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1. Introduction 

One of the most important tasks in bioinformatics is the assembly process, which 

refers to combining fragments of DNA, obtained by the sequencing device. These 

fragments will be referred to as reads, and the goal of the assembly process is to 

fully reconstruct the DNA. The modern de novo assembly process is conducted 

over a pre-generated set of reads and is realized in three basic phases: overlap, 

layout, and consensus. 

Due to the imprecision of sequencing devices, some overlaps are wrongly 

detected, and they can overcomplicate the following phases. On the other hand, 

as a result of the same drawback, some overlaps will be omitted and they will not 

be processed in the layout phase. However, overlap algorithms are somewhat 

robust to these imperfections. Unfortunately, there are other specific reads, that 

will be referred to as chimeric and repeat, with unique characteristics, which are 

reflected on their coverage graph, that additionally impede the next phases.  

A read can definitely be classified as chimeric or repeat when taking into account 

the information about its mapping onto the reference genome. We will therefore 

manually label some reads sequenced from already assembled genomes, but 

since this labeling process is extremely slow and usually rather grueling, we will 

propose methods that are based on semi-supervised learning with as little labeled 

data as possible. As the input in a model, we will use a signal that represent the 

coverage graph of the corresponding read. When finished, we expect that models 

will be able to generalize on any read, regardless whether the reference genome 

has already been assembled or not. 

In the next chapter, we will define specific types of reads. In the chapters 3 and 4, 

we will briefly introduce theoretical fundamentals of machine and deep learning. 

Basic assumptions and theoretical background of semi-supervised models are 

presented in chapter 5. Concrete semi-supervised models will be explained in 

chapter 6. Evaluation and results will be presented in chapter 7, and all of it will be 

summed up in chapter 8. 

  



2 
 

2. Types of reads  

Before we introduce specific types of reads, we will define a very simplified overlap 

phase that is based on the a very unrealistic assumption, that a sequencer makes 

no mistakes while reading nucleotide pairs. In that case, the shared region 

between two reads will be indicated as an overlap if the shared region is a prefix of 

one read, and a suffix of another, and contains no mismatches. 

Chimeric read. A read is referred to as chimeric if it contains detached parts of 

the reference genome that were concatenated into one read as a consequence of 

a mistake made by a sequencing device. 

Performing an overlap phase with the presence of chimeric reads can cause 

junction of the disjoined parts of the reference genome, and therefore they need to 

be eliminated. 

Repeat read. A read is referred to as repeat if it contains a repetitive region of the 

reference genome. A repeat region is a consecutive sequence of nucleotide pairs 

that is replicated at different positions of the reference genome. Depending on the 

position of the repeat region in the read, the read is referred to as a left, centered 

or right repeat. 

Centered repeats do not obstruct sequencing process, but left and right repeats 

can make it needlessly intricate and need to be removed as well. 

Regular read. A read is referred to as regular if it is neither chimeric nor repeat. 

Coverage graph. A coverage graph is a graph which is created for each read by 

counting the number of times that each nucleotide pair in the read overlapped with 

some other read. Considering the circumstances in which coverage graphs are 

generated, we assume that the discriminative features of each read will be 

reflected in their coverage graph. Figures 2.2, 2.3 and 2.4 show possible 

sequencing scenarios which result in creating either chimeric, repeat or regular 

reads with the corresponding coverage graphs.  

A chimeric coverage graph is characterized by a sudden drop followed by a 

sudden raise. This point represents the place where the two detached parts of 

genome have connected. On the other hand, a repeat coverage graph has greater 
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coverage on the one side, either left or right, than on the other. Areas with high 

coverage represent repeat regions of the reference genome. Finally, a coverage 

graph of a regular read does not contain any prominent aberrations. Examples of 

coverage graphs with the corresponding classes are shown in Figure 2.1. 

 

    

         a)            b) 

 

c) 

Figure 2.1. a) coverage graph of a repeat read. b) coverage graph of a chimeric read. c) coverage 
graph of a regular read.  
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Figure 2.2. Generation process of a coverage graph on a regular read a) with the corresponing 

coverage graph b). The nucleotide pairs colored yellow show the observed regular read over which 

coverage graph is built. The figure shows all reads that overlap with the observed read with the 

update of the coverage graph marked in red. 

 

 

a) 

b) 
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Figure 2.3. Generation process of a coverage graph on a chimeric read a) with the correspongin 

coverage graph b). The nucleotide pairs colored yellow show the observed chimeric read that was 

formed by concatenating separate parts of the reference genome also colored yellow. The figure a) 

shows all the reads that overlap with the observed read. The coverage update is marked in red. We 

can notice a gradual decrease in the coverage graph at the point where the sequencer connected 

the separated parts of the original genome. As this part does not exist in the original genome, it 

correlates with the sudden drop in the coverage graph. 

 

a) 

b) 
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Figure 2.4. Generation process of a coverage graph on a repeat read a) with the corresponing 
coverage graph b). The nucleotide pairs colored yellow show the observed left repeat read over 
which the coverage graph will be built, and the nucleotide pairs colored green show the repeat 
regions in the reference genome. The figure a) shows all the reads that overlap with the observed 
read. The coverage update is marked in red. Since that read over which coverage graph was built 
contains repeat regions, all reads near these regions are also taken into consideration while 
building the coverage graph. Because of that, one side of the coverage graph has higher coverage 
than the other.  
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a) 
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3. Theoretical basis of machine learning 

"Machine learning is a way of programming computers to optimize a performance 

criterion using example data or past experience" [1]. We want to emphasize that 

this is not the only definition of machine learning. On the contrary, there are plenty 

of other different definitions, but the common denominator of all of them is the 

ability of the an algorithm to learn from data. 

Machine learning algorithms can be divided into many categories, and we will list 

only a few of them. The first division distinguishes algorithms based on the type of 

their output values and categorizes them either as regression or classification. 

Generally speaking, an algorithm is referred to as regression if it is used for 

predicting continuous values. If it is used for predicting a class label from a 

predefined set of admissible labels, it is referred to as classification. 

Furthermore, classification algorithms can be categorized as generative or 

discriminative, depending on whether the algorithm models the joint probability of 

input and its label or not. Generative models learn the distribution of individual 

classes by modeling the joint distribution of the example and its corresponding 

label, and based on that probability perform classification tasks. On the other 

hand, discriminative models perform classification tasks based on the learned 

boundaries between classes, without modeling the joint probability at all.  

Finally, considering the type of the provided input information, we can distinguish 

two categories of machine learning tasks: supervised and unsupervised learning. 

Supervised learning uses input elements as well as the corresponding class 

labels, while unsupervised learning uses only the input elements. Semi-supervised 

learning lies somewhere in between supervised and unsupervised learning and 

will be explained in detail in chapter 5. 

Before we outline the theoretical foundations and concepts of machine learning, 

we need to agree on the notation that will be used in further definitions. 

 X a set of training examples (input elements) 

 x(i) the i-th example (input element) which corresponds to the i-th row in

  the matrix X 
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(3.1) 

 y(i) the i-th expected  output value associated with x(i) for supervised  

  learning 

As we will be focusing on semi-supervised machine learning algorithms used for 

classification tasks, it should be noted that the following definitions will be limited 

to this restriction. 

Any machine learning algorithm has three basic elements: [2]. 

1. Model 

 Model (H) is defined as a set of hypotheses (h), where each 

hypothesis relates each input to one of the permissible outputs. In that 

respect, we can think of a model as a parameterized function, where each 

ordered set of parameters corresponds to a different hypothesis. Formula 

3.1. shows the relation between the model and the hypotheses. 

  

𝐻 = {ℎ(𝑥 | 𝜃)}𝜃 

 

2. Loss-function 

 Loss function (L) calculates the error of the current hypothesis by 

comparing the expected output with the calculated output ℎ(𝑥 | 𝜃). 

 Error function (E) is defined as the expected value of the loss 

function, and it is shown in formula 3.2. 

 

𝐸(ℎ | 𝑋) =  
1

𝑁
∑ 𝐿(𝑥(𝑖))𝑁

1  

 

3. Optimization 

 Optimization is a process of finding the hypothesis that minimizes the 

error function on the set that contains the input elements from X. This 

process is also known as the learning process, and it is shown in formula 

3.3. 

 

ℎ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ𝐸(ℎ | 𝑋) 

Working with machine learning entails making lot of numerous assumptions, and 

choosing a model is only one of them. Usually, the complexity of a model can be 

(3.2) 

(3.3) 
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defined with a set of parameters, and choosing a model correlates with choosing 

the set of parameters that describe it. These specific parameters are called 

hyperparameters. We want to emphasize that since these parameters are not the 

part of a model itself, they cannot be learned by the optimization step, which finds 

the optimal hypothesis in the defined model. In general, we want to choose a 

model which complexity matches the complexity of the function that has actually 

generated the data. Choosing a model can lead to one of the following two 

scenarios. 

• Underfitting is a case where a model is not as complex as the function that 

has generated the data, and it does not have the capacity to interpret it. 

This case is shown in Figure 3.1.a.  

• Overfitting is a case where a model is much more complex that the original 

function, so it can easily adapt to the data and learn noise in it. This case is 

shown in Figure 3.1.b. 

The question, then, arises: how do we choose an optimal model? The idea is to 

divide examples into two sets: a train and test set. The model is trained on the 

train set, while the generalization performance is measured on the test set. This 

process is known as a cross-validation. A very simple model will produce an equal 

amount of mistakes on both sets, while  a very complex model will show good 

performance on the train set, and bad performance on the test set. In order to find 

the optimal model, we need to find balance between errors on the train and test 

set. This effect is shown in Figure 3.2. 

