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Abstract

Application architectures in the cloud employ elastic components, and
achieve lower operating costs without sacrificing quality. Software archi-
tects strive to provide efficient services by deciding on software topology: a
set of structural architectural decisions. For a given application, there can
be numerous software topology alternatives creating the need for automated
optimization methods. Current optimization approaches rely on experts pro-
viding application performance models built upfront, based on their experi-
ence and the requirements provided. While such techniques are effective and
valuable, they require additional maintenance effort as the software evolves.

This paper introduces ElaClo, a framework for optimizing application
topologies in a cloud environment. ElaClo’s main contribution is in providing
optimization in the software assembly phase from automatically extracted ap-
plication models. ElaClo provides workload generation, monitoring, topology
management, elasticity mechanisms, and algorithms to support the optimiza-
tion process. We have implemented ElaClo as an expert tool and evaluated
it on a real-life cloud application from the retailing business domain. Ela-
Clo was used to select optimal topologies with regards to service response
time objectives and infrastructure costs. The efficiency of the optimization
process and the quality of optimization results were validated quantitatively
on a set of optimization runs. Results demonstrate the effectiveness of the
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suggested framework in yielding optimal topologies.

Keywords: software architecture, cloud computing, service-oriented
computing, application topology, service deployment, evolutionary
optimization

1. Introduction

Software architectures encompass one or many software structures that
affect the ways systems achieve functional and non-functional requirements
(Clements et al., 2010). Such structures reveal software elements, relations
among them, and properties of both. Designing and maintaining software5

architecture is a critical software engineering process, and as such, it should
be based on informed decisions. Relying only on end-result performance
measurements tends to hide some fallacies conducted throughout the devel-
opment. Decision making in designing architectures is an important research
focus revealing many common mistakes that software architects make (van10

Vliet & Tang, 2016).
One important aspect of the software architecture decision process is ad-

dressing quality attributes (Ameller et al., 2015), which are shown to be
at least as important as functional requirements in service-based systems
(Cardellini et al., 2009). In this paper, we are especially concerned with15

topology decisions that influence the performance of service-based end appli-
cations provisioned in the cloud infrastructure.

Reasoning on optimal software deployment structures for applications in
cloud environments with dynamic resource provisioning is a non-trivial task
with several concerns: it is not easy to prepare a sufficiently large testing20

workload that will expose bottlenecks and non-elastic behavior, nor to ar-
range relations among components providing end services, especially on how
to arrange deployment of such components to a cloud infrastructure. One
encounters many questions like: Should software components be consolidated
and deployed as a composite, or separated into multiple components? How to25

evaluate different benefits across such decision space (consolidation vs. sep-
aration) regarding operational infrastructure costs and performance? What
topology bests suits my specific workload? Is there an optimal solution and
how sensitive is it to workload volatility? How to design efficient scaling
policies based on these decisions? To answer these questions, software archi-30

tects usually rely on simple tests like maximum load testing, trial and error

2



iterations, and mostly intuition by choosing simplest, but not necessarily the
optimal solution.

There are methods for simulating cloud applications (Calheiros et al.,
2011) based on simplified application models, but require additional inspec-35

tion, knowledge and effort for every iteration of the development process.
Most architecture optimization techniques support architects by advocat-
ing design-time performance models (Koziolek et al., 2011; Mostinckx et al.,
2009), which are very useful for early insights on future system behavior, but
are quite challenging to build. They demand an experienced architect who40

can predict future performance metrics such as average CPU cycles for many
different tasks throughout the system. A systematic overview of existing per-
formance evaluation methods for distributed systems is given by Akinnuwesi
et al. (2012).

Once the initial component implementation is achieved, early perfor-45

mance tests often expose deviations from early design-time models that un-
dermine the whole integrity of the optimization process. New techniques
that are based on measurements of targeted quality criteria are required to
support optimizations after initial implementations.

In previous work (Tanković et al., 2015b) we demonstrated that a näıve50

structural solution can be sub-optimal even for simple web applications with
a few components, so we made further advancements and developed a frame-
work for evaluating different service-based application topologies in a cloud
environment backed with evolutionary optimization algorithms and simula-
tion models.55

The main contribution of this paper is the design and implementation
of the ElaClo framework for optimizing topologies of service-based applica-
tions that use cloud resources in an elastic manner under desired performance
targets. Using ElaClo, software architects are provided with an expert sys-
tem that gives insight into different application topologies and their effect60

on overall quality and cost of applications. Topology decisions can be eval-
uated after initial implementation of software components with the ability
to determine optimal cloud topologies with respect to performance and in-
frastructure costs. Since performance models are automatically extracted by
ElaClo from artifacts, topology optimization can be repeated throughout the65

process of software evolution with no need to constantly update application
performance models.

