

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

MASTER THESIS No. 1414

Classification of 1D-Signal Types Using

Semi-Supervised Deep Learning

Tomislav Šebrek

Zagreb, June 2017.

 I would like to thank my family for all the support they gave me.

 Also, many thanks to my mentor Mile Šikić for all the help over the past

years.

 Further on, thanks to Robert Vaser for the help with the assembly process

and Jan Tomljanović for the help with the dataset generation.

Table of contents

1. Introduction ... 1

2. Types of reads .. 2

3. Theoretical basis of machine learning ... 7

4. Deep learning .. 11

 4.1. Model ... 11

 4.2. Loss function ... 16

 4.3. Optimization .. 17

5. Semi-supervised learning .. 19

6. Theoretical basis of semi-supervised models ... 22

 6.1. Regular autoencoder .. 22

 6.2. Variational autoencoder ... 24

 6.2.1. Semi-supervised variational autoencoder 30

 6.3. Generative adversarial network .. 36

 6.3.1. Semi-supervised generative adversarial network 39

7. Evaluation and results ... 41

 7.1. Discussion .. 46

 2.2. Visualization ... 47

8. Conclusion .. 52

9. Bibliography .. 53

1

1. Introduction

One of the most important tasks in bioinformatics is the assembly process, which

refers to combining fragments of DNA, obtained by the sequencing device. These

fragments will be referred to as reads, and the goal of the assembly process is to

fully reconstruct the DNA. The modern de novo assembly process is conducted

over a pre-generated set of reads and is realized in three basic phases: overlap,

layout, and consensus.

Due to the imprecision of sequencing devices, some overlaps are wrongly

detected, and they can overcomplicate the following phases. On the other hand,

as a result of the same drawback, some overlaps will be omitted and they will not

be processed in the layout phase. However, overlap algorithms are somewhat

robust to these imperfections. Unfortunately, there are other specific reads, that

will be referred to as chimeric and repeat, with unique characteristics, which are

reflected on their coverage graph, that additionally impede the next phases.

A read can definitely be classified as chimeric or repeat when taking into account

the information about its mapping onto the reference genome. We will therefore

manually label some reads sequenced from already assembled genomes, but

since this labeling process is extremely slow and usually rather grueling, we will

propose methods that are based on semi-supervised learning with as little labeled

data as possible. As the input in a model, we will use a signal that represent the

coverage graph of the corresponding read. When finished, we expect that models

will be able to generalize on any read, regardless whether the reference genome

has already been assembled or not.

In the next chapter, we will define specific types of reads. In the chapters 3 and 4,

we will briefly introduce theoretical fundamentals of machine and deep learning.

Basic assumptions and theoretical background of semi-supervised models are

presented in chapter 5. Concrete semi-supervised models will be explained in

chapter 6. Evaluation and results will be presented in chapter 7, and all of it will be

summed up in chapter 8.

2

2. Types of reads

Before we introduce specific types of reads, we will define a very simplified overlap

phase that is based on the a very unrealistic assumption, that a sequencer makes

no mistakes while reading nucleotide pairs. In that case, the shared region

between two reads will be indicated as an overlap if the shared region is a prefix of

one read, and a suffix of another, and contains no mismatches.

Chimeric read. A read is referred to as chimeric if it contains detached parts of

the reference genome that were concatenated into one read as a consequence of

a mistake made by a sequencing device.

Performing an overlap phase with the presence of chimeric reads can cause

junction of the disjoined parts of the reference genome, and therefore they need to

be eliminated.

Repeat read. A read is referred to as repeat if it contains a repetitive region of the

reference genome. A repeat region is a consecutive sequence of nucleotide pairs

that is replicated at different positions of the reference genome. Depending on the

position of the repeat region in the read, the read is referred to as a left, centered

or right repeat.

Centered repeats do not obstruct sequencing process, but left and right repeats

can make it needlessly intricate and need to be removed as well.

Regular read. A read is referred to as regular if it is neither chimeric nor repeat.

Coverage graph. A coverage graph is a graph which is created for each read by

counting the number of times that each nucleotide pair in the read overlapped with

some other read. Considering the circumstances in which coverage graphs are

generated, we assume that the discriminative features of each read will be

reflected in their coverage graph. Figures 2.2, 2.3 and 2.4 show possible

sequencing scenarios which result in creating either chimeric, repeat or regular

reads with the corresponding coverage graphs.

A chimeric coverage graph is characterized by a sudden drop followed by a

sudden raise. This point represents the place where the two detached parts of

genome have connected. On the other hand, a repeat coverage graph has greater

3

coverage on the one side, either left or right, than on the other. Areas with high

coverage represent repeat regions of the reference genome. Finally, a coverage

graph of a regular read does not contain any prominent aberrations. Examples of

coverage graphs with the corresponding classes are shown in Figure 2.1.

 a) b)

c)

Figure 2.1. a) coverage graph of a repeat read. b) coverage graph of a chimeric read. c) coverage
graph of a regular read.

4

Figure 2.2. Generation process of a coverage graph on a regular read a) with the corresponing

coverage graph b). The nucleotide pairs colored yellow show the observed regular read over which

coverage graph is built. The figure shows all reads that overlap with the observed read with the

update of the coverage graph marked in red.

a)

b)

5

Figure 2.3. Generation process of a coverage graph on a chimeric read a) with the correspongin

coverage graph b). The nucleotide pairs colored yellow show the observed chimeric read that was

formed by concatenating separate parts of the reference genome also colored yellow. The figure a)

shows all the reads that overlap with the observed read. The coverage update is marked in red. We

can notice a gradual decrease in the coverage graph at the point where the sequencer connected

the separated parts of the original genome. As this part does not exist in the original genome, it

correlates with the sudden drop in the coverage graph.

a)

b)

6

A A A A A T T G G G G G G G G T T C C C C C C C T T A A A A

 A A A T G G G T C C C T

 T T G G T T G G T T G G
 1 0 0 0 6 5 5 5 8 6 5 5

 A A T T G G T T C C T T

 T T G G T T G G T T G G
 2 1 0 0 7 6 5 5 9 7 5 5

 A T T G

 T T G G
 3 2 1 0

 T T G G

 T T G G
 4 3 2 1

 T T G G

 T T T T
 4 4 3 2

 T T G G

 T T T T
 5 5 5 4

 T G G G

 T T T T
 5 5 5 5

A A A A A T A

Figure 2.4. Generation process of a coverage graph on a repeat read a) with the corresponing
coverage graph b). The nucleotide pairs colored yellow show the observed left repeat read over
which the coverage graph will be built, and the nucleotide pairs colored green show the repeat
regions in the reference genome. The figure a) shows all the reads that overlap with the observed
read. The coverage update is marked in red. Since that read over which coverage graph was built
contains repeat regions, all reads near these regions are also taken into consideration while
building the coverage graph. Because of that, one side of the coverage graph has higher coverage
than the other.

T T G G
0 0 0 0

a)

b)

7

3. Theoretical basis of machine learning

"Machine learning is a way of programming computers to optimize a performance

criterion using example data or past experience" [1]. We want to emphasize that

this is not the only definition of machine learning. On the contrary, there are plenty

of other different definitions, but the common denominator of all of them is the

ability of the an algorithm to learn from data.

Machine learning algorithms can be divided into many categories, and we will list

only a few of them. The first division distinguishes algorithms based on the type of

their output values and categorizes them either as regression or classification.

Generally speaking, an algorithm is referred to as regression if it is used for

predicting continuous values. If it is used for predicting a class label from a

predefined set of admissible labels, it is referred to as classification.

Furthermore, classification algorithms can be categorized as generative or

discriminative, depending on whether the algorithm models the joint probability of

input and its label or not. Generative models learn the distribution of individual

classes by modeling the joint distribution of the example and its corresponding

label, and based on that probability perform classification tasks. On the other

hand, discriminative models perform classification tasks based on the learned

boundaries between classes, without modeling the joint probability at all.

Finally, considering the type of the provided input information, we can distinguish

two categories of machine learning tasks: supervised and unsupervised learning.

Supervised learning uses input elements as well as the corresponding class

labels, while unsupervised learning uses only the input elements. Semi-supervised

learning lies somewhere in between supervised and unsupervised learning and

will be explained in detail in chapter 5.

Before we outline the theoretical foundations and concepts of machine learning,

we need to agree on the notation that will be used in further definitions.

 X a set of training examples (input elements)

 x(i) the i-th example (input element) which corresponds to the i-th row in

 the matrix X

8

(3.1)

 y(i) the i-th expected output value associated with x(i) for supervised

 learning

As we will be focusing on semi-supervised machine learning algorithms used for

classification tasks, it should be noted that the following definitions will be limited

to this restriction.

Any machine learning algorithm has three basic elements: [2].

1. Model

 Model (H) is defined as a set of hypotheses (h), where each

hypothesis relates each input to one of the permissible outputs. In that

respect, we can think of a model as a parameterized function, where each

ordered set of parameters corresponds to a different hypothesis. Formula

3.1. shows the relation between the model and the hypotheses.

𝐻 = {ℎ(𝑥 | 𝜃)}𝜃

2. Loss-function

 Loss function (L) calculates the error of the current hypothesis by

comparing the expected output with the calculated output ℎ(𝑥 | 𝜃).

 Error function (E) is defined as the expected value of the loss

function, and it is shown in formula 3.2.

𝐸(ℎ | 𝑋) =
1

𝑁
∑ 𝐿(𝑥(𝑖))𝑁

1

3. Optimization

 Optimization is a process of finding the hypothesis that minimizes the

error function on the set that contains the input elements from X. This

process is also known as the learning process, and it is shown in formula

3.3.

ℎ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ𝐸(ℎ | 𝑋)

Working with machine learning entails making lot of numerous assumptions, and

choosing a model is only one of them. Usually, the complexity of a model can be

(3.2)

(3.3)

9

defined with a set of parameters, and choosing a model correlates with choosing

the set of parameters that describe it. These specific parameters are called

hyperparameters. We want to emphasize that since these parameters are not the

part of a model itself, they cannot be learned by the optimization step, which finds

the optimal hypothesis in the defined model. In general, we want to choose a

model which complexity matches the complexity of the function that has actually

generated the data. Choosing a model can lead to one of the following two

scenarios.