 

 

Figure 3.1. a) underfitted model. b) optimal model. c) overfitted model. All three figures show the 

decision boundary depending on the complexity of the model. If the model is too simple, as shown 

in a), it has no capacity to model real data dependencies. On the other hand, if the model is too 

complex it will easily adapt to the noise in the data c). The optimal model is somewhere in between. 

a) b) c) 
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Figure 3.2. Dependencies of the error function on the train and test set with respect to the 
complexity of the model. We can notice that the error on the train set decreases with the increase 
of the model's complexity, while the error on the test function starts to increase after the point 
representing the optimal complexity. This is the expected behavior because more complicated 
models can learn decision boundaries with arbitrary high complexity. In that case, the 
generalization ability vanishes, which results in meager performance on the unseen examples in 
the test set, and an excellent one on the training data. The green dashed line represents optimal 
models, and it is a place where the underfitting and overfitting areas meet. 

  

𝐸𝑡𝑒𝑠𝑡 

𝐸𝑡𝑟𝑎𝑖𝑛 
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4. Deep learning 

Deep learning is a growing trend in machine learning, and in essence, deep 

learning algorithms do not differ from any other machine learning algorithm since 

they can be interpreted through the basic elements: the model, loss function, and 

optimization. However, over the last couple of years, their popularity has increased 

significantly, due to the fact that recent experiments achieved state of the art 

results in areas of computer vision and speech recognition, which made them a 

hot topic in the area of machine learning. 

As already said, we will describe deep learning algorithms suited for classification 

tasks owing to the fact that they are the main focus of the thesis. 

 

4.1. Model 

The basic model of any deep learning algorithm is a feed-forward deep neural 

network which consists of layers, as its basic computational units. The layers are 

determined with the certain set of parameters which is used for computing the 

output of a layer. In the rest of the thesis, the output of the layer will be referred to 

as a feature map. The feed-forward neural network has a composite structure that 

can be interpreted as a computational graph, and it is important to note that the 

output of a layer is only affected by the last extracted feature map as well as that 

computational graph of a feed-forward neural network does not contain any cycles. 

There are many other types of neural networks such as residual and recurrent 

networks that extend the functionality of simple feed-forward networks with 

residual connections and cycles in the computational graph, but since they are not 

a part of this thesis we will not pay attention to them. 

The basic model of the deep neural network is shown in Figure 4.1. 
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Figure 4.1. Basic feed-forward neural network architecture. The yellow parts represent layers, the 

green parts represent non-linearity among features maps, and the blue part represents the 

classification part of the neural network. We can notice that only the first layer is in touch with the 

input, while others operate on the latest extracted feature map.  

 

There are many types of layers, but we are going to introduce only ones that were 

used in this thesis.  

Fully connected layer is a basic layer, whose output is calculated according to 

the following matrix multiplication formula, where x is an input vector, W is a 

weight matrix and b is a bias vector: 

𝒚 = 𝒙 ∙ 𝑊 + 𝒃 

The fully connected layer has the capacity to model an arbitrary linear relationship 

in the input vector, but due to the fact that each feature in the output vector is 

calculated over the entire input vector, this approach demands a lot of trainable 

parameters and it is prone to overfitting [3]. Because of that, it is common practice 

to place the fully connected layer at the end of the pipeline so it can model 

relationships between extracted features and the corresponding classes. The 

graphical representation of a fully connected layer is represented in Figure 4.2.a. 
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Figure 4.2. a) fully connected layer. b) convolution layer. c) pooling layer. Different colors in the 
convolution layer represent shared parameters, while the dashed lines indicate that the layer 
contains no learnable parameters. It can be noticed that the convolution layer demands only 𝑘 ∙
|𝑦| where k is the kernel size, while the fully connected layer needs |𝑥| ∙ |𝑦| if the bias variable is 
ignored. 

 

Convolution layer uses convolution rather than a matrix product to compute the 

output. 

Discrete 1D convolution is defined with the following formula, where x and w are 

arbitrary discrete signals: 

(𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑛) ∙ 𝑤(𝑡 − 𝑛)

∞

𝑛=−∞

 

In order to make the computation simpler, we used cross-correlation instead and 

assumed that values of functions x and w for the argument which does not belong 

in the domain are equal to zero. W is a discrete signal defined for only K domain 

elements and is usually referred to as the convolution kernel, and K is referred to 

as kernel length. The adjust formula is shown below. 

(𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑡 + 𝑛) ∙ 𝑤(𝑛)

𝐾/2

𝑛=−𝐾/2

 

By using a convolution layer instead of a fully connected layer, we achieved a 

significant parameter reduction. Each feature in the feature map is now connected 

only to the adjacent elements in the input vector, where adjacency is controlled by 

a) b) c) 
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kernel length, and not to all elements, which was the case with the fully connected 

layer. Extracting features by using convolution on a 1D signal is shown in Figure 

4.3. 

Furthermore, we want to emphasize that convolution is equivariant to 

displacement in the input parts [3]. This means that if we move some part of the 

input, we will obtain the same features in the feature map, but in different 

positions. 

 

Figure 4.3. The figure shows the original 1D signal painted in blue color, and the results of 
convolution operations with the kernel k=[-1, 1]. The green signal is the result of applying 
convolution on the original signal, and the red one is the result of convolving the previously 
calculated convolution with the same kernel. We can infer that this kernel can be used to detect 
changes in the signal direction. 

 

Also, we want to stress out that over the same input representations, multiple 

convolutions with multiple kernels can be calculated. With this approach, the 

model is given the ability to maintain different kernels over the same input 

representations and in one pass extracts different features. 

Pooling is a sampling process, whose goal is to down-sample an input 

representation based on a pooling function, which maps topologically adjacent 

features in the input to one feature in the output, causing dimensionality reduction. 

The most commonly used pooling layer is max pooling. There are two main 

reasons for using the pooling layer: 

• it reduces the spatial size and thereby reduces the number of parameters 

that need to be trained and the number of computations over them 
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• feature maps are invariant to small displacements in the input, which is 

useful in cases where classification information is more important to detect 

a specific feature, rather than binding the feature to the specific location [4]. 

It is common practice to periodically insert pooling layers between successive 

convolution layers as shown in Figure 4.4. 

Transpose layer is a general abstract layer which can invert the result of a layer 

and generate input vector taking feature map as input.  

Batch-normalization layer standardizes each feature in the feature map by 

applying the following formula where 𝜇 and 𝜎 are the mean and standard deviation 

of features in the current batch and 𝛾 and 𝛽 are learnable parameters that control 

the influence of batch-normalization operation: 

𝑦 =  𝛾 ∙
𝑥 − 𝜇

𝜎
+ 𝛽 

Using batch-normalization layer can speed up the training process [4]. 

 

Figure 4.4. General deep neural network architecture that uses a convolution layer. 
Convolution layers are used in the early stages of the computations to extract useful 
features. Pooling layers are positioned in-between them in order to reduce the number of 
computations. Fully connected layers are positioned at the end of the pipeline in order to 
find relations between class labels and all extracted features. 
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4.2. Loss function 

The loss function is based on the following two assumptions: 

• the last output contains 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 elements, where 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of 

classes 

• each element in the output vector corresponds to one of the class labels, 

and the greater the value, the more likely it is that the input element belongs 

to the corresponding class 

Therefore, we need a way of translating outputs of the final layer into a multinomial 

probability distribution over class labels, and using the softmax function is one 

ways in we can achieve this. 

The softmax function is a generalization of a sigmoid function that translates an N-

dimensional vector of arbitrary real values to an N-dimensional vector of real 

values in the range [0, 1] that sum up to 1. It is formally defined by the following 

formula. 

𝜎(𝒛)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑖𝑁
𝑖=1

 

We are building our classifier based on an assumption that each example belongs 

to exactly one class. Because of that, we can represent class labels as a vector of 

L elements where only one element is equal to 1, and the corresponding index 

represents the class label, while all other elements are equal to 0. This label 

representation is known as one hot encoding. 

Furthermore, the loss function can be defined as negative log-likelihood, where y 

is the output of the softmax function, and y' is the class label: 

𝐿𝑜𝑠𝑠(𝑦, 𝑦′) =  − log 𝑝(𝑦 = 𝑦′|𝜃) 

Having a label encoded as one hot vector, we can derive the final form of the loss 

function: 

𝐿𝑜𝑠𝑠(𝑦, 𝑦′) = − log( ∑ 𝑦′𝑘 ∙

𝑁𝑙𝑎𝑏𝑒𝑙

𝑘=1

𝑦𝑘) 
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Figure 4.5 shows the calculation of the loss function when the label and output 

vectors are provided. 

 

Figure 4.5. Calculation of the loss function having [4, 1, 2, -1] as the output vector and class label 

0. When encoded to the one-hot representation, the label is represented as [1, 0, 0, 0]. 

 

4.3. Optimization 

Due to the composite structure and non-linear operations applied among feature 

maps decision boundary is usually very complex, and the corresponding function 

does not have a solution in a closed form, so we will have to use some variant of 
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iterative optimization in order to perform the optimization step. Gradient descent is 

a first-order iterative optimization algorithm that finds local optima by taking small 

steps proportional to the negative gradient of the loss function at the current point. 

Since this algorithm uses derivatives of the loss function with respect to an 

arbitrary parameter of the model, we need to determine 
𝜕𝐿

𝜕𝜃𝑖
. As has already been 

said, owing to the high complexity of the function that the deep neural net models, 

it is difficult to find exact formulas of this derivatives. Therefore, we will use 

backpropagation algorithm that performs in two steps: 

• forward phase calculates the output of each elementary function whilst 

storing derivatives of the output with respect to the input of the function, that 

are known as local gradients 

• backward phase spreads gradient of loss with respect to the input by using 

the chain rule 
𝜕𝐿

𝜕𝑥
=

𝜕𝐿

𝜕𝑧
∙

𝜕𝑧

𝜕𝑥
 and stored local gradients calculated in the 

forward pass 

Gradient descent has many problems in cases where equal displacements in 

perpendicular directions of the arguments of the loss function imply unequal 

values of the loss function. This behavior is very common near the local optimum. 