We believe these contributions mitigate the gap in existing expert systems
literature, providing a framework for achieving tactical decisions in crafting
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elastic application architectures. Existing runtime optimization tools concen-70

trate only on a single elastic component or elasticity that is achieved strictly
by deployment tiers. These design-time tools are not backed by measured
component performance but rather employ performance models with limited
support for accommodating elastic behavior.

The remainder of this paper is organized as follows. Section 2 provides75

theoretical background. Section 3 defines the topology model used through-
out the paper and enumerates challenges involved with making topology
decisions. Design and implementation of ElaClo are described in Section 4.
Section 5 describes the evolutionary optimization process applied by ElaClo
using simulation models. Section 6 describes validation goals and methodol-80

ogy, which is further applied to a case study on the CashRegister application.
Section 7 elucidates related work, and Section 8 concludes the paper provid-
ing future work incentives.

2. Background

Service-Oriented Computing has gained a lot of traction in the past85

decade due to the many benefits of developing software as a set of decen-
tralized and loosely-coupled services enabling flexible software systems (Wulf
et al., 2008; Papazoglou & Georgakopoulos, 2003). Software Oriented Archi-
tecture or SOA, when referred to as a paradigm, encompasses a set of guiding
principles for building Service-Based Applications (SBAs) (Nitto & Meilan-90

der, 2012). A more recent trend, in the form of Microservice architecture
reinstates the same principles in a more developer-friendly way easing the
rigorous SOA principles and patterns (Thönes, 2015). The underlying con-
cept remains: software construction should be based on a set of independent
software units, where each unit can be constructed, maintained, deployed,95

and evolved independently.
The question whether SBAs are much easier to maintain and evolve than

holistic approaches is largely influenced by application size. To avoid over-
design, novel software applications start small as monolithic applications
composed of loosely-coupled components and evolve their way into a SBAs100

by incremental extraction of components into standalone artifacts (Newman,
2015). Extraction decisions should be based on application size, structure,
workload characteristics, and service reuse potential. Thus, we will regard
application components as base building blocks that can then be further
exposed through different web services.105
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Figure 1: Concepts and roles involved around our research context

Cloud computing has emerged as a natural solution for on-demand re-
source provisioning, and is especially suited to provisioning SBAs with volatile
workloads. Cloud and Service-Oriented Computing fit together well with
each other (Dillon et al., 2010). Cloud platforms allow dynamic leasing of
resources based on a pay-as-you-go model, a cost model that is desirable110

for service providers who exploit automatic control of resource consumption
based on quality of service (QoS) attributes. Cloud infrastructure providers
expose developer-friendly APIs for managing cloud resources, e.g. manag-
ing Virtual Machine (VM) lifecycles. However, crafting software applica-
tions amenable to such dynamic infrastructure capabilities is not a trivial115

task. The balance between infrastructure costs and service quality is hard
to achieve, and involves additional concerns like specialized monitoring and
scaling control algorithms.

This work will use terms Service User, Service Provider and Infrastruc-
ture Provider as displayed in Figure 1. The Service user is regarded as the120

consumer of the software service. Overall software service is represented as
a composition of individual components arranged in some topology. It is
designed, developed and maintained by service providers, and provisioned on
infrastructure leased from infrastructure providers.

Cloud computing concepts are considered best utilized when service providers125

5



tune their software applications to satisfy consumer’s demands in an optimal
cost-efficient way. Service providers guarantee performance levels to their
consumers through Service-Level Agreements (SLAs). They employ various
software controllers that dynamically lease infrastructure in order to maintain
these levels (Wu et al., 2013), e.g. leasing additional resources in intensive130

workload periods.
There are also research techniques for integrating SLA goals into the

software development phase (e.g. directly into the source code), enabling a
much better control over application performance (Copil et al., 2013), which
simplifies service-level performance specifications. But the main problem for135

service providers is still present in something we refer to as the SLA sandwich
problem, where service providers must devise a way to design their software
solutions so that performance levels are met. For that, success is heavily
influenced by software architecture decisions. Cloud infrastructure providers
typically offer SLAs in terms of infrastructure availability, or so-called uptime,140

while service providers are required to offer performance-related SLAs, often
as response time percentiles (Xiong & Perros, 2009). These two measures are
incomparable, e.g. better infrastructure availability will not lead to better
application performance.