• Underfitting is a case where a model is not as complex as the function that

has generated the data, and it does not have the capacity to interpret it.

This case is shown in Figure 3.1.a.

• Overfitting is a case where a model is much more complex that the original

function, so it can easily adapt to the data and learn noise in it. This case is

shown in Figure 3.1.b.

The question, then, arises: how do we choose an optimal model? The idea is to

divide examples into two sets: a train and test set. The model is trained on the

train set, while the generalization performance is measured on the test set. This

process is known as a cross-validation. A very simple model will produce an equal

amount of mistakes on both sets, while a very complex model will show good

performance on the train set, and bad performance on the test set. In order to find

the optimal model, we need to find balance between errors on the train and test

set. This effect is shown in Figure 3.2.

Figure 3.1. a) underfitted model. b) optimal model. c) overfitted model. All three figures show the

decision boundary depending on the complexity of the model. If the model is too simple, as shown

in a), it has no capacity to model real data dependencies. On the other hand, if the model is too

complex it will easily adapt to the noise in the data c). The optimal model is somewhere in between.

a) b) c)

10

Figure 3.2. Dependencies of the error function on the train and test set with respect to the
complexity of the model. We can notice that the error on the train set decreases with the increase
of the model's complexity, while the error on the test function starts to increase after the point
representing the optimal complexity. This is the expected behavior because more complicated
models can learn decision boundaries with arbitrary high complexity. In that case, the
generalization ability vanishes, which results in meager performance on the unseen examples in
the test set, and an excellent one on the training data. The green dashed line represents optimal
models, and it is a place where the underfitting and overfitting areas meet.

𝐸𝑡𝑒𝑠𝑡

𝐸𝑡𝑟𝑎𝑖𝑛

11

4. Deep learning

Deep learning is a growing trend in machine learning, and in essence, deep

learning algorithms do not differ from any other machine learning algorithm since

they can be interpreted through the basic elements: the model, loss function, and

optimization. However, over the last couple of years, their popularity has increased

significantly, due to the fact that recent experiments achieved state of the art

results in areas of computer vision and speech recognition, which made them a

hot topic in the area of machine learning.

As already said, we will describe deep learning algorithms suited for classification

tasks owing to the fact that they are the main focus of the thesis.

4.1. Model

The basic model of any deep learning algorithm is a feed-forward deep neural

network which consists of layers, as its basic computational units. The layers are

determined with the certain set of parameters which is used for computing the

output of a layer. In the rest of the thesis, the output of the layer will be referred to

as a feature map. The feed-forward neural network has a composite structure that

can be interpreted as a computational graph, and it is important to note that the

output of a layer is only affected by the last extracted feature map as well as that

computational graph of a feed-forward neural network does not contain any cycles.

There are many other types of neural networks such as residual and recurrent

networks that extend the functionality of simple feed-forward networks with

residual connections and cycles in the computational graph, but since they are not

a part of this thesis we will not pay attention to them.

The basic model of the deep neural network is shown in Figure 4.1.

12

Figure 4.1. Basic feed-forward neural network architecture. The yellow parts represent layers, the

green parts represent non-linearity among features maps, and the blue part represents the

classification part of the neural network. We can notice that only the first layer is in touch with the

input, while others operate on the latest extracted feature map.

There are many types of layers, but we are going to introduce only ones that were

used in this thesis.

Fully connected layer is a basic layer, whose output is calculated according to

the following matrix multiplication formula, where x is an input vector, W is a

weight matrix and b is a bias vector:

𝒚 = 𝒙 ∙ 𝑊 + 𝒃

The fully connected layer has the capacity to model an arbitrary linear relationship

in the input vector, but due to the fact that each feature in the output vector is

calculated over the entire input vector, this approach demands a lot of trainable

parameters and it is prone to overfitting [3]. Because of that, it is common practice

to place the fully connected layer at the end of the pipeline so it can model

relationships between extracted features and the corresponding classes. The

graphical representation of a fully connected layer is represented in Figure 4.2.a.

 f1(x, θ1)
x

σ
y1

 f1(z2, θ2)
z2

σ
y2

z2 ... zn
classification

class: 1

 fn(zn, θn)

σ
yn zn-1

13

Figure 4.2. a) fully connected layer. b) convolution layer. c) pooling layer. Different colors in the
convolution layer represent shared parameters, while the dashed lines indicate that the layer
contains no learnable parameters. It can be noticed that the convolution layer demands only 𝑘 ∙
|𝑦| where k is the kernel size, while the fully connected layer needs |𝑥| ∙ |𝑦| if the bias variable is
ignored.

Convolution layer uses convolution rather than a matrix product to compute the

output.

Discrete 1D convolution is defined with the following formula, where x and w are

arbitrary discrete signals:

(𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑛) ∙ 𝑤(𝑡 − 𝑛)

∞

𝑛=−∞

In order to make the computation simpler, we used cross-correlation instead and

assumed that values of functions x and w for the argument which does not belong

in the domain are equal to zero. W is a discrete signal defined for only K domain

elements and is usually referred to as the convolution kernel, and K is referred to

as kernel length. The adjust formula is shown below.

(𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑡 + 𝑛) ∙ 𝑤(𝑛)

𝐾/2

𝑛=−𝐾/2

By using a convolution layer instead of a fully connected layer, we achieved a

significant parameter reduction. Each feature in the feature map is now connected

only to the adjacent elements in the input vector, where adjacency is controlled by

a) b) c)

14

kernel length, and not to all elements, which was the case with the fully connected

layer. Extracting features by using convolution on a 1D signal is shown in Figure

4.3.

Furthermore, we want to emphasize that convolution is equivariant to

displacement in the input parts [3]. This means that if we move some part of the

input, we will obtain the same features in the feature map, but in different

positions.

Figure 4.3. The figure shows the original 1D signal painted in blue color, and the results of
convolution operations with the kernel k=[-1, 1]. The green signal is the result of applying
convolution on the original signal, and the red one is the result of convolving the previously
calculated convolution with the same kernel. We can infer that this kernel can be used to detect
changes in the signal direction.

Also, we want to stress out that over the same input representations, multiple

convolutions with multiple kernels can be calculated. With this approach, the

model is given the ability to maintain different kernels over the same input

representations and in one pass extracts different features.

Pooling is a sampling process, whose goal is to down-sample an input

representation based on a pooling function, which maps topologically adjacent

features in the input to one feature in the output, causing dimensionality reduction.

The most commonly used pooling layer is max pooling. There are two main

reasons for using the pooling layer:

• it reduces the spatial size and thereby reduces the number of parameters

that need to be trained and the number of computations over them

15

• feature maps are invariant to small displacements in the input, which is

useful in cases where classification information is more important to detect

a specific feature, rather than binding the feature to the specific location [4].

It is common practice to periodically insert pooling layers between successive

convolution layers as shown in Figure 4.4.

Transpose layer is a general abstract layer which can invert the result of a layer

and generate input vector taking feature map as input.

Batch-normalization layer standardizes each feature in the feature map by

applying the following formula where 𝜇 and 𝜎 are the mean and standard deviation

of features in the current batch and 𝛾 and 𝛽 are learnable parameters that control

the influence of batch-normalization operation:

𝑦 = 𝛾 ∙
𝑥 − 𝜇

𝜎
+ 𝛽

Using batch-normalization layer can speed up the training process [4].

Figure 4.4. General deep neural network architecture that uses a convolution layer.
Convolution layers are used in the early stages of the computations to extract useful
features. Pooling layers are positioned in-between them in order to reduce the number of
computations. Fully connected layers are positioned at the end of the pipeline in order to
find relations between class labels and all extracted features.

16

4.2. Loss function

The loss function is based on the following two assumptions:

• the last output contains 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 elements, where 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of

classes

• each element in the output vector corresponds to one of the class labels,

and the greater the value, the more likely it is that the input element belongs

to the corresponding class

Therefore, we need a way of translating outputs of the final layer into a multinomial

probability distribution over class labels, and using the softmax function is one

ways in we can achieve this.

The softmax function is a generalization of a sigmoid function that translates an N-

dimensional vector of arbitrary real values to an N-dimensional vector of real

values in the range [0, 1] that sum up to 1. It is formally defined by the following

formula.

𝜎(𝒛)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑖𝑁
𝑖=1

We are building our classifier based on an assumption that each example belongs

to exactly one class. Because of that, we can represent class labels as a vector of

L elements where only one element is equal to 1, and the corresponding index

represents the class label, while all other elements are equal to 0. This label

representation is known as one hot encoding.

Furthermore, the loss function can be defined as negative log-likelihood, where y

is the output of the softmax function, and y' is the class label:

𝐿𝑜𝑠𝑠(𝑦, 𝑦′) = − log 𝑝(𝑦 = 𝑦′|𝜃)

Having a label encoded as one hot vector, we can derive the final form of the loss

function:

𝐿𝑜𝑠𝑠(𝑦, 𝑦′) = − log(∑ 𝑦′𝑘 ∙

𝑁𝑙𝑎𝑏𝑒𝑙

𝑘=1

𝑦𝑘)

17

Figure 4.5 shows the calculation of the loss function when the label and output

vectors are provided.

Figure 4.5. Calculation of the loss function having [4, 1, 2, -1] as the output vector and class label

0. When encoded to the one-hot representation, the label is represented as [1, 0, 0, 0].

4.3. Optimization

Due to the composite structure and non-linear operations applied among feature

maps decision boundary is usually very complex, and the corresponding function

does not have a solution in a closed form, so we will have to use some variant of

18

iterative optimization in order to perform the optimization step. Gradient descent is

a first-order iterative optimization algorithm that finds local optima by taking small

steps proportional to the negative gradient of the loss function at the current point.