In that case, gradient descent oscillates mostly in one dimension and temporizes 

the convergence. Therefore, instead of the vanilla gradient descent, it is common 

practice to use advanced learning algorithms, like adaptive moment estimation - 

ADAM, also based on the calculated gradients that cope with the mentioned 

problem more efficiently.  
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5. Semi-supervised learning 

 

Semi-supervised learning is somewhere in between supervised and unsupervised 

learning. Usually, most of the elements in the dataset are unlabeled, and only a 

few of them are provided with a label. More formally, the dataset 𝑋 = {𝑥𝑖}𝑖=1..𝑁 can 

be divided into two parts: 

• 𝑋𝑙 = {𝑥𝑖}𝑖=1..𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑
 for which labels  𝑌𝑙 = {𝑦}𝑖=1..𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑

 are provided 

• 𝑋𝑢 = {𝑥𝑖}𝑖=𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑+1..𝑁 for which labels are not provided 

In order for semi-supervised learning to work at all, certain assumptions need to 

hold. The main one among them can be formulated as follows: if two points x1, x2 

in a high-density region are close, the same should be true for the corresponding 

outputs y1 and y2 [5]. This assumption is quite intuitive but it is important to note 

that without it generalization would not be possible because a model is trained on 

a finite train set, while being expected to predict on a potentially infinite test set. 

The next point that needs to be elaborated is the reason why we use semi-

supervised learning at all. The answer lies in the fact that unlabeled data is usually 

very easy to obtain, but whereas the annotation process takes a lot of time and is 

usually tedious. Therefore, the goal of semi-supervised learning is to take 

advantage of the unlabeled data and achieve better results using both labeled and 

unlabeled data rather than using each of them separately.  

Before we move on, we still have to answer the question of how can the unlabeled 

data help a classifier to obtain better results. It all comes down to the fact that 

using only labeled data, a model is forced to be fit to the usually deficient train set. 

Although unlabeled data contains no labels, they can interpret the overall data 

distribution in some way, and classifier can use this information to make a better 

prediction. Based on the way in which an unsupervised algorithm tries to 

contextualize the data distribution, we differentiate between various types of semi-

supervised models. We will define two of them: generative models and manifold 

learning models [5, 6]. 
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As already said in chapter 3, using generative models means tacitly modeling 

conditional density p(x|y). Therefore, any additional information about p(x) 

through unlabeled examples is very useful and can be used to find parameters of 

conditional distribution such that the training set generated from the conditional 

distributions is as likely as possible. One of the major strengths of generative 

models as a semi-supervised technique is the ability to incorporate domain-

specific knowledge in the model. A drawback of this approach is the necessity to 

work with latent variables and expectations. Furthermore, if we create a model 

based on the wrong assumptions we could obtain worse results. The 

conceptualization of this model is shown in Figure 5.1. 

 

 

 

 

 

 

 

 
Figure 5.1. a) decision boundary based only on the labeled data. b) decision boundary 
based on both labeled and unlabeled data. Green circles represent inputs of one class 
while blue ones represent another one. Darker circles represent labeled data, the lighter 
ones represent unlabeled data and the red line represents the decision boundary that was 
calculated on all data. Since we have not opted for a formal model to classify data, the 
decision boundary was determined based on the assumption that it should lie in the low-
density region. In this case, we can think of lighter circles as elements with latent labels 
that determine the class, so the overall process can be seen as classification with 
additional information on marginal density.  

 

On the other hand, a manifold learning model is based on the following 

assumption: the high-dimensional data roughly lies on a low dimensional manifold 

[5]. Loosely defined, a manifold is a connected set of points that can be 

approximated by considering only a small number of dimensions embedded in a 

higher dimensional space [6]. The models will try to determine the low-dimensional 

representation of the input, and based on that lower dimensional interpretation 

𝑥1 

𝑥2 

𝑥1 

𝑥2 

a) b) 
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build a classifier that will be trained only on labeled data. However, since latent 

space has fewer dimensions, the classifier requires less labeled data to achieve 

the same performance as when no unlabeled data was used at all. The idea of 

manifold learning models is shown in Figure 5.2. 

 

 

 

 

 

 

 

 

 

Figure 5.2. The figure shows samples from a 2D distribution as light blue circles. We can 
notice that sampled data are concentrated near the 1D manifold represented by the dark 
blue curve. During the training process, the model should easily infer the underlying 
manifold of the 2D data representation.   

  

𝑥1 

𝑥2 



22 
 

6. Theoretical basis of semi-supervised models. 

We will describe three models of semi-supervised learning: 

• semi-supervised learning based on a regular autoencoder 

• semi-supervised learning based on a variational autoencoder 

• semi-supervised learning based on a generative adversarial network 

 

6.1. Regular autoencoder 

An autoencoder is a neural network trained with a goal to reconstruct the input in 

the output of the neural network. The basic structure of the autoencoder has two 

main parts: the encoder and decoder. The encoder maps raw input to its latent 

space representation by extracting the features z, using the deterministic encoding 

function E. On the other hand, the decoder tries to reconstruct the original input 

from the latent representation z using the deterministic decoding function D. An 

autoencoder is trained by minimizing the predefined loss function, which usually 

correlates with the difference between input and its reconstruction, so the encoder 

and decoder needs to work together, so that the encoder extracts useful features 

from raw input, and the decoder uses them in order to provide the most plausible 

reconstruction. The basic autoencoder structure is shown in Figure 6.1.  

 

 

 

 

 

 

 

Figure 6.1. A general model of an autoencoder. E(x) is a deterministic function that maps the input 

representation to its latent representation. This function will be referred to as the encoder. On the 

other hand, the deterministic function D(z) translates examples from latent space to input space, 

and it will be referred to as the decoder. 

 

𝐸(𝑥) 

𝑥 

𝑧 

𝑥′ 

𝐷(𝑧) 
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There are several types of autoencoders, and they differ among themselves in the 

loss function they are trying to minimize. We will use a regular autoencoder whose 

encoder and decoder are implemented as deep neural networks, and whose loss 

function is a mean square error between the input and its reconstruction. In order 

to extract useful features, the dimensionality of the latent vector needs to be 

smaller than the dimensionality of the input vector. Otherwise, the neural network 

could easily learn to associate identity function with E(x) and D(z), extracting no 

useful features from the input. Forcing the autoencoder to extract useful features 

by reducing the dimensionality of the latent space is known as autoencoder 

regularization [6]. 

A semi-supervised model based on a regular autoencoder is shown in Figure 6.2. 

It is a simple enhancement of a regular autoencoder that uses the deterministic 

function C, usually implemented as a shallow model, that performs classification 

based on the features that have been extracted by the encoder. Therefore, the 

final objective function comprises two parts: classification and reconstruction loss. 

Classification loss is a standard cross-entropy-log loss introduced in section 4.2, 

while reconstruction loss is defined as the mean square error between the input 

and its reconstruction. 

 

Figure 6.2. A general model of a semi-supervised model based on a regular autoencoder. E(x) and 

D(x) are deep neural networks while C(x) is a shallow model, usually a fully connected layer. The 

common part in computational graphs of both losses represents E(x). While minimizing total loss 

we are finding the optimal parameters of the encoder by balancing between correct classification 

and a correct reconstruction. We hope that these tasks will lead optimization in the same direction. 
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6.2. Variational autoencoder 

A variational autoencoder is a generative model that combines ideas of deep 

learning with statistical methods. In essence, it is a probabilistic graphical model 

and since its structure resembles that of an autoencoder, it is studied together with 

other types of autoencoders. Therefore, it can be used as a feature extractor along 

with other functionalities of generative models. 

It is assumed that for each element x from the dataset, there is a latent vector z, 

which cause generation of the example x by applying some transformation over 

the latent vector. More formally, z is a random variable sampled from the 

independent prior distribution 𝑝(𝑧), and x is then sampled from the conditional 

distribution 𝑝𝜃(𝑥 | 𝑧) [7]. This assumption about how the data was generated can 

be interpreted as a probabilistic graphical model shown in Figure 6.3. Therefore,  

𝑝(𝑥, 𝑧) = 𝑝(𝑧) ∙ 𝑝𝜃(𝑥 | 𝑧) can be factorized in prior and conditional distribution, and 

we can derive 𝑝(𝑥) by marginalizing over latent variables. 

We can notice that conditional distribution is parameterized with 𝜃, and it is usually 

represented as a deep neural network. 

Since 𝑝(𝑧) is independent of any other random variable, we can assume its 

distribution, and we chose the normal distribution with the mean 0, and the 

standard deviation 1. We justify this choice by the following two facts: 

• this distribution has a simple and well-defined formula that will make further 

computations as simple as possible 

• any distribution can be generated by taking a normally distributed variable 

and mapping it through an arbitrary complex function [7] 

The second reason is proof that probability density function of conditional 

distribution 𝑝𝜃(𝑥 | 𝑧) can be modeled by a deterministic function 𝑓(𝑧;  𝜃). However, 

in order to make the calculation and sampling process possible, we will assume 

that the conditional distribution can be approximated with some well known 

theoretical distribution, and we will propose a  multivariate normal distribution with 

a diagonal covariance matrix. In mathematical notation, conditional distribution can 

be seen as: 
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𝑝𝜃(𝑥 | 𝑧) =  𝒩(𝑓𝜇(𝑧;  𝜃), 𝑓𝜎(𝑧;  𝜃)) 

Regardless of the chosen distribution, the idea is that the parameters of that 

distribution are determined by the deterministic functions, usually represented as 

deep neural networks, and if this function is complex enough and theoretical 

distribution is appropriate, the chosen distribution can efficiently mimic the real 

conditional distribution [7].  

 

 

Figure 6.3. The probabilistic graphical model that models generation process from latent vectors 

that are sampled from normal distribution over conditional distribution parameterized with θ. 