There is a large amount of research introducing mechanisms for opti-145

mal resource provisioning at infrastructure-, platform- and application-levels
(Galante & De Bona, 2012). There is also a lot of research focused on study-
ing runtime dynamics of an application such as the construction of rule-
and model-based controllers for elasticity (Huang et al., 2014). However,
there is little work present on how to structurally design software to be150

cost-effective in the cloud. In this paper, we emphasize the importance of
application topology : a development and deployment aspect of software ar-
chitecture concerning the structures of software components, together with
their allocation of physical resources. Satisfying quality attributes through
software architecture is recognized as important direction in a comprehen-155

sive study on software architectural decisions (Tofan et al., 2014). The term
application topology was introduced in the TOSCA specification (Binz et al.,
2014) referring to the structural and deployment view on software architec-
ture by laying out components and corresponding deployment infrastructure.
Since a given set of software components and infrastructure parts can yield160

numerous topologies, each of which affects costs and performance differently,
we are interested in eliciting the most cost-effective one. This is especially
important when the incoming workload is volatile where software elasticity
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plays a crucial role (Tanković et al., 2015b).

3. Definitions and Challenges165

In order to systematically explore different solutions from feasible topolo-
gies, we propose a topology model that combines application components
into elastic services deployed on dynamic infrastructure. This model is rep-
resented by Application Topology Graph (ATG) based on the semantics of
Unified Modeling Language (UML) Component and Deployment diagrams170

(OMG, 2015). In this section we describe ATG and present research chal-
lenges.

3.1. Application Topology Graph

Application topology is a structural description of applications compo-
nents, their mutual relations, and mapping to infrastructure resources (Binz175

et al., 2014). In this work, we will focus on the computing resources in form of
virtual machines (VMs) and software applications as composition of software
components.

In previous work, we analyzed how different combinatorial solutions achieved
by different mappings between components and resources (VMs) effect both180

application performance and total cost (Tanković et al., 2015b). The current
efforts in choosing optimal deployment mappings are mostly based on trial
and error or applying best practices (Newman, 2015).

ATG structure is used to represent all topological combinations of given
components and their relationships. It is a scalable topology model that185

achieves elasticity by combining components into elastic groups (EGs), where
each EG is a self-scalable compound component with its own scaling rules
and mechanisms.

ATG is defined as a directed graph GATG which is composed of four sub-
graphs

GATG = GCS ∪GEG ∪GRT ∪GD

namely service structure graph GCS, elastic grouping graph GEG, resource
type graph GRT and deployment graph GD.190

The component structure graph is defined as

GCS = (C,EC)

where C represents a set of components, and EC = {(ci, cj)|i 6= j, ci, cj ∈ C}
represents dependency relationships among them.
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An elastic grouping graph is a connected bipartite graph connecting
components to elastic groups:

GEG = (C,P,ECP )

where each component from C belongs to some partition contained in P ,
a super-set of all possible elastic groups (EGs). Mapping from components
in C to groups in P is represented by ECP = {(ci, pj)|ci ∈ S, pj ∈ P, pj =195

fC→P (ci)}, where component-group mapping surjective function fC→P : C →
P assigns each component to an elastic group so that no component can be
in more than one group and there are no empty groups, that is ∀p ∈ P, ∃c ∈
C, fC→P (c) = p.

A resource type graph is a mapping that dedicates a certain resource
type w ∈ W to every elastic group:

GRT = (P,W,EPW )

where each group from P is mapped to a resource type from W represented200

by EPW = {(pi, wj)|pi ∈ P,wj ∈ W,wj = fP→W (pi)}. Typically, each type
represents different resources that service providers offer through a different
set of virtual machine characteristics (e.g. amount of CPUs or RAM). A
resource type is dedicated to each elastic group, which will bind components
to specific VM types in the deployment and elastic processes.205

Finally, a deployment graph is also a bipartite graph connecting elastic
groups to resources:

GD = (P,R,EPR)

where each group from P is connected to a resource from R by deployment
mapping EPR = {(pi, rj)|pi ∈ P, rj ∈ R, pi = fP→R(rj)}. Again, fP→R is a
surjective function meaning that every reserved resource must be mapped to
EG. An example of both grouping and deployment functions is schematically
represented in Figure 2.210