Since this algorithm uses derivatives of the loss function with respect to an

arbitrary parameter of the model, we need to determine
𝜕𝐿

𝜕𝜃𝑖
. As has already been

said, owing to the high complexity of the function that the deep neural net models,

it is difficult to find exact formulas of this derivatives. Therefore, we will use

backpropagation algorithm that performs in two steps:

• forward phase calculates the output of each elementary function whilst

storing derivatives of the output with respect to the input of the function, that

are known as local gradients

• backward phase spreads gradient of loss with respect to the input by using

the chain rule
𝜕𝐿

𝜕𝑥
=

𝜕𝐿

𝜕𝑧
∙

𝜕𝑧

𝜕𝑥
 and stored local gradients calculated in the

forward pass

Gradient descent has many problems in cases where equal displacements in

perpendicular directions of the arguments of the loss function imply unequal

values of the loss function. This behavior is very common near the local optimum.

In that case, gradient descent oscillates mostly in one dimension and temporizes

the convergence. Therefore, instead of the vanilla gradient descent, it is common

practice to use advanced learning algorithms, like adaptive moment estimation -

ADAM, also based on the calculated gradients that cope with the mentioned

problem more efficiently.

19

5. Semi-supervised learning

Semi-supervised learning is somewhere in between supervised and unsupervised

learning. Usually, most of the elements in the dataset are unlabeled, and only a

few of them are provided with a label. More formally, the dataset 𝑋 = {𝑥𝑖}𝑖=1..𝑁 can

be divided into two parts:

• 𝑋𝑙 = {𝑥𝑖}𝑖=1..𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑
 for which labels 𝑌𝑙 = {𝑦}𝑖=1..𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑

 are provided

• 𝑋𝑢 = {𝑥𝑖}𝑖=𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑+1..𝑁 for which labels are not provided

In order for semi-supervised learning to work at all, certain assumptions need to

hold. The main one among them can be formulated as follows: if two points x1, x2

in a high-density region are close, the same should be true for the corresponding

outputs y1 and y2 [5]. This assumption is quite intuitive but it is important to note

that without it generalization would not be possible because a model is trained on

a finite train set, while being expected to predict on a potentially infinite test set.

The next point that needs to be elaborated is the reason why we use semi-

supervised learning at all. The answer lies in the fact that unlabeled data is usually

very easy to obtain, but whereas the annotation process takes a lot of time and is

usually tedious. Therefore, the goal of semi-supervised learning is to take

advantage of the unlabeled data and achieve better results using both labeled and

unlabeled data rather than using each of them separately.

Before we move on, we still have to answer the question of how can the unlabeled

data help a classifier to obtain better results. It all comes down to the fact that

using only labeled data, a model is forced to be fit to the usually deficient train set.

Although unlabeled data contains no labels, they can interpret the overall data

distribution in some way, and classifier can use this information to make a better

prediction. Based on the way in which an unsupervised algorithm tries to

contextualize the data distribution, we differentiate between various types of semi-

supervised models. We will define two of them: generative models and manifold

learning models [5, 6].

20

As already said in chapter 3, using generative models means tacitly modeling

conditional density p(x|y). Therefore, any additional information about p(x)

through unlabeled examples is very useful and can be used to find parameters of

conditional distribution such that the training set generated from the conditional

distributions is as likely as possible. One of the major strengths of generative

models as a semi-supervised technique is the ability to incorporate domain-

specific knowledge in the model. A drawback of this approach is the necessity to

work with latent variables and expectations. Furthermore, if we create a model

based on the wrong assumptions we could obtain worse results. The

conceptualization of this model is shown in Figure 5.1.

Figure 5.1. a) decision boundary based only on the labeled data. b) decision boundary
based on both labeled and unlabeled data. Green circles represent inputs of one class
while blue ones represent another one. Darker circles represent labeled data, the lighter
ones represent unlabeled data and the red line represents the decision boundary that was
calculated on all data. Since we have not opted for a formal model to classify data, the
decision boundary was determined based on the assumption that it should lie in the low-
density region. In this case, we can think of lighter circles as elements with latent labels
that determine the class, so the overall process can be seen as classification with
additional information on marginal density.

On the other hand, a manifold learning model is based on the following

assumption: the high-dimensional data roughly lies on a low dimensional manifold

[5]. Loosely defined, a manifold is a connected set of points that can be

approximated by considering only a small number of dimensions embedded in a

higher dimensional space [6]. The models will try to determine the low-dimensional

representation of the input, and based on that lower dimensional interpretation

𝑥1

𝑥2

𝑥1

𝑥2

a) b)

21

build a classifier that will be trained only on labeled data. However, since latent

space has fewer dimensions, the classifier requires less labeled data to achieve

the same performance as when no unlabeled data was used at all. The idea of

manifold learning models is shown in Figure 5.2.

Figure 5.2. The figure shows samples from a 2D distribution as light blue circles. We can
notice that sampled data are concentrated near the 1D manifold represented by the dark
blue curve. During the training process, the model should easily infer the underlying
manifold of the 2D data representation.

𝑥1

𝑥2

22

6. Theoretical basis of semi-supervised models.

We will describe three models of semi-supervised learning:

• semi-supervised learning based on a regular autoencoder

• semi-supervised learning based on a variational autoencoder

• semi-supervised learning based on a generative adversarial network

6.1. Regular autoencoder

An autoencoder is a neural network trained with a goal to reconstruct the input in

the output of the neural network. The basic structure of the autoencoder has two

main parts: the encoder and decoder. The encoder maps raw input to its latent

space representation by extracting the features z, using the deterministic encoding

function E. On the other hand, the decoder tries to reconstruct the original input

from the latent representation z using the deterministic decoding function D. An

autoencoder is trained by minimizing the predefined loss function, which usually

correlates with the difference between input and its reconstruction, so the encoder

and decoder needs to work together, so that the encoder extracts useful features

from raw input, and the decoder uses them in order to provide the most plausible

reconstruction. The basic autoencoder structure is shown in Figure 6.1.

Figure 6.1. A general model of an autoencoder. E(x) is a deterministic function that maps the input

representation to its latent representation. This function will be referred to as the encoder. On the

other hand, the deterministic function D(z) translates examples from latent space to input space,

and it will be referred to as the decoder.

𝐸(𝑥)

𝑥

𝑧

𝑥′

𝐷(𝑧)

23

There are several types of autoencoders, and they differ among themselves in the

loss function they are trying to minimize. We will use a regular autoencoder whose

encoder and decoder are implemented as deep neural networks, and whose loss

function is a mean square error between the input and its reconstruction. In order

to extract useful features, the dimensionality of the latent vector needs to be

smaller than the dimensionality of the input vector. Otherwise, the neural network

could easily learn to associate identity function with E(x) and D(z), extracting no

useful features from the input. Forcing the autoencoder to extract useful features

by reducing the dimensionality of the latent space is known as autoencoder

regularization [6].

A semi-supervised model based on a regular autoencoder is shown in Figure 6.2.

It is a simple enhancement of a regular autoencoder that uses the deterministic

function C, usually implemented as a shallow model, that performs classification

based on the features that have been extracted by the encoder. Therefore, the

final objective function comprises two parts: classification and reconstruction loss.

Classification loss is a standard cross-entropy-log loss introduced in section 4.2,

while reconstruction loss is defined as the mean square error between the input

and its reconstruction.

Figure 6.2. A general model of a semi-supervised model based on a regular autoencoder. E(x) and

D(x) are deep neural networks while C(x) is a shallow model, usually a fully connected layer. The

common part in computational graphs of both losses represents E(x). While minimizing total loss

we are finding the optimal parameters of the encoder by balancing between correct classification

and a correct reconstruction. We hope that these tasks will lead optimization in the same direction.

24

6.2. Variational autoencoder

A variational autoencoder is a generative model that combines ideas of deep

learning with statistical methods. In essence, it is a probabilistic graphical model

and since its structure resembles that of an autoencoder, it is studied together with

other types of autoencoders. Therefore, it can be used as a feature extractor along

with other functionalities of generative models.

It is assumed that for each element x from the dataset, there is a latent vector z,

which cause generation of the example x by applying some transformation over

the latent vector. More formally, z is a random variable sampled from the

independent prior distribution 𝑝(𝑧), and x is then sampled from the conditional

distribution 𝑝𝜃(𝑥 | 𝑧) [7]. This assumption about how the data was generated can

be interpreted as a probabilistic graphical model shown in Figure 6.3. Therefore,

𝑝(𝑥, 𝑧) = 𝑝(𝑧) ∙ 𝑝𝜃(𝑥 | 𝑧) can be factorized in prior and conditional distribution, and

we can derive 𝑝(𝑥) by marginalizing over latent variables.

We can notice that conditional distribution is parameterized with 𝜃, and it is usually

represented as a deep neural network.

Since 𝑝(𝑧) is independent of any other random variable, we can assume its

distribution, and we chose the normal distribution with the mean 0, and the

standard deviation 1. We justify this choice by the following two facts:

• this distribution has a simple and well-defined formula that will make further

computations as simple as possible

• any distribution can be generated by taking a normally distributed variable

and mapping it through an arbitrary complex function [7]

The second reason is proof that probability density function of conditional

distribution 𝑝𝜃(𝑥 | 𝑧) can be modeled by a deterministic function 𝑓(𝑧; 𝜃). However,

in order to make the calculation and sampling process possible, we will assume

that the conditional distribution can be approximated with some well known

theoretical distribution, and we will propose a multivariate normal distribution with

a diagonal covariance matrix. In mathematical notation, conditional distribution can

be seen as:

25

𝑝𝜃(𝑥 | 𝑧) = 𝒩(𝑓𝜇(𝑧; 𝜃), 𝑓𝜎(𝑧; 𝜃))

Regardless of the chosen distribution, the idea is that the parameters of that

distribution are determined by the deterministic functions, usually represented as

deep neural networks, and if this function is complex enough and theoretical

distribution is appropriate, the chosen distribution can efficiently mimic the real

conditional distribution [7].