 

We will try to fit the defined model to the data. More precisely, given a set of N 

observations {x1, x2, ..., xN} we wish to learn parameters 𝜃 of conditional 

distribution in that way that given observations are the most likely to be generated 

by the described process. In mathematical notation, we are trying to maximize the 

probability of each element in training set according to the following formula: 

𝑝(𝑥) = ∫ 𝑝(𝑧) ∙ 𝑝𝜃(𝑥 | 𝑧) ∙ 𝑑𝑧 

The next problem that we are faced with is the fact that we have a list of 

observations, and not the latent representations. Furthermore, and we cannot 

sample features z based on a  𝑝(𝑧 |𝑥), since it is intractable due to the intractability 

of the denominator, as it is shown in the following formula. 

𝑝(𝑧 |𝑥) =  
𝑝(𝑧) ∙ 𝑝(𝑥 | 𝑧)

𝑝(𝑥)
=

𝑝(𝑧) ∙ 𝑝(𝑥 | 𝑧)

∫ 𝑝(𝑧) ∙ 𝑝(𝑥 | 𝑧) ∙ 𝑑𝑧
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Since we cannot calculate it we will try to approximate it with 𝑞𝜑(𝑧 |𝑥). If this 

approximation is good enough, the sampled latent features will be similar to the 

one that actually produces X. Again, we will need to make certain assumptions 

about the distribution 𝑞, and we will represent it as a multinomial normal 

distribution whose parameters are the determined by deterministic function 

𝑔(𝑥;  𝜑), usually a deep neural network. Therefore, the conditional distribution 

takes the following form: 

𝑞𝜑(𝑧 | 𝑥) =  𝒩(𝑔𝜇(𝑥; 𝜑), 𝑔𝜎(𝑥; 𝜑)) 

With the sufficient capacity of 𝑔(𝑥;  𝜑), the approximated distribution can mimic the 

intractable distribution [7]. 

The final model can conceptually be divided into two parts. The deep neural 

network that models 𝑝𝜃(𝑥 | 𝑧), and the one that models 𝑞𝜑(𝑧 | 𝑥). These parts will 

be referred to as the decoder and the encoder, respectively. The basic model of a 

variational autoencoder is shown in Figure 6.4. 

 

 

Figure 6.4. Overview of the variational autoencoder structure. The neural network is divided into 

two parts: the encoder and decoder. Solid lines represent a deterministic function, while dashed 

lines represent a sampling from the distribution modeled by the encoder or the decoder.  

 

The optimal parameters 𝜃 and 𝜑 can be determined by maximizing the log 

likelihood of the observed examples. Further calculations are done using only one 

observation rather that all of them, because log-likelihood of all observations is 

modeled as the sum of individual likelihoods. The final form of the log-likelihood, 

shown in 6.1., can be derived by using simple mathematical operations [7, 8]. 
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𝐿(𝑖) = log (𝑝(𝑥(𝑖))) 

= ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log (𝑝(𝑥(𝑖)))

𝑧

 

= ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(
𝑝(𝑧, 𝑥(𝑖))

𝑝(𝑧|𝑥(𝑖))
)

𝑧

 

= ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(
𝑝(𝑧, 𝑥(𝑖))

𝑞(𝑧|𝑥(𝑖))
∙

𝑞(𝑧|𝑥(𝑖))

𝑝(𝑧|𝑥(𝑖))
)

𝑧

 

= ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(
𝑝(𝑧, 𝑥(𝑖))

𝑞(𝑧|𝑥(𝑖))
) + ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(

𝑞(𝑧|𝑥(𝑖))

𝑝(𝑧|𝑥(𝑖))
)

𝑧𝑧

 

𝐿(𝑖) = 𝐿𝑣
(𝑖) + 𝐷𝐾𝐿(𝑞(𝑧|𝑥(𝑖)) || 𝑝(𝑧|𝑥(𝑖))) 

 

The log-likelihood now comprises two parts: the lower variational bound (𝐿𝑣) and 

KL-divergence (𝐷𝐾𝐿) between the real intractable distribution p(z | x), and its 

approximation. The KL divergence is a measure of how one probability distribution 

differs from another. Assuming we use an encoder with an arbitrarily high capacity, 

q(z | x) will match p(z | x). In that case, the KL-divergence will become zero and by 

maximizing the lower variational bound we will indirectly maximize the log-

likelihood of the observed examples. That way we made the intractable distribution 

p(z | x) tractable, simply by replacing it with q(z | x). 𝐿𝑣 can be further decomposed 

by applying the following chain of operations. 

𝐿𝑣
(𝑖) = ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(

𝑝(𝑧, 𝑥(𝑖))

𝑞(𝑧|𝑥(𝑖))
)

𝑧

 

𝐿𝑣
(𝑖) = ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(

𝑝(𝑥(𝑖)|𝑧) ∙ 𝑝(𝑧)

𝑞(𝑧|𝑥(𝑖))
)

𝑧

 

𝐿𝑣
(𝑖) = ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(

𝑝(𝑧)

𝑞(𝑧|𝑥(𝑖))
)

𝑧

+ ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(𝑝(𝑥(𝑖)|𝑧))

𝑧

 

𝐿𝑣
(𝑖) = −𝐷𝐾𝐿(𝑞(𝑧|𝑥(𝑖)) || 𝑝(𝑧)) + 𝐸

𝑧~𝑞(𝑧|𝑥(𝑖)
)
(log(𝑝(𝑥(𝑖)|𝑧))) 

 

 

(6.1) 

(6.2) 
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It can be noticed from 6.2 that 𝐿𝑣 consists of two parts: −𝐷𝐾𝐿(𝑞(𝑧|𝑥(𝑖)) || 𝑝(𝑧)), and 

𝐸
𝑧~𝑞(𝑧|𝑥(𝑖)

)
(log(𝑝(𝑥(𝑖)|𝑧))) which represent the regularization factor and the quality 

of reconstruction, respectively [8]. The regularization factor is represented as a KL 

divergence, but this time measures how the distribution 𝑞(𝑧|𝑥(𝑖)) generated from 

the example x(i) differs from the prior distribution p(z), which we assumed to be 

normal, and penalizes it according to the formula of the KL-divergence. On the 

other hand, the quality of reconstruction measures probability that x(i) is generated 

from 𝑝(𝑥(𝑖)|𝑧), where z is sampled from a distribution 𝑞(𝑧|𝑥(𝑖)). In order to achieve 

the optimal performance, we need to consider both factors. The balance between 

them is shown in Figure 6.5. 

 

 

 

Figure 6.5. a) case where the quality of reconstruction is significantly lower than the regularization 

factor. b) case where the regularization factor is significantly lower than the quality of 

reconstruction. The blue distribution represents the prior 𝑝(𝑧), while the green distribution 

represents the conditional distribution 𝑝(𝑥(𝑖)| 𝑧) modeled by the decoder. The blue circle represents 

the latent vector that is sampled from 𝑞(𝑧|𝑥(𝑖)), while the green one represents x(i).In the first case, 

even though 𝑞(𝑧|𝑥(𝑖)) plausibly mimics the normal distribution, x(i) is not likely to be generated by 

this latent representation. On the other hand, even though x(i) is highly likely to be generated from 

the latent vector, the latent vector is not likely to be generated by the prior distribution. 

 

Maximizing the lower variational bound demands an infeasible backpropagation 

step through a nondeterministic sampling layer at the end of the decoder. 

However, this sampling operation can be approximated with the following matrix 

multiplication, where 𝜇 and 𝜎 are parameters calculated by the encoder and 𝜀 is a 

random variable sampled from the normal distribution: 

a) b) 
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𝑧 = 𝜇 + 𝜎 ∙ 𝜀;  𝜀 ~ 𝒩(0,1) 

This fix is known as the reparameterization trick [8], and it is shown in Figure 6.6. 

The random variable z has the same distribution, but now it can be 

backpropagated through. 

 

 

 

Figure 6.6. a) output of the encoder without the reparameterization trick. b) output of the encoder 

with the reparameterization trick. Dashed lines represent a sampling process, while solid lines 

represent a deterministic function. Due to the reparameterization trick, the gradient can pass into 

the encoder since only sampling process that remains is generating ε. 

 

After defining all components of the model, we can derive concrete formulas for 

both the regularization factor and the quality of reconstruction based on the 

chosen output distribution. 

1D Gaussian distribution is defined by the following formula: 

𝑝(𝑥|𝜇, 𝜎) =
1

√2𝜋 ∙ 𝜎
∙ 𝑒

−
(𝑥−𝜇)2

2𝜎2  

Since we assumed that multivariate normal distribution modeled by the decoder is 

defined with a diagonal covariance matrix, the elements xi and xj are independent, 

so we can factorize it. In order to combine it with the formula for the quality of the 

reconstruction, we applied a log-transformation over it. 

𝑝(𝑥|𝜇, 𝜎) = ∏ 𝑝(𝑥𝑖|𝜇𝑖, 𝜎𝑖)

𝑁

𝑖=1

 

a) b) 
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log 𝑝(𝑥|𝜇, 𝜎) = log ∏ 𝑝(𝑥𝑖|𝜇𝑖 , 𝜎𝑖)

𝑁

𝑖=1

 

= log
1

√2𝜋
𝑁

∙ ∏ 𝜎𝑖
𝑁
𝑖=1

∙ 𝑒
− ∑

(𝑥𝑖−𝜇𝑖)2

2𝜎𝑖
2

𝑁
𝑖=1

 

= log
1

√2𝜋
𝑁 −log ∏ 𝜎𝑖

𝑁

𝑖=1

− ∑
(𝑥𝑖 − 𝜇𝑖)

2

2𝜎𝑖
2

𝑁

𝑖=1

 

Since none of the constants affect the lower bound maximization, they can be 

removed. Furthermore, if we assume that the mini-batch is large enough that only 

one sample of the latent vector z is enough to approximate expectation we can 

derive the final formula for the quality of reconstruction, where N is dimensionality 

of the input[8]: 

Ez~q(z|x)[log 𝑝(𝑥⃗|𝜇⃗, 𝜎⃗)] = Ez~q(z|x) [− ∑ log 𝜎𝑖 +
(𝑥𝑖 − 𝜇𝑖)

2

2𝜎𝑖
2

𝑁

𝑖=1

] = − ∑ log 𝜎𝑖 +
(𝑥𝑖 − 𝜇𝑖)

2

2𝜎𝑖
2

𝑁

𝑖=1

 

Following the same idea and using the formulas for normal distribution and KL-

divergence, we can derive the following formula for the regularization factor as 

well, where H is dimensionality of latent size. [8]. 