An example of ATG instance is given in Figure 3 displaying dependency
relationships between Invoice, Reporting and Resource components together
with mappings to elastic groups and deployment infrastructure. For better
understanding, Figure 4 shows an example of the transformation of ATG to
UML component and deployment models.215

The task of the ElaClo tool will be to explore different mapping func-
tions fC→P , fP→W , and fP→R for optimizing quality criteria. The following
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Figure 2: Schematic representation of mappings functions: fP→R and fC→P
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Figure 3: An example of Application Topology Graph (ATG)

subsections will lay out the optimization problem and disseminate the chal-
lenges involved in selecting appropriate topologies by explaining the effects
of different topology related decisions to the performance of the application.220
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Figure 4: Application Topology Graph is similar to combined UML Component and De-
ployment diagrams

3.2. Optimization problem

The problem of selecting optimal topologies is a combinatorial one where
the search space of all possible topologies T is defined by the available com-
ponents C and available resource types W . The optimization goal is to find
a set of optimal topologies T ∈ T defined by one or many objective functions225

Φq : T → Vq where Vq is a set of all possible quality measures for a given
quality criteria q. Each chosen q must have associated set Vq that is totally
ordered with an antisymmetric, transitive and total binary relation on Vq so
that any two values in Vq can be compared.

The unique characteristic of this optimization problem is that it is de-230

pending on run-time optimization of the number of resources used (Figure
5): optimal allocation to elastic groups and resource types is dependent on
run-time optimization of number of resources used which means new solving
techniques must be developed which can take into consideration optimiza-
tion behavior of application topologies in run-time, known as application235

elasticity.
The search space T represents all possible combinations of mapping func-

tions fC→P and fP→W . The size of T can be expressed using the Stirling
number of the second kind (Sharp, 1968) S(n, k), which gives the total count
of combinations for allocating n elements into k sets (Equation 1).240

S(n, k) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n (1)

The possible elastic groups number for an application can vary from one
(all components in single group) to n = |C| (each component in an isolated
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elastic group), which gives the total number of possible topologies |T|:

∣∣KM
∣∣ =

n∑
k=1

S(n, k) · k|W | , n = |C| . (2)

.
Even for a small number of components, it is evident that search space245

grows quickly which makes sequential candidate evaluations unfeasible, and
dictates the need for the application of search-based optimization methods
(Bianchi et al., 2009).

3.3. Infrastructure cost model

ElaClo calculates total infrastructure costs based on a provided cost
model. The most basic version provided by ElaClo is a cost model for leas-
ing virtual machines. It involves different types of resources r in a form of
virtual machines that can have distinct characteristics specified by virtual
machine type type(r) = w ∈ W where every type w has a corresponding cost
UCOST (w). Users are billed for virtual machine usage by predefined inter-
vals of usage tcost, which is typically a 1-hour interval. Total usage cost of a
resource r during time t is expressed as

COST (r, t) = d t

tcost
e ∗ UCOST (type(r)).

The provided cost model is used by almost every cloud infrastructure250

provider. There are also more advanced cost models available by some of the
providers (e.g. auction-based models) but these are not included in current
ElaClo version.

3.4. Topology effects on inter-component communication

Service-based architectures emphasize communication and collaboration255

that is often taking place on the network. One of key performance issues that
software architect must consider is communication latency. A careful balance
of local and remote communication among components is essential. Table 1
shows typical latencies involved in software engineering (Gregg, 2013). La-
tencies and overall communication cost penalties between remote components260

makes topology decisions in service-based applications very important.
For example, if we place Reporting and Invoice components from the

CashRegister case on the same virtual machines we can gain a 1000-10000
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Event Duration

One 2GHz CPU cycle ∼ 0.5 ns
Main memory access (DRAM from CPU) ∼ 100 ns
Loopback TCP socket (same machine) ∼ 10 µs
LAN ∼ 1 ms
WAN (San Francisco to New York) ∼ 40 ms
WAN (San Francisco to Australia) ∼ 183 ms
Adding and booting a new VM ∼ 2 m

Table 1: Example time scales of latencies.

fold reduction in round-trip latency between these two components by con-
ducting communication within the same memory-space (e.g. method invo-265

cations) rather than through the invocation of remote communication pro-
tocols. Distributing applications across multiple services hinders end-to-end
service latencies, so a careful balance on component distribution and consol-
idation decisions is required. It is obvious that topologies in which services
are isolated have higher overall latencies than topologies that consolidate ser-270

vices on same resources. However, it is also preferred to isolate services from
a maintenance and reliability point of view.