Figure 6.3. The probabilistic graphical model that models generation process from latent vectors

that are sampled from normal distribution over conditional distribution parameterized with θ.

We will try to fit the defined model to the data. More precisely, given a set of N

observations {x1, x2, ..., xN} we wish to learn parameters 𝜃 of conditional

distribution in that way that given observations are the most likely to be generated

by the described process. In mathematical notation, we are trying to maximize the

probability of each element in training set according to the following formula:

𝑝(𝑥) = ∫ 𝑝(𝑧) ∙ 𝑝𝜃(𝑥 | 𝑧) ∙ 𝑑𝑧

The next problem that we are faced with is the fact that we have a list of

observations, and not the latent representations. Furthermore, and we cannot

sample features z based on a 𝑝(𝑧 |𝑥), since it is intractable due to the intractability

of the denominator, as it is shown in the following formula.

𝑝(𝑧 |𝑥) =
𝑝(𝑧) ∙ 𝑝(𝑥 | 𝑧)

𝑝(𝑥)
=

𝑝(𝑧) ∙ 𝑝(𝑥 | 𝑧)

∫ 𝑝(𝑧) ∙ 𝑝(𝑥 | 𝑧) ∙ 𝑑𝑧

26

Since we cannot calculate it we will try to approximate it with 𝑞𝜑(𝑧 |𝑥). If this

approximation is good enough, the sampled latent features will be similar to the

one that actually produces X. Again, we will need to make certain assumptions

about the distribution 𝑞, and we will represent it as a multinomial normal

distribution whose parameters are the determined by deterministic function

𝑔(𝑥; 𝜑), usually a deep neural network. Therefore, the conditional distribution

takes the following form:

𝑞𝜑(𝑧 | 𝑥) = 𝒩(𝑔𝜇(𝑥; 𝜑), 𝑔𝜎(𝑥; 𝜑))

With the sufficient capacity of 𝑔(𝑥; 𝜑), the approximated distribution can mimic the

intractable distribution [7].

The final model can conceptually be divided into two parts. The deep neural

network that models 𝑝𝜃(𝑥 | 𝑧), and the one that models 𝑞𝜑(𝑧 | 𝑥). These parts will

be referred to as the decoder and the encoder, respectively. The basic model of a

variational autoencoder is shown in Figure 6.4.

Figure 6.4. Overview of the variational autoencoder structure. The neural network is divided into

two parts: the encoder and decoder. Solid lines represent a deterministic function, while dashed

lines represent a sampling from the distribution modeled by the encoder or the decoder.

The optimal parameters 𝜃 and 𝜑 can be determined by maximizing the log

likelihood of the observed examples. Further calculations are done using only one

observation rather that all of them, because log-likelihood of all observations is

modeled as the sum of individual likelihoods. The final form of the log-likelihood,

shown in 6.1., can be derived by using simple mathematical operations [7, 8].

27

𝐿(𝑖) = log (𝑝(𝑥(𝑖)))

= ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log (𝑝(𝑥(𝑖)))

𝑧

= ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(
𝑝(𝑧, 𝑥(𝑖))

𝑝(𝑧|𝑥(𝑖))
)

𝑧

= ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(
𝑝(𝑧, 𝑥(𝑖))

𝑞(𝑧|𝑥(𝑖))
∙

𝑞(𝑧|𝑥(𝑖))

𝑝(𝑧|𝑥(𝑖))
)

𝑧

= ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(
𝑝(𝑧, 𝑥(𝑖))

𝑞(𝑧|𝑥(𝑖))
) + ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(

𝑞(𝑧|𝑥(𝑖))

𝑝(𝑧|𝑥(𝑖))
)

𝑧𝑧

𝐿(𝑖) = 𝐿𝑣
(𝑖) + 𝐷𝐾𝐿(𝑞(𝑧|𝑥(𝑖)) || 𝑝(𝑧|𝑥(𝑖)))

The log-likelihood now comprises two parts: the lower variational bound (𝐿𝑣) and

KL-divergence (𝐷𝐾𝐿) between the real intractable distribution p(z | x), and its

approximation. The KL divergence is a measure of how one probability distribution

differs from another. Assuming we use an encoder with an arbitrarily high capacity,

q(z | x) will match p(z | x). In that case, the KL-divergence will become zero and by

maximizing the lower variational bound we will indirectly maximize the log-

likelihood of the observed examples. That way we made the intractable distribution

p(z | x) tractable, simply by replacing it with q(z | x). 𝐿𝑣 can be further decomposed

by applying the following chain of operations.

𝐿𝑣
(𝑖) = ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(

𝑝(𝑧, 𝑥(𝑖))

𝑞(𝑧|𝑥(𝑖))
)

𝑧

𝐿𝑣
(𝑖) = ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(

𝑝(𝑥(𝑖)|𝑧) ∙ 𝑝(𝑧)

𝑞(𝑧|𝑥(𝑖))
)

𝑧

𝐿𝑣
(𝑖) = ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(

𝑝(𝑧)

𝑞(𝑧|𝑥(𝑖))
)

𝑧

+ ∑ 𝑞(𝑧|𝑥(𝑖)) ∙ log(𝑝(𝑥(𝑖)|𝑧))

𝑧

𝐿𝑣
(𝑖) = −𝐷𝐾𝐿(𝑞(𝑧|𝑥(𝑖)) || 𝑝(𝑧)) + 𝐸

𝑧~𝑞(𝑧|𝑥(𝑖)
)
(log(𝑝(𝑥(𝑖)|𝑧)))

(6.1)

(6.2)

28

It can be noticed from 6.2 that 𝐿𝑣 consists of two parts: −𝐷𝐾𝐿(𝑞(𝑧|𝑥(𝑖)) || 𝑝(𝑧)), and

𝐸
𝑧~𝑞(𝑧|𝑥(𝑖)

)
(log(𝑝(𝑥(𝑖)|𝑧))) which represent the regularization factor and the quality

of reconstruction, respectively [8]. The regularization factor is represented as a KL

divergence, but this time measures how the distribution 𝑞(𝑧|𝑥(𝑖)) generated from

the example x(i) differs from the prior distribution p(z), which we assumed to be

normal, and penalizes it according to the formula of the KL-divergence. On the

other hand, the quality of reconstruction measures probability that x(i) is generated

from 𝑝(𝑥(𝑖)|𝑧), where z is sampled from a distribution 𝑞(𝑧|𝑥(𝑖)). In order to achieve

the optimal performance, we need to consider both factors. The balance between

them is shown in Figure 6.5.

Figure 6.5. a) case where the quality of reconstruction is significantly lower than the regularization

factor. b) case where the regularization factor is significantly lower than the quality of

reconstruction. The blue distribution represents the prior 𝑝(𝑧), while the green distribution

represents the conditional distribution 𝑝(𝑥(𝑖)| 𝑧) modeled by the decoder. The blue circle represents

the latent vector that is sampled from 𝑞(𝑧|𝑥(𝑖)), while the green one represents x(i).In the first case,

even though 𝑞(𝑧|𝑥(𝑖)) plausibly mimics the normal distribution, x(i) is not likely to be generated by

this latent representation. On the other hand, even though x(i) is highly likely to be generated from

the latent vector, the latent vector is not likely to be generated by the prior distribution.

Maximizing the lower variational bound demands an infeasible backpropagation

step through a nondeterministic sampling layer at the end of the decoder.

However, this sampling operation can be approximated with the following matrix

multiplication, where 𝜇 and 𝜎 are parameters calculated by the encoder and 𝜀 is a

random variable sampled from the normal distribution:

a) b)

29

𝑧 = 𝜇 + 𝜎 ∙ 𝜀; 𝜀 ~ 𝒩(0,1)

This fix is known as the reparameterization trick [8], and it is shown in Figure 6.6.

The random variable z has the same distribution, but now it can be

backpropagated through.

Figure 6.6. a) output of the encoder without the reparameterization trick. b) output of the encoder

with the reparameterization trick. Dashed lines represent a sampling process, while solid lines

represent a deterministic function. Due to the reparameterization trick, the gradient can pass into

the encoder since only sampling process that remains is generating ε.

After defining all components of the model, we can derive concrete formulas for

both the regularization factor and the quality of reconstruction based on the

chosen output distribution.

1D Gaussian distribution is defined by the following formula:

𝑝(𝑥|𝜇, 𝜎) =
1

√2𝜋 ∙ 𝜎
∙ 𝑒

−
(𝑥−𝜇)2

2𝜎2

Since we assumed that multivariate normal distribution modeled by the decoder is

defined with a diagonal covariance matrix, the elements xi and xj are independent,

so we can factorize it. In order to combine it with the formula for the quality of the

reconstruction, we applied a log-transformation over it.

𝑝(𝑥|𝜇, 𝜎) = ∏ 𝑝(𝑥𝑖|𝜇𝑖, 𝜎𝑖)

𝑁

𝑖=1

a) b)

30

log 𝑝(𝑥|𝜇, 𝜎) = log ∏ 𝑝(𝑥𝑖|𝜇𝑖 , 𝜎𝑖)

𝑁

𝑖=1

= log
1

√2𝜋
𝑁

∙ ∏ 𝜎𝑖
𝑁
𝑖=1

∙ 𝑒
− ∑

(𝑥𝑖−𝜇𝑖)2

2𝜎𝑖
2

𝑁
𝑖=1

= log
1

√2𝜋
𝑁 −log ∏ 𝜎𝑖

𝑁

𝑖=1

− ∑
(𝑥𝑖 − 𝜇𝑖)

2

2𝜎𝑖
2

𝑁

𝑖=1

Since none of the constants affect the lower bound maximization, they can be

removed. Furthermore, if we assume that the mini-batch is large enough that only

one sample of the latent vector z is enough to approximate expectation we can

derive the final formula for the quality of reconstruction, where N is dimensionality

of the input[8]:

Ez~q(z|x)[log 𝑝(𝑥⃗|𝜇⃗, 𝜎⃗)] = Ez~q(z|x) [− ∑ log 𝜎𝑖 +
(𝑥𝑖 − 𝜇𝑖)

2

2𝜎𝑖
2

𝑁

𝑖=1

] = − ∑ log 𝜎𝑖 +
(𝑥𝑖 − 𝜇𝑖)

2

2𝜎𝑖
2

𝑁

𝑖=1

Following the same idea and using the formulas for normal distribution and KL-

divergence, we can derive the following formula for the regularization factor as

well, where H is dimensionality of latent size. [8].