𝐷𝐾𝐿[𝑞(𝑧|𝑥) || 𝑝(𝑧)] = −
1

2
∑ 1 + log 𝜎𝑧𝑖

2 − 𝜇𝑧𝑖
2 − 𝜎𝑧𝑖

2

𝐻

𝑖=1

 

Therefore, final objective function is given in 6.3. 

𝐿𝑜𝑠𝑠(𝑖) = ∑ log 𝜎𝑖 +
(𝑥𝑖−𝜇𝑖)2

2𝜎𝑖
2

𝑁
𝑖=1 −

1

2
∑ 1 + log 𝜎𝑧𝑖

2 − 𝜇𝑧𝑖
2 − 𝜎𝑧𝑖

2𝐻
𝑖=1  

6.2.1. Semi-supervised variational autoencoder 

We will make several changes to the assumption about how the data is generated 

in order to support semi-supervised learning. The probabilistic graphical model 

that represents the generation process suitable for semi-supervised learning is 

shown in Figure 6.7. There are two independent distributions [9]: 

• latent distribution: 𝑝(𝑧) = 𝒩(𝑧; 0, 1) 

• label distribution: 𝑝(𝑦) =
1

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠
, where y is represented as a one-hot vector 

(6.3) 
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Figure 6.7. Probabilistic graphical model that describes the generation process in a semi-

supervised autoencoder. The example x is generated based on a latent vector z, and a class label 

represented as a one-hot vector. 

 

Owing to the fact that the new model apart from the example generation purpose 

should predict a class label for the given input, a classification module needs to be 

embedded. 

Once again, based on the set of observations we will try to determine the optimal 

parameters such that the generated examples are as likely as possible. But, this 

time we face two possible scenarios: 

• we observe both x and y, so this case is a simple extension of a variational 

autoencoder 

• we observe only x, and treat y as a hidden variable 

The second case is slightly more complicated because it demands interaction with 

the deterministic classifier. Same as before, we will use a variational 

approximation as the replacement for the intractable posterior. We will consider 

depending on whether the class label is observed or not. In the case where the 

label is observed we will use 𝑞(𝑧 | 𝑥, 𝑦), and in the other case we will use 

𝑞(𝑧, 𝑦 | 𝑥) = 𝑞(𝑦|𝑥) ∙ 𝑞(𝑧|𝑥, 𝑦) [9]. It can be noticed that variational approximations 

rely on 𝑞(𝑧 | 𝑦, 𝑥) that is identified with the encoder, and 𝑞(𝑦|𝑥) that will be referred 

to as the classification part. With respect to this, a semi-supervised model is 

shown in Figure 6.8 [10]. 
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In continuation, we will explain both scenarios depending on the observation of a 

class label. 

 

Figure 6.8. Model for a semi-supervised autoencoder. The blue part represents the classification 

part. The yellow part represents the encoder that based on the input, and the label generates the 

latent vector z. The green part represents the decoder that based on the generated latent 

representation and the class label generates the reconstructed example. 

 

Case 1 - observed label 

Similarly as was done with the autoencoders, we will try to maximize the log-

likelihood 𝐿 = log 𝑝(𝑥, 𝑦) of x and corresponding label y. 

Due to the intractability of p(z|x, y) we will have to approximate it with the 

distribution q(z|x, y), and following the same logic that was presented with 

variational autoencoders we can derive the following formula [10]: 

𝐿 =  ∑ 𝑞(𝑧|𝑥, 𝑦) ∙ log
𝑝(𝑧, 𝑥, 𝑦)

𝑞(𝑧|𝑥, 𝑦)
− 𝐷𝐾𝐿(𝑞(𝑧|𝑥, 𝑦)|| 𝑝(𝑧|𝑥, 𝑦))

𝑧

 

The first part of L is lower variational bound (𝐿𝑣) and we will try to maximize it, 

tacitly hoping that distribution q(z|x, y) will match p(z|x, y). Applying a similar 

transformation as we did for the variational autoencoders, 𝐿𝑣 can be further 

decomposed [10]. 
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𝐿𝑣 =  𝐸𝑧~𝑞(𝑧|𝑥,𝑦) [log
𝑝(𝑧, 𝑥, 𝑦)

𝑞(𝑧|𝑥, 𝑦)
] 

= 𝐸𝑧~𝑞(𝑧|𝑥,𝑦)[log 𝑝(𝑧) + log 𝑝(𝑦) + log 𝑝𝜃(𝑥|𝑧, 𝑦) − log 𝑞𝛷(𝑧|𝑥, 𝑦)] 

= 𝐸𝑧~𝑞(𝑧|𝑥,𝑦)[log 𝑝𝜃(𝑥|𝑧, 𝑦) + log 𝑝(𝑦)] − 𝐸𝑧~𝑞(𝑧|𝑥,𝑦) [log
𝑞𝛷(𝑧|𝑥, 𝑦)

𝑝(𝑧)
] 

= 𝐸𝑧~𝑞(𝑧|𝑥,𝑦)[log 𝑝𝜃(𝑥|𝑧, 𝑦)] + log 𝑝(𝑦) − 𝐷𝐾𝐿(𝑞𝛷(𝑧|𝑥, 𝑦)|| 𝑝(𝑧)) 

If we assume that expectation can be approximated precisely based only on one 

sampling, we can transform the upper formula to the final form of 𝐿𝑣, where the 

reconstruction cost and regularization factor have same formula as before.  

𝐿𝑣 =  log 𝑝𝜃(𝑥|𝑧𝑠𝑎𝑚𝑝𝑙𝑒 , 𝑦) + log 𝑝(𝑦) − 𝐷𝐾𝐿(𝑞𝛷(𝑧|𝑥, 𝑦)||𝑝(𝑧)) = −𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) 

 

Case 2 - unobserved label 

On the other hand, if the class label is not observed, the formula will be extended 

[10]. 

𝐿𝑣 =  𝐸𝑧,𝑦~𝑞(𝑧,𝑦|𝑥) [log
𝑝(𝑥, 𝑦, 𝑧)

𝑞(𝑧, 𝑦|𝑥)
] 

Since we assumed inference model as  𝑞(𝑧, 𝑦|𝑥) = 𝑞(𝑦|𝑥) ∙ 𝑞(𝑧|𝑥, 𝑦), we can 

rewrite the formula, to that the hidden variables are sampled according to this 

assumption [10]. 

𝐿𝑣 =  𝐸𝑦~𝑞(𝑦|𝑥) [𝐸𝑧~𝑞(𝑧|𝑥,𝑦) log
𝑝(𝑥, 𝑦, 𝑧)

𝑞(𝑧, 𝑦|𝑥)
] 

=  𝐸𝑦~𝑞(𝑦|𝑥) [𝐸𝑧~𝑞(𝑧|𝑥,𝑦) log
𝑝(𝑧) ∙ 𝑝(𝑦) ∙ 𝑝(𝑥|𝑧, 𝑦)

𝑞(𝑦|𝑥) ∙ 𝑞(𝑧|𝑥, 𝑦)
] 

=  𝐸𝑦~𝑞(𝑦|𝑥)[−𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) − 𝐸𝑧~𝑞(𝑧|𝑥,𝑦) log(𝑞(𝑦|𝑥))] 

=  𝐸𝑦~𝑞(𝑦|𝑥)[−𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) − log(𝑞(𝑦|𝑥))] 

=  ∑ 𝑞(𝑦|𝑥) ∙

𝑦

[−𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) − log(𝑞(𝑦|𝑥))] = −𝐿𝑜𝑠𝑠𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑(𝑥) 

 

(6.4) 

(6.5) 
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We can formulate the objective function shown in 6.6 [9] by combining formulas 

6.4 and 6.5: 

𝐿𝑜𝑠𝑠 = ∑ 𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) + ∑ 𝐿𝑜𝑠𝑠𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑(𝑥)

𝑥~𝑝𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑𝑥,𝑦~𝑝𝑙𝑎𝑏𝑒𝑙𝑒𝑑

 

Finally, we can extend the loss function in a way that the deterministic classifier 

takes part in it in cases where a class label is observed by adding a cross-entropy 

part to the loss weighted by the hyperparameter 𝛼 [9]. 

𝐿𝑜𝑠𝑠𝛼 = 𝐿𝑜𝑠𝑠 + 𝛼 ∙ 𝐸𝑥,𝑦~𝑝𝑙𝑎𝑏𝑒𝑙𝑒𝑑
[− log 𝑞(𝑦|𝑥)] 

Finally, we introduce a model that is a hybrid between a pure variational 

autoencoder and its semi-supervised variant, known as M1+M2 model [9]. The 

variational autoencoder, referred to as M1, is pre-trained in order to extract 

features from the original input, and those features are presented to the semi-

supervised variational autoencoder, referred to as M2, in order to perform 

classification. The structure of a stacked model is shown in Figure 6.9. 

 

Figure 6.9. Structure of the M1+M2 model. The red part represents the variational autoencoder 

(M1), and the blue, yellow and green parts represent parts of the semi-supervised variational 

autoencoder (M2).  

(6.6) 

(6.7) 
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An algorithm of M1+M2 model is shown in Pseudocode 6.1. 

