other show the same property. This could be due to lack of context

information from both sides when edges are base called.

Figure 5.5: Histogram of alignment operations over relative position inside of read

5.2. Consensus

Described error rates and match rates calculated from alignments of individual reads to the

reference could be misleading as it is simple to produce a naive model that obtains excel-

lent results. Let us consider a model that basecalls single base "A" for every input signal.

Aligning "A" to the reference (supposing that the aligner does not discard short and highly

ambiguous reads) will always return perfect alignment as nucleotide "A" is certainly present

in the reference. This model would have a perfect match rate with non-existent mismatches,

insertions, and deletions. Two other approaches are used, in addition to the first, to give a

more rigorous comparison.

The idea behind other approaches is checking if the reconstruction of the reference is

possible from the basecalled reads and closely does it match the original reference.
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5.2.1. Consensus from pileup

Instead of going through the whole assembly process, as we know the reference genome of

the data used in these tests, we simply align all the reads to the genome, stack them on top

of each other forming pileup of read bases. Using majority vote, dominant bases are called

on each position. The resulting sequence is called consensus. When calling consensus for

deletions, there has to be a majority of deletions of the same length. Calling insertions has

the additional condition, the majority has to agree on both length and the bases of insertion.

Figure 5.6 shows how consensus is called from pileup created from aligned reads. Pileup is

stored in mpileup format.

Figure 5.6: Consensus from pileup

Similarly, as before, match rate, mismatch rate, insertion and deletion rates are calculated

but this time for whole consensus sequence. In this context, mismatches are called single

nucleotide polymorphisms (snp).

match_rate =
n_correct_bases
consensus_length

(5.7)

snp_rate =
n_snp

consensus_length (5.8)

insertion_rate =
n_insertions

consensus_length
(5.9)

match_rate+ snp_rate+ insertion_rate = 1 (5.10)

deletion_rate =
n_deletion

consensus_length
(5.11)

Results are shown in the tables 5.5 for ecoli and 5.6 for lambda. Developed model shows

results comparable with Metrichor in all aspects (matches, mismatches, insertions, deletions

and the total length of the consensus sequence) for lambda and show even better results from

ecoli.

All models show a slight bias towards deletions than insertions, but this may be the

limitation of technology as it has been reported that deletion and mismatch rates for nanopore

data are ordinarily higher than insertion rates [25].
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Table 5.5: Consensus specifications of Ecoli R9 basecalled reads

Total called
[bp]

Correctly called
[bp]

Match
%

Snp
%

Insertion
%

Deletion
%

DeepNano 1510244.0 1493242.0 98.8742 1.0044 0.1214 0.9041

Metrichor 1515893.0 1502588.0 99.1223 0.7464 0.1313 0.6300

Nanonet 1414237.0 1385515.0 97.9691 1.5700 0.4609 1.5158

resdeep 1517828.0 1506233.0 99.2361 0.6474 0.1165 0.5510

Table 5.6: Consensus specifications of lambda R9 basecalled reads

Total called
[bp]

Correctly called
[bp]

Match
%

Snp
%

Insertion
%

Deletion
%

DeepNano 48342.0 48025.0 99.3443 0.6433 0.0124 0.2648

Metrichor 48469.0 48257.0 99.5626 0.4188 0.0186 0.1465
Nanonet 48438.0 48168.0 99.4426 0.5409 0.0165 0.1961

resdeep 48385.0 48163.0 99.5412 0.4402 0.0186 0.1976

5.2.2. Assembly

In this evaluation method, consensus sequence is not calculated from pileup, but by de novo

genome assembly. For this task, fast and accurate de novo genome assembler ra2 [29] was

used and obtained consensus sequence is compared to the reference using dnadiff present

in the Mumer3. The length of the reference, consensus sequence, number of contigs and

percentages of aligned bases from the reference to the query and vice versa are shown in the

table 5.7. Average identity summarizes how closely does the assembled sequence match the

reference. This is run on full ecoli sequence run for 1D template reads (~160k reads), for both

developed tools and Metrichor. Developed tool has shown a small increase in quality of the

assembled sequence over Metrichor by offering longer consensus, higher identity percentage,

and overall smaller edit distance4.

2https://github.com/rvaser/ra
3https://github.com/garviz/MUMmer
4Calculated using https://github.com/isovic/racon/blob/master/scripts/

edcontigs.py
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Table 5.7: Assembly and consensus results for ecoli

Metrichor resdeep

Ref. genome size (bp) 4639675 4639675

Total bases (bp) 4604806 4614354

Contigs [#] 1 1

Aln. bases ref. (bp) 4639641(100.00%) 4639612(100.00%)

Aln. bases query (bp) 4604787(100.00%) 4614351(100.00%)

Avg. Identity 98.76 99.06

Edit distance 60418 46686

5.3. Read lengths

The lengths of basecalled reads for each tool are interesting to analyze. Developed tool

output reads of lengths similar to Metrichor while other tools, such as Nanonet, for instance,

basecall reads that are significantly shorter. Detailed analysis of read length distributions is

shown using KDE plots on figure 5.7 for both lambda and ecoli.