𝐷𝐾𝐿[𝑞(𝑧|𝑥) || 𝑝(𝑧)] = −
1

2
∑ 1 + log 𝜎𝑧𝑖

2 − 𝜇𝑧𝑖
2 − 𝜎𝑧𝑖

2

𝐻

𝑖=1

Therefore, final objective function is given in 6.3.

𝐿𝑜𝑠𝑠(𝑖) = ∑ log 𝜎𝑖 +
(𝑥𝑖−𝜇𝑖)2

2𝜎𝑖
2

𝑁
𝑖=1 −

1

2
∑ 1 + log 𝜎𝑧𝑖

2 − 𝜇𝑧𝑖
2 − 𝜎𝑧𝑖

2𝐻
𝑖=1

6.2.1. Semi-supervised variational autoencoder

We will make several changes to the assumption about how the data is generated

in order to support semi-supervised learning. The probabilistic graphical model

that represents the generation process suitable for semi-supervised learning is

shown in Figure 6.7. There are two independent distributions [9]:

• latent distribution: 𝑝(𝑧) = 𝒩(𝑧; 0, 1)

• label distribution: 𝑝(𝑦) =
1

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠
, where y is represented as a one-hot vector

(6.3)

31

Figure 6.7. Probabilistic graphical model that describes the generation process in a semi-

supervised autoencoder. The example x is generated based on a latent vector z, and a class label

represented as a one-hot vector.

Owing to the fact that the new model apart from the example generation purpose

should predict a class label for the given input, a classification module needs to be

embedded.

Once again, based on the set of observations we will try to determine the optimal

parameters such that the generated examples are as likely as possible. But, this

time we face two possible scenarios:

• we observe both x and y, so this case is a simple extension of a variational

autoencoder

• we observe only x, and treat y as a hidden variable

The second case is slightly more complicated because it demands interaction with

the deterministic classifier. Same as before, we will use a variational

approximation as the replacement for the intractable posterior. We will consider

depending on whether the class label is observed or not. In the case where the

label is observed we will use 𝑞(𝑧 | 𝑥, 𝑦), and in the other case we will use

𝑞(𝑧, 𝑦 | 𝑥) = 𝑞(𝑦|𝑥) ∙ 𝑞(𝑧|𝑥, 𝑦) [9]. It can be noticed that variational approximations

rely on 𝑞(𝑧 | 𝑦, 𝑥) that is identified with the encoder, and 𝑞(𝑦|𝑥) that will be referred

to as the classification part. With respect to this, a semi-supervised model is

shown in Figure 6.8 [10].

32

In continuation, we will explain both scenarios depending on the observation of a

class label.

Figure 6.8. Model for a semi-supervised autoencoder. The blue part represents the classification

part. The yellow part represents the encoder that based on the input, and the label generates the

latent vector z. The green part represents the decoder that based on the generated latent

representation and the class label generates the reconstructed example.

Case 1 - observed label

Similarly as was done with the autoencoders, we will try to maximize the log-

likelihood 𝐿 = log 𝑝(𝑥, 𝑦) of x and corresponding label y.

Due to the intractability of p(z|x, y) we will have to approximate it with the

distribution q(z|x, y), and following the same logic that was presented with

variational autoencoders we can derive the following formula [10]:

𝐿 = ∑ 𝑞(𝑧|𝑥, 𝑦) ∙ log
𝑝(𝑧, 𝑥, 𝑦)

𝑞(𝑧|𝑥, 𝑦)
− 𝐷𝐾𝐿(𝑞(𝑧|𝑥, 𝑦)|| 𝑝(𝑧|𝑥, 𝑦))

𝑧

The first part of L is lower variational bound (𝐿𝑣) and we will try to maximize it,

tacitly hoping that distribution q(z|x, y) will match p(z|x, y). Applying a similar

transformation as we did for the variational autoencoders, 𝐿𝑣 can be further

decomposed [10].

33

𝐿𝑣 = 𝐸𝑧~𝑞(𝑧|𝑥,𝑦) [log
𝑝(𝑧, 𝑥, 𝑦)

𝑞(𝑧|𝑥, 𝑦)
]

= 𝐸𝑧~𝑞(𝑧|𝑥,𝑦)[log 𝑝(𝑧) + log 𝑝(𝑦) + log 𝑝𝜃(𝑥|𝑧, 𝑦) − log 𝑞𝛷(𝑧|𝑥, 𝑦)]

= 𝐸𝑧~𝑞(𝑧|𝑥,𝑦)[log 𝑝𝜃(𝑥|𝑧, 𝑦) + log 𝑝(𝑦)] − 𝐸𝑧~𝑞(𝑧|𝑥,𝑦) [log
𝑞𝛷(𝑧|𝑥, 𝑦)

𝑝(𝑧)
]

= 𝐸𝑧~𝑞(𝑧|𝑥,𝑦)[log 𝑝𝜃(𝑥|𝑧, 𝑦)] + log 𝑝(𝑦) − 𝐷𝐾𝐿(𝑞𝛷(𝑧|𝑥, 𝑦)|| 𝑝(𝑧))

If we assume that expectation can be approximated precisely based only on one

sampling, we can transform the upper formula to the final form of 𝐿𝑣, where the

reconstruction cost and regularization factor have same formula as before.

𝐿𝑣 = log 𝑝𝜃(𝑥|𝑧𝑠𝑎𝑚𝑝𝑙𝑒 , 𝑦) + log 𝑝(𝑦) − 𝐷𝐾𝐿(𝑞𝛷(𝑧|𝑥, 𝑦)||𝑝(𝑧)) = −𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦)

Case 2 - unobserved label

On the other hand, if the class label is not observed, the formula will be extended

[10].

𝐿𝑣 = 𝐸𝑧,𝑦~𝑞(𝑧,𝑦|𝑥) [log
𝑝(𝑥, 𝑦, 𝑧)

𝑞(𝑧, 𝑦|𝑥)
]

Since we assumed inference model as 𝑞(𝑧, 𝑦|𝑥) = 𝑞(𝑦|𝑥) ∙ 𝑞(𝑧|𝑥, 𝑦), we can

rewrite the formula, to that the hidden variables are sampled according to this

assumption [10].

𝐿𝑣 = 𝐸𝑦~𝑞(𝑦|𝑥) [𝐸𝑧~𝑞(𝑧|𝑥,𝑦) log
𝑝(𝑥, 𝑦, 𝑧)

𝑞(𝑧, 𝑦|𝑥)
]

= 𝐸𝑦~𝑞(𝑦|𝑥) [𝐸𝑧~𝑞(𝑧|𝑥,𝑦) log
𝑝(𝑧) ∙ 𝑝(𝑦) ∙ 𝑝(𝑥|𝑧, 𝑦)

𝑞(𝑦|𝑥) ∙ 𝑞(𝑧|𝑥, 𝑦)
]

= 𝐸𝑦~𝑞(𝑦|𝑥)[−𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) − 𝐸𝑧~𝑞(𝑧|𝑥,𝑦) log(𝑞(𝑦|𝑥))]

= 𝐸𝑦~𝑞(𝑦|𝑥)[−𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) − log(𝑞(𝑦|𝑥))]

= ∑ 𝑞(𝑦|𝑥) ∙

𝑦

[−𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) − log(𝑞(𝑦|𝑥))] = −𝐿𝑜𝑠𝑠𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑(𝑥)

(6.4)

(6.5)

34

We can formulate the objective function shown in 6.6 [9] by combining formulas

6.4 and 6.5:

𝐿𝑜𝑠𝑠 = ∑ 𝐿𝑜𝑠𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦) + ∑ 𝐿𝑜𝑠𝑠𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑(𝑥)

𝑥~𝑝𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑𝑥,𝑦~𝑝𝑙𝑎𝑏𝑒𝑙𝑒𝑑

Finally, we can extend the loss function in a way that the deterministic classifier

takes part in it in cases where a class label is observed by adding a cross-entropy

part to the loss weighted by the hyperparameter 𝛼 [9].

𝐿𝑜𝑠𝑠𝛼 = 𝐿𝑜𝑠𝑠 + 𝛼 ∙ 𝐸𝑥,𝑦~𝑝𝑙𝑎𝑏𝑒𝑙𝑒𝑑
[− log 𝑞(𝑦|𝑥)]

Finally, we introduce a model that is a hybrid between a pure variational

autoencoder and its semi-supervised variant, known as M1+M2 model [9]. The

variational autoencoder, referred to as M1, is pre-trained in order to extract

features from the original input, and those features are presented to the semi-

supervised variational autoencoder, referred to as M2, in order to perform

classification. The structure of a stacked model is shown in Figure 6.9.

Figure 6.9. Structure of the M1+M2 model. The red part represents the variational autoencoder

(M1), and the blue, yellow and green parts represent parts of the semi-supervised variational

autoencoder (M2).

(6.6)

(6.7)

35

An algorithm of M1+M2 model is shown in Pseudocode 6.1.