Pseudocode 6.1. M1+M2 model 

# M1 - algorithm 

do 

 x(1), ... x(n) = get_next_batch() 

 loss = 0 

 for i in {1, ... Nbatch}: 

  μe, σe, z(i) = m1_encoder(x(i)) 

  μd, σd, x'(i) = m1_decoder(z(i)) 

  loss += Loss(i)     # eq 6.3 

 gradφ, gradθ= ∂loss/∂φ, ∂loss/∂θ 

 φ = perform_ADAM_update(φ, gradθ)  # encoder 

 θ = perform_ADAM_update(θ, gradθ)  # decoder 

until convergence 

 

# M2 - algorithm 

do 

 x(1), ... x(n) = get_next_batch() 

 loss_observed = 0 

 loss_unobserved = 0 

 for i in {1, ... Nbatch}: 

  if observed_label(x(i)): 

   y(i) = get_label(x(i)) 

   μe, σe, z(i) = m2_encoder(x(i), y(i)) 

   μd, σd, x'(i) = m2_decoder(z(i), y(i)) 

   loss_observed += Loss(i)  # eq 6.4 

  else: 

   loss' = 0 

   for y(i) in {0, ... Nclasses}: 

    μe, σe, z(i) = m2_encoder(x(i), y(i)) 

    μd, σd, x'(i) = m2_decoder(z(i), y(i)) 

    loss' += Loss(i)   # eq 6.5 

   loss_unobserved += Loss' 

 loss = loss_observed + loss_unobserved  # eq 6.6 or 6.7 

 gradφ, gradθ= ∂loss/∂φ, ∂loss/∂θ 

 φ = perform_ADAM_update(φ, gradθ) # encoder 

 θ = perform_ADAM_update(θ, gradθ) # decoder 

until convergence 
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6.3. Generative adversarial networks 

The basic idea of general adversarial networks (GAN) is to have two players, the 

generator and the discriminator, that are playing a game against one another [11]. 

• the generator generates data, and presents them to the discriminator 

• the discriminator interprets data and tries to infer whether the data is real or 

fake. 

The goal of the generator is to fool the discriminator by generating plausible input 

data, and the goal of the discriminator is not to be fooled by the generated 

examples. As both players are getting better and better during the training, the 

generator is forced to create data that is as realistic as possible, and the 

discriminator needs to get better at distinguishing real from fake examples, 

hopefully extracting some useful features, that can be used in further semi-

supervised tasks. 

The basic architecture of GAN is shown in Figure 6.10. 

  

 

 

 

 

 

 

 

 
Figure 6.10. General structure of GAN. G and D are deep neural networks that represent the 
generator, and the discriminator respectively.  

 

More formally, we assume that 𝑝𝑑𝑎𝑡𝑎(𝑥) is a distribution that generated the data, 

and the generator tries to learn the distribution 𝑝𝑔(𝑥). In order to achieve that we 

define a prior on the latent variable z, and a function 𝐺(𝑧;  𝜃) that represents a 

mapping from the latent space to the data space. In the context of probability, 

𝐺(𝑧;  𝜃) can be seen as a conditional distribution. On the other hand, we define 

G 

train set 

fake example 

real / fake 

real 

example 

D 
latent 

space 
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𝐷(𝑥;  𝜑), whose output is a scalar that represents the probability that x came from 

the dataset, rather than being generated from distribution 𝑝𝑔(𝑥)[11]. We are 

training the discriminator to maximize the probability of distinguishing between 

both the real and generated dataset, and the generator is trained to do the 

opposite. This can be seen as a minmax game played with the value function V(G, 

D), shown in formula 6.8 [11]: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[1 − log 𝐷(𝐺(𝑧))] 

A theoretical analysis indicated that if both the generator and discriminator are 

given enough capacity, the training process will end in a way that the generator 

recovers the true data distribution [11]. However, optimizing D in the inner loop is a 

computationally challenging task and considering that the model is trained on a 

finite training set, will probably lead to overfitting [11]. Instead, we alternate 

between optimizing the discriminator and generator cost functions. 

Furthermore, a direct implementation of the value function defined with equation 

6.8, will cause the gradient vanishing problem. In the early stages of a training 

process, discriminator easily distinguishes the real from fake examples and rejects 

fake examples with high probability, causing 1 − log 𝐷(𝐺(𝑧)) ≈ 0, and providing no 

quality information for the update of a generator. In order to avoid this problem, 

generator can be trained to maximize 𝐸𝑧~𝑝𝑧(𝑧)[log 𝐷(𝐺(𝑧))], rather than minimizing 

𝐸𝑧~𝑝𝑧(𝑧)[1 − log 𝐷(𝐺(𝑧))] [12]. 

If we adjust the formula, based on the equality 𝐸𝑧~𝑝(𝑧)[𝐺(𝑧)] = 𝐸𝑥~𝑝𝑥(𝑥)[𝑥], for a 

value function V in a way that it only depends on the random variable x, we can 

find the function of the optimal discriminator by deriving the value function with 

respect to the output of the discriminator. 

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[1 − log 𝐷(𝐺(𝑧))] 

𝑉(𝐷, 𝐺) = ∫(𝑝𝑑𝑎𝑡𝑎(𝑥) [log 𝐷(𝑥)] + 𝑝𝑔(𝑥)[1 − log 𝐷(𝑥)])𝑑𝑥 

Therefore, the optimal discriminator is given by the following formula [11]: 

𝐷∗(𝑥) =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
 

(6.8) 
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Now, the optimal generator can be calculated by combining formulas for the 

optimal discriminator and the value function of the min-max game [11]. 

𝑉(𝐷∗, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
] + 𝐸𝑥~𝑝𝑔(𝑥) [

𝑝𝑔(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
] 

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [

𝑝𝑑𝑎𝑡𝑎(𝑥)
2

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
2

] + 𝐸𝑥~𝑝𝑔(𝑥) [

𝑝𝑔(𝑥)
2

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
2

] 

= − log 4 + 𝐷𝐾𝐿(𝑝𝑑𝑎𝑡𝑎 ||  
𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2
) + 𝐷𝐾𝐿(𝑝𝑔 ||  

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2
) 

Since the KL divergence is non-negative and equal to zero only when the two 

distributions are equal, the global minimum of the value function with the optimal 

discriminator is achieved when 𝑝𝑑𝑎𝑡𝑎 = 𝑝𝑔. The training process associated with 

the theoretical background of GANs is shown in Figure 6.11 [11]. 

 

,  

Figure 6.11. GAN learning process with 1D dimensional input. The black line represents the real 
data distribution, the blue line represents the generator’s distribution while the green line 
represents outputs of the discriminator. a) the initialization phase where the discriminator is not 
trained yet. b) optimizing the discriminator resulting in pdata / (pdata + pg). c) change in the 
discriminator's output based on a new generator’s distribution that is more similar to the real data 
distribution. d) the equilibrium state where pdata=pg and discriminator cannot differentiate real from 
fake data. 

a) 

c) 

b) 

d) 
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Generative adversarial networks are hard to train due to the fact that the optimal 

parameters are not found by minimizing a single cost function, but by finding the 

equilibrium of the game that is played between the two players [12]. Therefore, 

convergence is not guaranteed. Furthermore, alternating between optimizations of 

the generator and the discriminator could lead to other problems such as mode 

collapse [12].   

 

6.3.1. Semi-supervised generative adversarial networks 

In order to support semi-supervised learning, we need to make some changes to 

the adversarial model. We already said that the discriminator extracts useful 

features during the training process. In order to use them for classification, we will 

extend the discriminator in a way that it becomes responsible for the classification 

of real examples and differentiating the real from fake examples. More formally, 

the discriminator will produce K+1 outputs in a form [𝑝𝑦1
, 𝑝𝑦2

, … , 𝑝𝑦𝐾
, 𝑝𝑓𝑎𝑘𝑒], where 

K is the number of classes. 𝑝𝑦𝑖
 represents the probability that an example is real 

and belongs to the i-th class, and 𝑝𝑓𝑎𝑘𝑒 represents the probability that an example 

is fake [12, 13]. 

The output of a semi-supervised GAN can be easily transformed into the output of 

a regular GAN by summing probabilities associated with a real example: 𝑝𝑟𝑒𝑎𝑙 =

∑ 𝑝𝑦𝑖

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑖=1 . 

Therefore, the minmax game played between the generator and discriminator 

stays more or less the same and is based on 𝑝𝑓𝑎𝑘𝑒. This time the generator will try 

to fool the discriminator by producing samples that will cause 𝑝𝑓𝑎𝑘𝑒 ≈ 0. On the 

other hand, the discriminator will try to minimize 𝑝𝑓𝑎𝑘𝑒 for examples that came from 

the data distribution. Minimizing 𝑝𝑓𝑎𝑘𝑒 implies distributing probability mass among 

𝑝𝑖, and using the labeled examples for rearranging the class distribution in order to 

improve the classification results. 

We proposed a method where semi-GAN is trained as a regular GAN in the first 

epochs only by using the unlabeled data in order to force the discriminator to learn 

to extract useful adversarial features. In the next epochs, we used cross-entropy 
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loss for the update of the discriminator. Since semi-GAN was pre-trained using 

unlabeled data only, we assume that the discriminator learns to bind previously 

learnt adversarial features with corresponding class using only labeled data. 

An algorithm of semi-supervised GAN model is shown in Pseudocode 6.2. 