Table 5.8: Ecoli R9 basecalled read lengths in base pairs

median mean std

DeepNano 5526.5 8126.694000 7406.554786

Metrichor 5809.5 8933.275000 9189.709720

Nanonet 3286.5 4874.406582 4803.182344

resdeep 5784.0 8990.988989 9297.972688
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Table 5.9: Lambda R9 basecalled read lengths in base pairs

median mean std

DeepNano 4740.0 4664.750000 2628.512543

Metrichor 5491.0 5482.952941 2748.446253

Nanonet 4931.5 4925.804878 2739.987512

resdeep 5229.0 5138.764706 2605.958080

Figure 5.7: Overview of evaluation pipeline

5.4. Base calling speeds

Table 5.10 shows base calling speeds of all tools. Metrichor is present in the table as it

is cloud-based service and real execution time is unknown. Tests for all other basecallers

were run under same conditions on hardware described in section 4.4. All tested tools offer

parallelized base calling so a number of jobs(threads) during testing was set to 32. Both the

developed model and Nanonet provide GPU support for base calling, while DeepNano is

limited for CPU only.

Developed tool has shown faster base calling times in both CPU and GPU group even

though it is very deep network of 144 layers. This shows efficiency of CNNs compared with

RNNs. Differences in base calling speeds for ecoli and lambda datasets do exist, but they are

not substantial and may be contributed to the different length of the reads and the different

total number of reads in datasets.

33



Table 5.10: Base calling speeds measured in base pairs per second

ecoli (bp/s) lambda (bp/s)

resdeep (CPU) 1174.28 1363.340
Nanonet (CPU) 856.01 897.499

DeepNano (CPU) 626.99 692.370

resdeep (GPU) 6571.76 6140.300
Nanonet (GPU) 3828.39 3787.510

5.5. Evaluation pipeline

Entire evaluation pipeline is shown in figure 5.8. GraphMap was used for alignment pur-

poses and SAMTools for conversion between SAM and its binary variant BAM as well as a

generation of mpileup.

Figure 5.8: Overview of evaluation pipeline
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6. Conclusion

The goal of this thesis was to show that usage of convolution neural networks can potentially

replace RNNs in the analysis of sequencing data by offering better results as well as faster

execution times.

On all tests, proposed model has shown improvement in the accuracy of basecalled

data as well as faster basecalling speeds of over both official (Matrichor and experimental

Nanonet) and third-party DeepNano while having. To provide definite proof of this claim,

the model needs to be tested on larger datasets from different sequencing runs for multiple

organisms.

All test are done on data for R9 chemistry, but the developed code could easily be adjusted

and trained on R9.4 and newest R9.5 data when it becomes publicly available. It would be

interesting to see how well this approach works compare to basecaller Scrappie by Oxford

Nanopore that addresses detection of homopolymers.

Currently, without support for newer sequencing data, this model has limited application.

It can be used as a demonstration of a different approach to base calling which yields promis-

ing results. As newer versions of basecallers by Oxford Nanopore do not offer any support

for data sequenced with previous version of chemistries, this tool can be used to re-basecall

that data and improvement of the quality of reads.

Future work includes experiments with recently proposed scaled exponential linear units

(SELU) [30] that eliminates the need for normalization techniques such as used batch nor-

malization. Possible improvements of the model include the combination of convolutions

and attention mechanism proposed just recently in the paper [17] showing excellent results

in both speed and accuracy, for tasks of language translation.
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Deep Learning Model for Base Calling of MinION Nanopore Reads

Abstract

MinION by Oxford Nanopore Technologie is affordable and portable sequencing device

suitable for various applications. The device produces very long reads, however, it suffers

from high sequencing error rate. The goal of this thesis is to show that the reported accu-

racy of the sequencing data is not only limited by sequencing technology, but also by the

current software tools used for base calling and can be further improved by using different

deep learning concepts. Approach for base calling of raw data using convolutional neural

networks is proposed as an alternative to recurrent neural networks used by other basecallers

offering improvements both in speed and accuracy. A detailed comparison of the developed

tool with the existing tools for base calling R9 data is given.

Keywords: base calling, Oxford Nanopore Technologies, MinION, deep learning, seq2seq,

convolutional neural network, residual network, CTC loss

Model dubokog učenja za odred̄ivanje očitanih baza dobivenih ured̄ajem za
sekvenciranje MinION

Sažetak

Ured̄aji za sekvenciranje MinION tvrtke Oxford Nanopore Technologies su pristupačni

i prenosivi što ih čini pogodnim za razne primjene. Ured̄aj omogućuje sekvenciranje oči-

tanja velikih duljina ali većeg postotka greške u odnosu na prethodne tehnologije. Cilj

ovog diplomskog rada je pokazati da trenutna pogreška nije uzrokovana isključivo metodom

sekvenciranja, već i programskim alatima koji se koriste za očitavanje baza te je pogrešku

moguće smanjiti korištenjem metoda dubokog učenja.

Predstavljen je novi alat za očitavanje baza temeljen na konvolucijskim neuronski mrežama

koji pruža napredak u preciznosti i brzini u odnosu na trenutno korištene rekurzivne neu-

ronske mrežama. U radu je dana detaljna analiza razvijenog alata i usporedba s postojećim

rješenjima za odred̄ivanje očitanih baza.

Ključne riječi: odred̄ivanje baza, Oxford Nanopore Technologies, MinION, duboko učenje,

prevod̄enje, konvolucijske neuronske mreže, rezidualne mreže, CTC gubitak