Pseudocode 6.1. M1+M2 model

M1 - algorithm

do

 x(1), ... x(n) = get_next_batch()

 loss = 0

 for i in {1, ... Nbatch}:

 μe, σe, z(i) = m1_encoder(x(i))

 μd, σd, x'(i) = m1_decoder(z(i))

 loss += Loss(i) # eq 6.3

 gradφ, gradθ= ∂loss/∂φ, ∂loss/∂θ

 φ = perform_ADAM_update(φ, gradθ) # encoder

 θ = perform_ADAM_update(θ, gradθ) # decoder

until convergence

M2 - algorithm

do

 x(1), ... x(n) = get_next_batch()

 loss_observed = 0

 loss_unobserved = 0

 for i in {1, ... Nbatch}:

 if observed_label(x(i)):

 y(i) = get_label(x(i))

 μe, σe, z(i) = m2_encoder(x(i), y(i))

 μd, σd, x'(i) = m2_decoder(z(i), y(i))

 loss_observed += Loss(i) # eq 6.4

 else:

 loss' = 0

 for y(i) in {0, ... Nclasses}:

 μe, σe, z(i) = m2_encoder(x(i), y(i))

 μd, σd, x'(i) = m2_decoder(z(i), y(i))

 loss' += Loss(i) # eq 6.5

 loss_unobserved += Loss'

 loss = loss_observed + loss_unobserved # eq 6.6 or 6.7

 gradφ, gradθ= ∂loss/∂φ, ∂loss/∂θ

 φ = perform_ADAM_update(φ, gradθ) # encoder

 θ = perform_ADAM_update(θ, gradθ) # decoder

until convergence

36

6.3. Generative adversarial networks

The basic idea of general adversarial networks (GAN) is to have two players, the

generator and the discriminator, that are playing a game against one another [11].

• the generator generates data, and presents them to the discriminator

• the discriminator interprets data and tries to infer whether the data is real or

fake.

The goal of the generator is to fool the discriminator by generating plausible input

data, and the goal of the discriminator is not to be fooled by the generated

examples. As both players are getting better and better during the training, the

generator is forced to create data that is as realistic as possible, and the

discriminator needs to get better at distinguishing real from fake examples,

hopefully extracting some useful features, that can be used in further semi-

supervised tasks.

The basic architecture of GAN is shown in Figure 6.10.

Figure 6.10. General structure of GAN. G and D are deep neural networks that represent the
generator, and the discriminator respectively.

More formally, we assume that 𝑝𝑑𝑎𝑡𝑎(𝑥) is a distribution that generated the data,

and the generator tries to learn the distribution 𝑝𝑔(𝑥). In order to achieve that we

define a prior on the latent variable z, and a function 𝐺(𝑧; 𝜃) that represents a

mapping from the latent space to the data space. In the context of probability,

𝐺(𝑧; 𝜃) can be seen as a conditional distribution. On the other hand, we define

G

train set

fake example

real / fake

real

example

D
latent

space

37

𝐷(𝑥; 𝜑), whose output is a scalar that represents the probability that x came from

the dataset, rather than being generated from distribution 𝑝𝑔(𝑥)[11]. We are

training the discriminator to maximize the probability of distinguishing between

both the real and generated dataset, and the generator is trained to do the

opposite. This can be seen as a minmax game played with the value function V(G,

D), shown in formula 6.8 [11]:

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[1 − log 𝐷(𝐺(𝑧))]

A theoretical analysis indicated that if both the generator and discriminator are

given enough capacity, the training process will end in a way that the generator

recovers the true data distribution [11]. However, optimizing D in the inner loop is a

computationally challenging task and considering that the model is trained on a

finite training set, will probably lead to overfitting [11]. Instead, we alternate

between optimizing the discriminator and generator cost functions.

Furthermore, a direct implementation of the value function defined with equation

6.8, will cause the gradient vanishing problem. In the early stages of a training

process, discriminator easily distinguishes the real from fake examples and rejects

fake examples with high probability, causing 1 − log 𝐷(𝐺(𝑧)) ≈ 0, and providing no

quality information for the update of a generator. In order to avoid this problem,

generator can be trained to maximize 𝐸𝑧~𝑝𝑧(𝑧)[log 𝐷(𝐺(𝑧))], rather than minimizing

𝐸𝑧~𝑝𝑧(𝑧)[1 − log 𝐷(𝐺(𝑧))] [12].

If we adjust the formula, based on the equality 𝐸𝑧~𝑝(𝑧)[𝐺(𝑧)] = 𝐸𝑥~𝑝𝑥(𝑥)[𝑥], for a

value function V in a way that it only depends on the random variable x, we can

find the function of the optimal discriminator by deriving the value function with

respect to the output of the discriminator.

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[1 − log 𝐷(𝐺(𝑧))]

𝑉(𝐷, 𝐺) = ∫(𝑝𝑑𝑎𝑡𝑎(𝑥) [log 𝐷(𝑥)] + 𝑝𝑔(𝑥)[1 − log 𝐷(𝑥)])𝑑𝑥

Therefore, the optimal discriminator is given by the following formula [11]:

𝐷∗(𝑥) =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)

(6.8)

38

Now, the optimal generator can be calculated by combining formulas for the

optimal discriminator and the value function of the min-max game [11].

𝑉(𝐷∗, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
] + 𝐸𝑥~𝑝𝑔(𝑥) [

𝑝𝑔(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
]

= 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [

𝑝𝑑𝑎𝑡𝑎(𝑥)
2

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
2

] + 𝐸𝑥~𝑝𝑔(𝑥) [

𝑝𝑔(𝑥)
2

𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑔(𝑥)
2

]

= − log 4 + 𝐷𝐾𝐿(𝑝𝑑𝑎𝑡𝑎 ||
𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2
) + 𝐷𝐾𝐿(𝑝𝑔 ||

𝑝𝑑𝑎𝑡𝑎 + 𝑝𝑔

2
)

Since the KL divergence is non-negative and equal to zero only when the two

distributions are equal, the global minimum of the value function with the optimal

discriminator is achieved when 𝑝𝑑𝑎𝑡𝑎 = 𝑝𝑔. The training process associated with

the theoretical background of GANs is shown in Figure 6.11 [11].

,

Figure 6.11. GAN learning process with 1D dimensional input. The black line represents the real
data distribution, the blue line represents the generator’s distribution while the green line
represents outputs of the discriminator. a) the initialization phase where the discriminator is not
trained yet. b) optimizing the discriminator resulting in pdata / (pdata + pg). c) change in the
discriminator's output based on a new generator’s distribution that is more similar to the real data
distribution. d) the equilibrium state where pdata=pg and discriminator cannot differentiate real from
fake data.

a)

c)

b)

d)

39

Generative adversarial networks are hard to train due to the fact that the optimal

parameters are not found by minimizing a single cost function, but by finding the

equilibrium of the game that is played between the two players [12]. Therefore,

convergence is not guaranteed. Furthermore, alternating between optimizations of

the generator and the discriminator could lead to other problems such as mode

collapse [12].

6.3.1. Semi-supervised generative adversarial networks

In order to support semi-supervised learning, we need to make some changes to

the adversarial model. We already said that the discriminator extracts useful

features during the training process. In order to use them for classification, we will

extend the discriminator in a way that it becomes responsible for the classification

of real examples and differentiating the real from fake examples. More formally,

the discriminator will produce K+1 outputs in a form [𝑝𝑦1
, 𝑝𝑦2

, … , 𝑝𝑦𝐾
, 𝑝𝑓𝑎𝑘𝑒], where

K is the number of classes. 𝑝𝑦𝑖
 represents the probability that an example is real

and belongs to the i-th class, and 𝑝𝑓𝑎𝑘𝑒 represents the probability that an example

is fake [12, 13].

The output of a semi-supervised GAN can be easily transformed into the output of

a regular GAN by summing probabilities associated with a real example: 𝑝𝑟𝑒𝑎𝑙 =

∑ 𝑝𝑦𝑖

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑖=1 .

Therefore, the minmax game played between the generator and discriminator

stays more or less the same and is based on 𝑝𝑓𝑎𝑘𝑒. This time the generator will try

to fool the discriminator by producing samples that will cause 𝑝𝑓𝑎𝑘𝑒 ≈ 0. On the

other hand, the discriminator will try to minimize 𝑝𝑓𝑎𝑘𝑒 for examples that came from

the data distribution. Minimizing 𝑝𝑓𝑎𝑘𝑒 implies distributing probability mass among

𝑝𝑖, and using the labeled examples for rearranging the class distribution in order to

improve the classification results.

We proposed a method where semi-GAN is trained as a regular GAN in the first

epochs only by using the unlabeled data in order to force the discriminator to learn

to extract useful adversarial features. In the next epochs, we used cross-entropy

40

loss for the update of the discriminator. Since semi-GAN was pre-trained using

unlabeled data only, we assume that the discriminator learns to bind previously

learnt adversarial features with corresponding class using only labeled data.

An algorithm of semi-supervised GAN model is shown in Pseudocode 6.2.

Pseudocode 6.2. semi-supervised GAN

do

 if current_epoch < 10:

 x_real(1), ... x_real(n) = get_next_batch(unlabeled)

 x_fake(1), ... x_fake(n) = generate_from_generator()

 for step in {'discriminator', 'generator'}:

 loss_d, loss_g = 0

 for i in {1, ... Nbatch}:

 dis_real(i) = discriminator(x_real(i)).get_probability_real()

 dis_fake(i) = discriminator(x_fake(i)).get_probability_real()

 loss_d += -(log(dis_real(i)) + log(1-dis_fake(i)))

 loss_g += -log(dis_fake(i))

 gradφ, gradθ= ∂loss/∂φ, ∂loss/∂θ

 if step == 'discriminator':

 φ = perform_ADAM_update(φ, gradφ) # discriminator

 else:

 θ = perform_ADAM_update(θ, gradθ) # generator

 else:

 x_real(1), y(1), ... x_real(n), y(n) = get_next_batch(labeled)

 x_fake(1), ... x_fake(n) = generate_from_generator()

 for step in {'discriminator', 'generator'}:

 loss_d, loss_g = 0

 for i in {1, ... Nbatch}:

 y'(i) = discriminator(x_real(i)).get_probability(y(i))

 dis_fake(i) = discriminator(x_fake(i)).get_probability_real()

 loss_d += cross_entropy_log_loss(y'(i), y(i))

 loss_g += -log(dis_fake(i))

 gradφ, gradθ= ∂loss/∂φ, ∂loss/∂θ

 if step == 'discriminator':

 φ = perform_ADAM_update(φ, gradφ) # discriminator

 else:

 θ = perform_ADAM_update(θ, gradθ) # generator

until convergence

41

7. Evaluation and results

We have not used raw coverage graphs as inputs for any model, but rather the

signals that are the result of applying the following chain of operations:

• normalization

• down-sampling to the fixed length input

Squashing an output of a coverage graph to the interval [0,1] retains the same

form of the coverage graph, but enables the model to achieve the same

performance as without normalization by virtue of having less complicated

architecture.