Pseudocode 6.2. semi-supervised GAN 

do 

 if current_epoch < 10: 

  x_real(1), ... x_real(n) = get_next_batch(unlabeled) 

  x_fake(1), ... x_fake(n) = generate_from_generator() 

  for step in {'discriminator', 'generator'}: 

   loss_d, loss_g = 0 

   for i in {1, ... Nbatch}: 

    dis_real(i) = discriminator(x_real(i)).get_probability_real() 

    dis_fake(i) = discriminator(x_fake(i)).get_probability_real() 

    loss_d += -(log(dis_real(i)) + log(1-dis_fake(i))) 

    loss_g += -log(dis_fake(i)) 

   gradφ, gradθ= ∂loss/∂φ, ∂loss/∂θ 

   if step == 'discriminator': 

    φ = perform_ADAM_update(φ, gradφ) # discriminator 

   else: 

    θ = perform_ADAM_update(θ, gradθ) # generator 

 else: 

  x_real(1), y(1), ... x_real(n), y(n) = get_next_batch(labeled) 

  x_fake(1), ... x_fake(n) = generate_from_generator() 

  for step in {'discriminator', 'generator'}: 

   loss_d, loss_g = 0 

   for i in {1, ... Nbatch}: 

    y'(i) = discriminator(x_real(i)).get_probability(y(i)) 

    dis_fake(i) = discriminator(x_fake(i)).get_probability_real() 

    loss_d += cross_entropy_log_loss(y'(i), y(i)) 

    loss_g += -log(dis_fake(i)) 

   gradφ, gradθ= ∂loss/∂φ, ∂loss/∂θ 

   if step == 'discriminator': 

    φ = perform_ADAM_update(φ, gradφ) # discriminator 

   else: 

    θ = perform_ADAM_update(θ, gradθ) # generator 

until convergence 
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7. Evaluation and results 

We have not used raw coverage graphs as inputs for any model, but rather the 

signals that are the result of applying the following chain of operations: 

• normalization 

• down-sampling to the fixed length input 

Squashing an output of a coverage graph to the interval [0,1] retains the same 

form of the coverage graph, but enables the model to achieve the same 

performance as without normalization by virtue of having less complicated 

architecture. 

Normalization is an optional transformation, but the down-sampling transformation 

is compulsory, because the fixed length input is one of the pre-requirements of the 

defined models. This hyperparameter needs to be carefully chosen because it 

directly affects the performance of the model to a great extent. The down-sampling 

effects with respect to the fixed length input are shown in Figure 7.1. In order to 

retain all important features of a coverage graph, but still, retain a model that is 

computationally efficient we decided to use an input of the length of 500, except 

for GANS where we used the fixed length of 100. 

 

Figure 7.1. a) original coverage graph. b) transformations after down-sampling it to the length of 
100, 250, 500 and 1000, respectively. It can be noticed that down-sampling to the length of 100 
loses information about the height of a peak, while other signals keep all expressive parts of the 
coverage graph. 

a) 

b) 
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All models were trained on the dataset that was composed of overlaps generated 

from multiple reference genomes. We used graphmap [14] suited for overlaps 

generation by applying the following command: 

graphmap -owler -r reads.fasta -d reads.fasta -o output.mhap 

We have not used all overlaps because all the classes are not equally frequent. 

Since the repeat reads are not as recurrent as the regular ones, and the chimeric 

reads are somewhat obscure, running a model on the entire dataset would have 

an unavoidable bias towards the regular reads. In order to solve this problem we 

have designed a heuristic for detecting class label based on the following features: 

• the median of the coverage graph 

• the incline of certain parts of the coverage graph 

• the mean value of the left and right side of the coverage graph, etc 

We used this heuristic in order to somewhat balance the entire dataset. The 

dataset split is shown in Table 7.1. 

Table 7.1. Data distribution over different sets. The balance of the unlabeled data is contingent 
upon the quality of the designed heuristics. The manually labeled data is divided into three sets: the 
train, validation, and test which are equally balanced. 

Set Number 

unlabeled data 21600 

 

labeled data 

train 260 

validation 60 

test 240 

  

During the training process we used: 

• a mini-batch of size 32 

• a data augmentation based on a random horizontal flip and random 

Gaussian noise 

The training process was terminated after 50 epochs or when the performance on 

the validation set degraded to a great extent. Regardless of the condition that had 

terminated the training process, the performance of the model was evaluated on 

the test set, based on the model that had shown optimal performance on the 

validation set. 
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Training was performed on GEFORCE GTX TITAN BLACK graphic card and 

training time did not exceed 30 minutes for the most complicated model. 

We trained 4 different models that were described in previous chapters: a simple 

feed-forward neural network (FF), a semi-supervised regular autoencoder (semi-

AE), a M1+M2 model (M1+M2) and a semi-supervised generative adversarial 

network (semi-GAN). We have tried many different architectures and key details of 

winning architectures are shown in Table 7.2. 

Table 7.2. Architectures that were used during the training of the described models with the chosen 
hyperparameters. conv K/N represents the convolution layer with kernel size K, and N filters, max-
pool represents the max-pooling process, fc M represents the fully connected layer with M output 
features, bn represents the batch-normalization layer and conv-1 and max-pool-1 represent a 
transpose layer that invert the convolution or pooling operation. 

FF SEMI-AE M1+M2 SEMI-GAN 

 
conv 5/16 
max-pool 
conv 3/32 
max-pool 
conv 3/64 
fc 256 
fc 4 

 
encoder 
  conv 5/16 
  max-pool 
  conv 3/32 
  max-pool 
  conv 3/64 
  fc 256 
  fc 10 
decoder 
  fc 8000 
  conv 3/64-1 
  max-pool-1 

  conv 3/32-1 

  max-pool-1 

  conv 5/16-1 

classificaton 
  fc 4 

 
m1-encoder 
  conv 5/16 
  max-pool 
  conv 3/32 
  max-pool 
  conv 3/64 
  fc 256 
  fc 10 
m1-decoder 
  fc 8000 
  conv 3/64-1 
  max-pool-1 

  conv 3/32-1 

  max-pool-1 

  conv 5/16-1 
  fc 500 
m2-encoder 
  fc 64 
  fc 64 
  fc 3 
m2-decoder 
  fc 64 
  fc 64 
  fc 10 
m2-classification 
  fc 64 
  fc 64 
  fc 4 
 

 
generator 
  fc 1600 
  bn 
  conv 3/64-1 
  bn 
  max-pool-1 

  bn  
  conv 3/32-1 

  bn 
  max-pool-1 

  bn 
  conv 5/16-1 
  fc 100 
discriminator 
  conv 5/16 
  bn 
  max-pool 
  bn 
  conv 3/32 
  bn 
  max-pool 
  bn 
  fc 256 
  bn 
  fc 1024 
  fc 4 

 
input length: 500 
 

 
input length: 500 
latent size: 10 

 
input length: 500 
latent size M1: 10 
latent size M2: 3 
 

 
input length: 100 
latent size: 10 

 
non-linearity: ReLU 

optimizer: ADAM with learning rate 0.0001 
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As the performance criterion, we used F-score[15], and the results are shown in 

Table 7.3.  

Table 7.3. Confusion matrices and the corresponding F-score of the optimal models with respect to 

the number of labeled examples that were used during the training process (N). Tags C, L, R and N 

represent the chimeric read, left-repeat, right-repeat and regular read, respectively. The confusion 

matrix was calculated based on the premise that the element corresponding with row x and column 

y represents the number of examples that actually belong to class x, and the classifier has 

classified them in class y. 

  

FF 

 

 

SEMI-AE 

 

M1+M2 

 

SEMI-GAN 

 

 

 

N=15 

 C L R N   C L R N   C L R N   C L R N  

C 36 24 31 7  C 40 11 7 5  C 41 4 2 4  C 50 0 4 1  

L 16 36 2 7  L 11 48 2 3  L 13 56 0 1  L 2 60 0 0  

R 7 0 27 5  R 5 1 51 6  R 6 0 58 0  R 7 0 56 0  

N 1 0 0 41  N 4 0 0 46  N 0 0 0 55  N 1 0 0 59  

                        

F=0.5833 F=0.7708 F=0.8750 F=0.9375 

 

 

 

N=30 

 C L R N   C L R N   C L R N   C L R N  

C 40 19 9 1  C 44 4 3 1  C 46 1 3 3  C 52 2 1 0  

L 10 41 10 9  L 8 50 0 4  L 6 59 0 0  L 3 58 0 0  

R 7 0 41 4  R 7 6 55 3  R 6 0 57 1  R 5 0 59 0  

N 3 0 0 46  N 1 0 2 52  N 2 0 0 56  N 0 0 0 60  

                        

F=0.7000 F=0.8375 F=0.9083 F=0.9699 

 

 

 

N=70 

 C L R N   C L R N   C L R N   C L R N  

C 40 7 5 6  C 47 4 2 2  C 52 1 3 2  C 54 0 1 0  

L 11 50 4 8  L 7 56 0 2  L 3 58 0 0  L 3 60 0 0  

R 8 3 51 4  R 5 0 58 1  R 3 0 59 1  R 3 0 59 0  

N 10 0 0 42  N 1 0 0 55  N 2 1 0 59  N 0 0 0 60  

                        

F=0.7408 F=0.9000 F=0.9341 F=0.9708 

 

Due to the fact that all the models have difficulties distinguishing the chimeric 

class, we will compare results of the best two models based on their precision-

recall curves [15]. Figure 7.2.shows the precision-recall curve for the chimeric 

class only, as well as the mean precision-recall curve over all 4 classes. 

Finally, we have extended the assembly process by omitting the reads that were 

classified as chimeric and overlaps between the reads that were classified as left 

and right repeats. We used the semi-GAN as the classifier, and conducted an 

experiment over the following reference genomes: NCTC74, NCTC86, NCTC129, 

NCTC204. With this extension, we have assembled all listed genomes and 

compared this results with the results of the assembly process where chimeric and 
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repeat reads were not omitted in relation to the number of contigs and NG50 

statistic. Contig is a set of overlapping reads that unambiguously determine a 

region of the reference genome, and the number of it be seen as a measure of 

complexity of the assembly process. NG50 statistic represents the length of the 

largest contig in a way that along with the larger contigs covers 50% of the original 

genome. NG50 can be seen as a measure of quality of the assembly process. 

This comparison is shown in Table 7.4. 

Table 7.4. Comparison between the regular and the extended process. NOC represents the 

number of contigs, and NG50 represents NG50 statistics. 