Challenge 1: How many services can we isolate without significantly
affecting overall end-to-end latencies?

3.5. Topology effects on service-level objectives275

There are different types of Service-Level Objectives (SLOs) in the lit-
erature (Wu & Buyya, 2010). In this work, we decided to design ElaClo
around Service-Level Agreements composed of SLOs based on quite common
quality attribute: service response time (latency). These types of SLOs are
critical for real-time services targeting fast response times. We are especially280

interested in percentiles of the response time metric since average values do
not address concerns of service users satisfaction properly (Xiong & Perros,
2009). Response time percentiles reveal statistical aspects of measured re-
sponse times across usage. For instance, the service user can demand that
95% of all requests must be completed under a targeted response time. Under285

these assumptions, we see that the distribution of the response times becomes
a very important factor. In this chapter, we provide a theoretical argument
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for different impacts that topology choice can have on service response time.
If we represent service response times with a random variable TS, and

the distribution of TS with fTS
, then we can express required response time290

percentile τ% and targeted response time tmax:

viol% =

∫ ∞
tmax

fTS
(t)dt · 100% (3)

viol% ≤ τ% (4)

This imposes a preference on the distributions fTS
that are characterized

by smaller right tails. It can easily be seen that long tailed distributions
with higher variability will require a larger upper bound tmax, and will thus
have weaker SLAs. More specifically, by applying theoretical discoveries295

from queuing theory, a measure called coefficient of variation (C2
S) is very

important to explain delays in queuing systems (Harchol-Balter, 2013).

C2
S =

V ar(t)

E[t]2
(5)

C2
S is directly correlated with the variance of the response time variable.

Therefore, a more stable service in terms of response time will achieve better
response time percentiles. If we analyze services as queuing systems models,300

there are two factors causing variability in response time: (1) distribution
of the inter-arrival times of incoming requests, and (2) the distribution of
service times of the system. Since we can hardly effect the former because
it is often based on many software usage scenarios, ElaClo will concentrate
on latter by inspecting different topologies and their effects on response time305

distribution in the form of SLA percentiles violations. Based on that, we
formulate our next challenge.

Challenge 2: By choosing topologies where highly variable services are
isolated, we can lower the overall service coefficient of variation (C2

S), and
thus reduce the SLA violation rate. The challenge again remains in the310

careful choice over which services to isolate.

3.6. Practical challenges

Exploring different topologies by manual adaptation, packaging, deploy-
ment, and configuration of services is a tedious task (Durán & Salaün, 2015).
Each topology additionally requires setting elastic capabilities and policies315
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in the form of different monitoring processes, controllers, and load balancers
for each service.

In order to conduct a proper performance test, there is also an issue
involving the choice and configuration of a load testing request generator that
will realistically replicate usage scenarios. In previous studies we analyzed320

incoming workloads in business cloud applications (Tanković et al., 2015a)
and derived a set of requirements for a synthetic workload generator:

• specifying a workload mix : a set of incoming service calls representing
a combination of different user requests simultaneously;

• variable intensity for elasticity testing: at least a linear model for spec-325

ifying the change in intensity measured in number of requests per time
unit should be supported;

• a stochastic process of incoming requests arrivals: a Poisson process
or similar model should be used to simulate the arrival of incoming
requests.330

Software services with only a few components can yield numerous topolo-
gies that require a systematic and time-consuming process for evaluating each
one.

Challenge 3: How to alternate between different topologies in a fast and
seamless way in order to evaluate different topologies efficiently? How to test335

each topology with a realistic workload?

4. The ElaClo Framework

In order to address the challenges presented in Section 3, we propose
ElaClo: a cloud-based framework for optimizing application topologies based
on service response times and operating cloud infrastructure costs. This340

section will elaborate on the usage of ElaClo, together with explanations of
the details of ElaClo structure and implementation.

We propose ElaClo as a distributed system divided into:

• ElaClo Application components in form of an application framework
for source code annotation and monitoring presented in our previous345

work (Tanković et al., 2015b).