Normalization is an optional transformation, but the down-sampling transformation

is compulsory, because the fixed length input is one of the pre-requirements of the

defined models. This hyperparameter needs to be carefully chosen because it

directly affects the performance of the model to a great extent. The down-sampling

effects with respect to the fixed length input are shown in Figure 7.1. In order to

retain all important features of a coverage graph, but still, retain a model that is

computationally efficient we decided to use an input of the length of 500, except

for GANS where we used the fixed length of 100.

Figure 7.1. a) original coverage graph. b) transformations after down-sampling it to the length of
100, 250, 500 and 1000, respectively. It can be noticed that down-sampling to the length of 100
loses information about the height of a peak, while other signals keep all expressive parts of the
coverage graph.

a)

b)

42

All models were trained on the dataset that was composed of overlaps generated

from multiple reference genomes. We used graphmap [14] suited for overlaps

generation by applying the following command:

graphmap -owler -r reads.fasta -d reads.fasta -o output.mhap

We have not used all overlaps because all the classes are not equally frequent.

Since the repeat reads are not as recurrent as the regular ones, and the chimeric

reads are somewhat obscure, running a model on the entire dataset would have

an unavoidable bias towards the regular reads. In order to solve this problem we

have designed a heuristic for detecting class label based on the following features:

• the median of the coverage graph

• the incline of certain parts of the coverage graph

• the mean value of the left and right side of the coverage graph, etc

We used this heuristic in order to somewhat balance the entire dataset. The

dataset split is shown in Table 7.1.

Table 7.1. Data distribution over different sets. The balance of the unlabeled data is contingent
upon the quality of the designed heuristics. The manually labeled data is divided into three sets: the
train, validation, and test which are equally balanced.

Set Number

unlabeled data 21600

labeled data

train 260

validation 60

test 240

During the training process we used:

• a mini-batch of size 32

• a data augmentation based on a random horizontal flip and random

Gaussian noise

The training process was terminated after 50 epochs or when the performance on

the validation set degraded to a great extent. Regardless of the condition that had

terminated the training process, the performance of the model was evaluated on

the test set, based on the model that had shown optimal performance on the

validation set.

43

Training was performed on GEFORCE GTX TITAN BLACK graphic card and

training time did not exceed 30 minutes for the most complicated model.

We trained 4 different models that were described in previous chapters: a simple

feed-forward neural network (FF), a semi-supervised regular autoencoder (semi-

AE), a M1+M2 model (M1+M2) and a semi-supervised generative adversarial

network (semi-GAN). We have tried many different architectures and key details of

winning architectures are shown in Table 7.2.

Table 7.2. Architectures that were used during the training of the described models with the chosen
hyperparameters. conv K/N represents the convolution layer with kernel size K, and N filters, max-
pool represents the max-pooling process, fc M represents the fully connected layer with M output
features, bn represents the batch-normalization layer and conv-1 and max-pool-1 represent a
transpose layer that invert the convolution or pooling operation.

FF SEMI-AE M1+M2 SEMI-GAN

conv 5/16
max-pool
conv 3/32
max-pool
conv 3/64
fc 256
fc 4

encoder
 conv 5/16
 max-pool
 conv 3/32
 max-pool
 conv 3/64
 fc 256
 fc 10
decoder
 fc 8000
 conv 3/64-1
 max-pool-1

 conv 3/32-1

 max-pool-1

 conv 5/16-1

classificaton
 fc 4

m1-encoder
 conv 5/16
 max-pool
 conv 3/32
 max-pool
 conv 3/64
 fc 256
 fc 10
m1-decoder
 fc 8000
 conv 3/64-1
 max-pool-1

 conv 3/32-1

 max-pool-1

 conv 5/16-1
 fc 500
m2-encoder
 fc 64
 fc 64
 fc 3
m2-decoder
 fc 64
 fc 64
 fc 10
m2-classification
 fc 64
 fc 64
 fc 4

generator
 fc 1600
 bn
 conv 3/64-1
 bn
 max-pool-1

 bn
 conv 3/32-1

 bn
 max-pool-1

 bn
 conv 5/16-1
 fc 100
discriminator
 conv 5/16
 bn
 max-pool
 bn
 conv 3/32
 bn
 max-pool
 bn
 fc 256
 bn
 fc 1024
 fc 4

input length: 500

input length: 500
latent size: 10

input length: 500
latent size M1: 10
latent size M2: 3

input length: 100
latent size: 10

non-linearity: ReLU

optimizer: ADAM with learning rate 0.0001

44

As the performance criterion, we used F-score[15], and the results are shown in

Table 7.3.

Table 7.3. Confusion matrices and the corresponding F-score of the optimal models with respect to

the number of labeled examples that were used during the training process (N). Tags C, L, R and N

represent the chimeric read, left-repeat, right-repeat and regular read, respectively. The confusion

matrix was calculated based on the premise that the element corresponding with row x and column

y represents the number of examples that actually belong to class x, and the classifier has

classified them in class y.

FF

SEMI-AE

M1+M2

SEMI-GAN

N=15

 C L R N C L R N C L R N C L R N

C 36 24 31 7 C 40 11 7 5 C 41 4 2 4 C 50 0 4 1

L 16 36 2 7 L 11 48 2 3 L 13 56 0 1 L 2 60 0 0

R 7 0 27 5 R 5 1 51 6 R 6 0 58 0 R 7 0 56 0

N 1 0 0 41 N 4 0 0 46 N 0 0 0 55 N 1 0 0 59

F=0.5833 F=0.7708 F=0.8750 F=0.9375

N=30

 C L R N C L R N C L R N C L R N

C 40 19 9 1 C 44 4 3 1 C 46 1 3 3 C 52 2 1 0

L 10 41 10 9 L 8 50 0 4 L 6 59 0 0 L 3 58 0 0

R 7 0 41 4 R 7 6 55 3 R 6 0 57 1 R 5 0 59 0

N 3 0 0 46 N 1 0 2 52 N 2 0 0 56 N 0 0 0 60

F=0.7000 F=0.8375 F=0.9083 F=0.9699

N=70

 C L R N C L R N C L R N C L R N

C 40 7 5 6 C 47 4 2 2 C 52 1 3 2 C 54 0 1 0

L 11 50 4 8 L 7 56 0 2 L 3 58 0 0 L 3 60 0 0

R 8 3 51 4 R 5 0 58 1 R 3 0 59 1 R 3 0 59 0

N 10 0 0 42 N 1 0 0 55 N 2 1 0 59 N 0 0 0 60

F=0.7408 F=0.9000 F=0.9341 F=0.9708

Due to the fact that all the models have difficulties distinguishing the chimeric

class, we will compare results of the best two models based on their precision-

recall curves [15]. Figure 7.2.shows the precision-recall curve for the chimeric

class only, as well as the mean precision-recall curve over all 4 classes.

Finally, we have extended the assembly process by omitting the reads that were

classified as chimeric and overlaps between the reads that were classified as left

and right repeats. We used the semi-GAN as the classifier, and conducted an

experiment over the following reference genomes: NCTC74, NCTC86, NCTC129,

NCTC204. With this extension, we have assembled all listed genomes and

compared this results with the results of the assembly process where chimeric and

45

repeat reads were not omitted in relation to the number of contigs and NG50

statistic. Contig is a set of overlapping reads that unambiguously determine a

region of the reference genome, and the number of it be seen as a measure of

complexity of the assembly process. NG50 statistic represents the length of the

largest contig in a way that along with the larger contigs covers 50% of the original

genome. NG50 can be seen as a measure of quality of the assembly process.

This comparison is shown in Table 7.4.

Table 7.4. Comparison between the regular and the extended process. NOC represents the

number of contigs, and NG50 represents NG50 statistics.

Extended process

Regular process

NCTC74

NOC=16
NG50=573717

NOC=21
NG50=545944

NCTC86

NOC=53
NG50=187128

NOC=126
NG50=74836

NCTC129

NOC=12
NG50=1008551

NOC=36
NG50=269581

NCTC204

NOC=29
NG50=475910

NOC=39
NG50=319779

Figure 7.2. a) precision-recall curve for the chimeric class only. b) mean precision-recall curve for
all 4 classes. The blue graph represents the curve for semi-GAN, while the green one represents
the curve for M1+M2. X-axis represents recall, while Y-axis represent precision.

The source code with all implementation detail is hosted on the GitHub repository:

https://github.com/tomislavsebrek/diplomski.

a) b)

46

7.1. Discussion

Based on the results presented in Table 7.3., we can notice that all semi-

supervised models achieved better results when compared with the model that

had only used deficient labeled set only. Therefore, we can draw a conclusion that

unlabeled data in some way helps classifiers to make better predictions.

We can also notice that M1+M2 and semi-GAN outperform semi-AE regardless of

the number of labeled examples that was used during the training, and based on

the results in Table 7.3., we may infer that the semi-GAN shows slightly better

performance when compared with the M1+M2 model. However, this difference

diminishes as we increase the number of labeled examples, and due to the fact

that both models have problems with detecting chimeric reads, we compared them

based on their precision-recall curves.

Figure 7.2. shows that based on the area under the curve, we can infer that the

semi-GAN outperforms the M1+M2 model, regardless of the chosen threshold for

detecting chimeric reads.

Also, since omitting chimeric reads by classifying them as regular is a worse

scenario that classifying a regular read as chimeric, we can decrease the

threshold for detecting chimeric reads and position the classifier at the point of the

precision-recall curve where the recall is greater than precision. That way more

reads will be detected as chimeric, but only a small number of chimeric reads will

be omitted.