  
Extended process 

 
Regular process 

 

 
NCTC74 

 

 

NOC=16 
NG50=573717 

 

NOC=21 
NG50=545944 

 
NCTC86 

 

 

NOC=53 
NG50=187128 

 

NOC=126 
NG50=74836 

 
NCTC129 

 

 

NOC=12 
NG50=1008551 

 

NOC=36 
NG50=269581 

 
NCTC204 

 

 

NOC=29 
NG50=475910 

 

NOC=39 
NG50=319779 

 

 

 
Figure 7.2. a) precision-recall curve for the chimeric class only. b) mean precision-recall curve for 
all 4 classes. The blue graph represents the curve for semi-GAN, while the green one represents 
the curve for M1+M2. X-axis represents recall, while Y-axis represent precision. 

 

The source code with all implementation detail is hosted on the GitHub repository: 

https://github.com/tomislavsebrek/diplomski. 

a) b) 
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7.1. Discussion 

Based on the results presented in Table 7.3., we can notice that all semi-

supervised models achieved better results when compared with the model that 

had only used deficient labeled set only. Therefore, we can draw a conclusion that 

unlabeled data in some way helps classifiers to make better predictions. 

We can also notice that M1+M2 and semi-GAN outperform semi-AE regardless of 

the number of labeled examples that was used during the training, and based on 

the results in Table 7.3., we may infer that the semi-GAN shows slightly better 

performance when compared with the M1+M2 model. However, this difference 

diminishes as we increase the number of labeled examples, and due to the fact 

that both models have problems with detecting chimeric reads, we compared them 

based on their precision-recall curves. 

Figure 7.2. shows that based on the area under the curve, we can infer that the 

semi-GAN outperforms the M1+M2 model, regardless of the chosen threshold for 

detecting chimeric reads.  

Also, since omitting chimeric reads by classifying them as regular is a worse 

scenario that classifying a regular read as chimeric, we can decrease the 

threshold for detecting chimeric reads and position the classifier at the point of the 

precision-recall curve where the recall is greater than precision. That way more 

reads will be detected as chimeric, but only a small number of chimeric reads will 

be omitted. 

Considering all presented results, it can be inferred  that the semi-GAN is the best 

classifier for this problem, despite the fact that we used coverage graphs down-

sampled to the length of 100 as its input. We tried different experiments, but they 

failed to deliver better results. Because of that and having in mind that the model 

which uses down-sampled signal of a shorter length will be computationally 

efficient at the test time, we proclaimed the semi-GAN as the optimal classifier. 

Also, we want to emphasize that detecting reads as chimeric or repeat has not 

been studied before, so we cannot compare our results with other approaches. 

Furthermore, there is no guarantee that the created test set is challenging enough. 

Therefore, the results achieved by extending the assembly process are important 
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proof that we built a good classifier which can reduce the number of contigs and 

thereby facilitate the assembly process. 

 

7.2. Visualization 

Another guarantee that the training process went in the right direction is the 

visualization of the latent variables. Even though we drastically decreased the 

number of dimensions, the latent space is still too dimensional for visualization. 

Due to this fact, we used t-SNE, a machine learning algorithm for dimensionality 

reduction, for embedding the high-dimensional latent space into a space of two 

dimensions [15]. This visualization is performed over the test set and the results 

are shown in Figure 7.3. 

 
 

  

 

Figure 7.3. Visualization of the latent vectors of size 10 using t-SNE extracted by the a) semi-VA, 
b) M1+M2, c) semi-GAN. The red, green, blue and  yellow circles represent examples from the 
dataset that were labeled as chimeric reads, left-repeats, right-repeats and regular reads, 
respectively. 

 

a) b) 

c) 
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Considering the visualizations shown in Figure 7.3, we can infer that the class 

groups associated with semi-GAN and semi-AE are more detached and coherent 

than the groups associated with the M1+M2 model. One of the reasons is the fact 

that semi-GAN and semi-AE both use extracted features as input in the 

classification part of the model, while the M1+M2 model's classification part is 

separated from the feature extraction, and is performed on the raw input. 

Further on, in order to represent the idea of a two-dimensional manifold, we 

trained a variational autoencoder with the same parameters, but with the latent 

size 2. We then sampled a two-dimensional latent space and generated coverage 

graphs from it. We visualize the generated coverage graphs so that the graphs 

generated from latent vectors that are close in Euclidian space, remain 

topologically close in a manifold as well. This visualization is shown in Figure 7.4, 

and proofs that high dimensional data can be described with a small number of 

features and the smooth transitions among coverage graphs confirm that the 

model can interpret data through the two-dimensional manifold. 

 

 

Figure 7.4. Visualization of the generated coverage graphs from 2-dimensional latent space. The 
axes represent equally spaces latent variable values between -3 and 3. It can be noticed that the 
coverage graphs placed in the center correspond with the chimeric reads, while the coverage 
graph placed on the edge corresponds to the left or right repeat. 
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In Figure 7.5 we compare the reconstruction of the input signals that are based on 

the regular and variational autoencoder having in mind that reconstruction, as well 

as feature extraction, is not the main purpose for which a variational autoencoder 

is used. It can be noticed that both models reconstruct the left repeat with 

adequate precision, but they both fail to cover the peak in the coverage graph of 

the chimeric read. However, chimeric reads can be recognized and classified 

correctly by a concave valley located around the peak in the coverage graph, even 

though it does not look very plausible. 

 

 

 

 
Figure 7.5. a) and b) original signal (blue) and its reconstruction (green) using a regular 
autoencoder. c) and d) original signal (blue) and its reconstruction (green) using a variational 
autoencoder.  

 

Furthermore, we compare the examples generated from the variational 

autoencoder and generative adversarial network. This comparison is shown in 

Figure 7.6. It can be noticed that GAN can generate coverage graphs with more 

credible details while VAE tends to generate smooth coverage graphs, since it 

does not have a capacity to model sudden changes in the coverage graph. 

a) b) 

d) c) 
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Figure 7.6. a), b) and c) coverage graphs generated by VAE. d), e) and f) coverage graphs 
generated by GAN. It can be noticed that the coverage graphs generated by VAE co not look as 
plausible as the ones generated by GAN.  

 

 

 

a) b) 

c) 

d) e) 

f) 
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Finally, we will show the generated samples from GAN with respect to the epoch 

in the training process in Figure 7.7. It can be noticed that as the training process 

approaches its end, the generator generates more plausible examples. 

 

 

         a)                b) 

 

         c)                d) 

Figure 7.7. Coverage graphs presented by the generator in different phases of the training 
process. a) generated graph at the beginning of the training process looks more like random noise 
than a coverage graph. b) generated graph after the first epoch of the training algorithm starts to 
look like the right repeat due to the tendency of growth towards the right part. c) generated graph 
after 10 epoch of the training algorithm is smoother and contains conspicuous characteristics of the 
coverage graph associated with the right repeat, but its maximum is not reached in 1 as it is in all 
the real dataset examples, due to normalization. The discriminator can easily distinguish the real 
from fake examples based on that feature. d) generated graph at the end of the training process 
has the same maximum as any normalized graph so the discriminator needs to differentiate 
coverage graphs based on form rather than trying to trick the generator by checking if the coverage 
graph is normalized or not. 
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8. Conclusion 

The main aim of this thesis was creating a method for classifying the coverage 

graph of a read as chimeric, repeat or regular. We implemented three models 

based on semi-supervised deep learning: a regular autoencoder, an M1+M2 

model, and a semi-supervised generative adversarial network. 

We have created a database and manually labeled some reads in order to 

evaluate all the models. Based on the results of the evaluation, we inferred that all 

semi-supervised models have achieved better results that a model with the similar 

capacity that used only the deficient set of labeled examples. 

Among all the proposed methods, the model that is based on a semi-supervised 

generative adversarial network showed the best performance on the dataset that 

we created for the purposes of this thesis. Moreover, this method outperformed 

other models regardless of the number of labeled examples that were used during 

the training process. 

We embedded this detection based on the semi-supervised generative adversarial 

network in the assembly process, and successfully reduced the complexity of the 

overall process. Based on this result and the results of the cross-validation, we 

can draw a conclusion that a semi-supervised generative adversarial network is 

well suited for coverage graph detection. 

Nevertheless, we can still improve this work and the easiest way to do this is to 

collect more labeled data. On the other hand, a more challenging improvement 

would entail choosing a labeled set which would better reflect the data distribution.  
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Classification of 1D-Signal Types Using Semi-Supervised Deep Learning 

 

Abstract 

 

In this thesis, we proposed methods for detecting the type of the coverage graph  

based on semi-supervised deep learning models: autoencoders and generative 

adversarial networks.  We evaluated the performance of each model based on the 

dataset that contained reads from multiple reference genomes. We have manually 

labeled some of the data and compared the results of all models with respect to 

the number of labeled examples that were used during the training process. We 

have embedded this detection in the assembly process and achieved good results. 

The source code is available at https://github.com/tomislavsebrek/diplomski. 

Keywords: deep learning, autoencoder, generative adversarial network, semi-

supervised learning, coverage graph, chimeric read, repeat read 

 

 

Identifikacija tipova 1D-signala pomoću polu-nadziranog dubokog učenja 

 

Sažetak 

 

U okviru ovog rada, predložili smo metode za detekciju tipova grafova pokrivenosti 

na temelju polu-nadziranih modela dubokog učenja: autoenkodera i generativnih 

suparničkih mreža. Testirali smo performanse svih modela koristeći bazu koja 

sadržava očitanja s više referentnih genoma. Ručno smo označili dio podataka i 

usporedili rezultate s obzirom na količinu označenih primjera koji su bili korišteni 

prilikom treniranja. Ovu detekciju smo ugradili u proces sastavljanja i dobili dobre 

rezultate. Izvorni kod je dostupan na https://github.com/tomislavsebrek/diplomski. 

Ključne riječi: duboko učenje, autoenkoder, generativni suparnički model, polu-

nadzirano učenje, graf pokrivenosti, kimerno očitanje, ponavljajuće očitanje 