Considering all presented results, it can be inferred that the semi-GAN is the best

classifier for this problem, despite the fact that we used coverage graphs down-

sampled to the length of 100 as its input. We tried different experiments, but they

failed to deliver better results. Because of that and having in mind that the model

which uses down-sampled signal of a shorter length will be computationally

efficient at the test time, we proclaimed the semi-GAN as the optimal classifier.

Also, we want to emphasize that detecting reads as chimeric or repeat has not

been studied before, so we cannot compare our results with other approaches.

Furthermore, there is no guarantee that the created test set is challenging enough.

Therefore, the results achieved by extending the assembly process are important

47

proof that we built a good classifier which can reduce the number of contigs and

thereby facilitate the assembly process.

7.2. Visualization

Another guarantee that the training process went in the right direction is the

visualization of the latent variables. Even though we drastically decreased the

number of dimensions, the latent space is still too dimensional for visualization.

Due to this fact, we used t-SNE, a machine learning algorithm for dimensionality

reduction, for embedding the high-dimensional latent space into a space of two

dimensions [15]. This visualization is performed over the test set and the results

are shown in Figure 7.3.

Figure 7.3. Visualization of the latent vectors of size 10 using t-SNE extracted by the a) semi-VA,
b) M1+M2, c) semi-GAN. The red, green, blue and yellow circles represent examples from the
dataset that were labeled as chimeric reads, left-repeats, right-repeats and regular reads,
respectively.

a) b)

c)

48

Considering the visualizations shown in Figure 7.3, we can infer that the class

groups associated with semi-GAN and semi-AE are more detached and coherent

than the groups associated with the M1+M2 model. One of the reasons is the fact

that semi-GAN and semi-AE both use extracted features as input in the

classification part of the model, while the M1+M2 model's classification part is

separated from the feature extraction, and is performed on the raw input.

Further on, in order to represent the idea of a two-dimensional manifold, we

trained a variational autoencoder with the same parameters, but with the latent

size 2. We then sampled a two-dimensional latent space and generated coverage

graphs from it. We visualize the generated coverage graphs so that the graphs

generated from latent vectors that are close in Euclidian space, remain

topologically close in a manifold as well. This visualization is shown in Figure 7.4,

and proofs that high dimensional data can be described with a small number of

features and the smooth transitions among coverage graphs confirm that the

model can interpret data through the two-dimensional manifold.

Figure 7.4. Visualization of the generated coverage graphs from 2-dimensional latent space. The
axes represent equally spaces latent variable values between -3 and 3. It can be noticed that the
coverage graphs placed in the center correspond with the chimeric reads, while the coverage
graph placed on the edge corresponds to the left or right repeat.

49

In Figure 7.5 we compare the reconstruction of the input signals that are based on

the regular and variational autoencoder having in mind that reconstruction, as well

as feature extraction, is not the main purpose for which a variational autoencoder

is used. It can be noticed that both models reconstruct the left repeat with

adequate precision, but they both fail to cover the peak in the coverage graph of

the chimeric read. However, chimeric reads can be recognized and classified

correctly by a concave valley located around the peak in the coverage graph, even

though it does not look very plausible.

Figure 7.5. a) and b) original signal (blue) and its reconstruction (green) using a regular
autoencoder. c) and d) original signal (blue) and its reconstruction (green) using a variational
autoencoder.

Furthermore, we compare the examples generated from the variational

autoencoder and generative adversarial network. This comparison is shown in

Figure 7.6. It can be noticed that GAN can generate coverage graphs with more

credible details while VAE tends to generate smooth coverage graphs, since it

does not have a capacity to model sudden changes in the coverage graph.

a) b)

d) c)

50

Figure 7.6. a), b) and c) coverage graphs generated by VAE. d), e) and f) coverage graphs
generated by GAN. It can be noticed that the coverage graphs generated by VAE co not look as
plausible as the ones generated by GAN.

a) b)

c)

d) e)

f)

51

Finally, we will show the generated samples from GAN with respect to the epoch

in the training process in Figure 7.7. It can be noticed that as the training process

approaches its end, the generator generates more plausible examples.

 a) b)

 c) d)

Figure 7.7. Coverage graphs presented by the generator in different phases of the training
process. a) generated graph at the beginning of the training process looks more like random noise
than a coverage graph. b) generated graph after the first epoch of the training algorithm starts to
look like the right repeat due to the tendency of growth towards the right part. c) generated graph
after 10 epoch of the training algorithm is smoother and contains conspicuous characteristics of the
coverage graph associated with the right repeat, but its maximum is not reached in 1 as it is in all
the real dataset examples, due to normalization. The discriminator can easily distinguish the real
from fake examples based on that feature. d) generated graph at the end of the training process
has the same maximum as any normalized graph so the discriminator needs to differentiate
coverage graphs based on form rather than trying to trick the generator by checking if the coverage
graph is normalized or not.

52

8. Conclusion

The main aim of this thesis was creating a method for classifying the coverage

graph of a read as chimeric, repeat or regular. We implemented three models

based on semi-supervised deep learning: a regular autoencoder, an M1+M2

model, and a semi-supervised generative adversarial network.

We have created a database and manually labeled some reads in order to

evaluate all the models. Based on the results of the evaluation, we inferred that all

semi-supervised models have achieved better results that a model with the similar

capacity that used only the deficient set of labeled examples.

Among all the proposed methods, the model that is based on a semi-supervised

generative adversarial network showed the best performance on the dataset that

we created for the purposes of this thesis. Moreover, this method outperformed

other models regardless of the number of labeled examples that were used during

the training process.

We embedded this detection based on the semi-supervised generative adversarial

network in the assembly process, and successfully reduced the complexity of the

overall process. Based on this result and the results of the cross-validation, we

can draw a conclusion that a semi-supervised generative adversarial network is

well suited for coverage graph detection.

Nevertheless, we can still improve this work and the easiest way to do this is to

collect more labeled data. On the other hand, a more challenging improvement

would entail choosing a labeled set which would better reflect the data distribution.

53

9. Bibliography

[1] Alpaydin E. Introduction to Machine Learning: Introduction. London: The

 MIT Press, 2004.

[2] Alpaydin E. Introduction to Machine Learning: Supervised Learning.

 London: The MIT Press, 2004.

[3] Goodfellow et al. Deep Learning:Deep Feedforward networks. London: The

 MIT Press, 2016.

[4] Ioffe, Schegedy. Batch Normalization: Accelerating Deep Network Training

 by Reducing Internal Covariate Shift. Cornel University Library, 2015.

 Available: https://arxiv.org/abs/1502.03167

[5] Chapelle et al. Semi-Supervised Learning:Introduction to Semi-Supervised

 learning. London: The MIT Press, 2006.

[6] Goodfellow et al. Deep Learning:Autoencoders. London: The MIT Press,

 2016.

[7] Doersch C. Tutorial on Variational Autoencoders, Cornel University Library,

 2016. Available: https://arxiv.org/abs/1606.05908

[8] Durr, Introduction to variational autoencoders. 2016. Available:

 https://home.zhaw.ch/~dueo/bbs/files/vae.pdf

[9] Kingma et al. Semi-supervised learning with deep generative models,

 Cornel University Library, 2014. Available: https://arxiv.org/abs/1406.5298

[10] Kingma, Semi-supervised learning with deep generative models. Available:

 http://musyoku.github.io/2016/07/02/semi-supervised-learning-with-deep-

 generative-models/

[11] Goodfellow et al. Generative adversarial networks, Cornel University

 Library, 2014. Available: https://arxiv.org/abs/1406.2661

[12] Goodfellow I. NIPS 2016. Tutorial: Generative adversarial networks,

 Cornel University Library, 2016. Available:

 https://arxiv.org/abs/1701.00160

54

[13] Odena A. Semi-Supervised Learning with Generative Adversarial Networks,

 Cornel University Library, 2016. Available:

 https://arxiv.org/pdf/1606.01583.pdf

[14] Sovic I, Graphmap - A highly sensitive and accurate mapper for long, error

 prone reads. Available: https://github.com/isovic/graphmap

[15] Šnajder J. Vrednovanje modela, IPythonNotebook, 2015. Available:

 http://nbviewer.jupyter.org/github/jsnajder/StrojnoUcenje/blob/master/noteb

 ooks/SU-2015-10-VrednovanjeModela.ipynb

[16] van der Maaten L.J.P., Hinton, G.E., Visualizing High-Dimensional Data

 Using t-SNE. Journal of Machine Learning Research. 9: 2579-2605, 2008.

 Available:http://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten0

 8a.pdf

Classification of 1D-Signal Types Using Semi-Supervised Deep Learning

Abstract

In this thesis, we proposed methods for detecting the type of the coverage graph

based on semi-supervised deep learning models: autoencoders and generative

adversarial networks. We evaluated the performance of each model based on the

dataset that contained reads from multiple reference genomes. We have manually

labeled some of the data and compared the results of all models with respect to

the number of labeled examples that were used during the training process. We

have embedded this detection in the assembly process and achieved good results.

The source code is available at https://github.com/tomislavsebrek/diplomski.

Keywords: deep learning, autoencoder, generative adversarial network, semi-

supervised learning, coverage graph, chimeric read, repeat read

Identifikacija tipova 1D-signala pomoću polu-nadziranog dubokog učenja

Sažetak

U okviru ovog rada, predložili smo metode za detekciju tipova grafova pokrivenosti

na temelju polu-nadziranih modela dubokog učenja: autoenkodera i generativnih

suparničkih mreža. Testirali smo performanse svih modela koristeći bazu koja

sadržava očitanja s više referentnih genoma. Ručno smo označili dio podataka i

usporedili rezultate s obzirom na količinu označenih primjera koji su bili korišteni

prilikom treniranja. Ovu detekciju smo ugradili u proces sastavljanja i dobili dobre

rezultate. Izvorni kod je dostupan na https://github.com/tomislavsebrek/diplomski.

Ključne riječi: duboko učenje, autoenkoder, generativni suparnički model, polu-

nadzirano učenje, graf pokrivenosti, kimerno očitanje, ponavljajuće očitanje