• ElaClo Development Environment components represented by a web
application for evaluating the performance of different topologies.
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Figure 6: ElaClo framework overview

Figure 6 shows a high-level overview of the ElaClo framework. The topol-
ogy for each test scenario is being configured in run-time by the ElaClo350

Development Environment components controlling the ElaClo Application
components. Application components record the throughput and latencies
of each application instance in order to deduce performance characteristics
of each topology. We will provide more details on all the ElaClo components
in Section 4.3.355

4.1. Usage Methodology

Figure 7 shows a possible workflow when applying ElaClo in iterative
software development. In order to conduct the test of different topologies,
the developer must specify the workload for the tests consisting of a workload
mix: multiple service requests (operations) o ∈ O and intensity function λ(t).360

Each service request consists of the URL, HTTP headers, and request pay-
load. Since there can be many service request types in a defined workload,
a probability of occurrence for each operation is also required with the con-
straint that

∑
o p(o) = 1. More details on modeling and generating workload

is provided in Section 4.3.1.365

Alongside the workload model, users must also provide accompanying
response time SLOs for each service operation t

(o)
max,∀o ∈ O and required

response time percentile τ%.
Usually, there are many topologies to evaluate for a given application.

Sequential evaluation of each topology in the cloud is time and resource de-370

manding and often not feasible. In order to propose promising candidates
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Figure 7: Overview on process of using ElaClo; variations are possible according to specific
software development process

for evaluation in advance, ElaClo extracts a performance model from the ap-
plication automatically that is used in the optimization process conducted in
the simulation environment. This results in reducing the number of promis-
ing topologies that can be re-evaluated on cloud infrastructure. This process375

is described separately in Section 5.
If required, a custom topology can also be evaluated. For that, the appli-

cation developer must provide the fC→P , fP→W and fP→R mapping functions,
defined in Section 3. In ElaClo tool implementation we represented fC→P

and fP→W mappings with a drag-n-drop user-interface for arranging avail-380

able components into elastic groups. Figure 8 explains the user interaction
elements provided by the topology section of the ElaClo user-interface. For
convenience, a list of available topologies is also displayed. An example of the
available topologies for the CashRegister case study application is displayed
in Figure 9.385
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1

2

3

5

4

Figure 8: ElaClo user interface to define a custom topology based on our proposed topology
model. Annotations: 1 Elastic groups that contain multiple components, 2 Every

component in an elastic group can be dragged into another group, 3 The initial number

of VMs assigned, 4 Public IP addresses of assigned VMs with deployed components, 5
Selection of VM type per group

For each topology T(i) there exists a corresponding f
(i)
C→P mapping func-

tion defined by application developers. The deployment mapping function
fDPL can be derived automatically by ElaClo, by assigning one available
VM to each elastic group. Application developers can alter these starting
assumptions by specifying the number of VM resources for each group. Note390
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that these are only the starting allocations, since there exists elasticity con-
trol that can alter the number of resources in run-time according to test
workload needs, which makes fDPL mapping dynamic.

3

2

1

Figure 9: ElaClo interface for selecting topologies. Topologies are separated according to
the number of elastic groups: 1 Topology with one group, 2 Topology with a maximal

number of groups. The number of available topologies is also displayed 3 .

Once the topology has been selected, and workload and SLA both defined,
evaluation can start. ElaClo generates the desired workload and collects395

results from each topology evaluation run. Finally, a comparison among
each topology performances is provided. We cover this in section 4.2.

4.2. Results analysis and SLO tuning

Upon evaluating candidate topologies, the following metrics are available
for each candidate:400

• Average throughput and response time for services provided by all com-
ponents,

• SLA violations expressed as percentage of violations pv. Ideally, pv
should be within limits defined in SLA, that is pv ≤ (1− τ%) where τ%
is the required response time percentile defined in Section 3.5,405
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• Total infrastructure costs according to the cost model from Section 3.3.

On the Analysis part of the user interface, ElaClo displays and compares
all topology results, flagging topologies that do not satisfy defined SLA, as
displayed in Figure 10. If there are no topologies that completely satisfy SLA,
it is possible that SLA is to strict or the application has a performance prob-410

lem. The developers can observe performance metrics for each application
component. If SLAs are being met by more than one topology, application
developers can rank them depending on their preferences: cost-savings vs.
improved performance leading to stricter SLAs. ElaClo can rank topologies
according to these criteria.415

If the resulting chosen topology T(final) has some elastic groups that con-
tain more than one component, the application designer can decide to create
a composite and provide them through single web service. Ideally, the devel-
oper combines all services in every group P (i) having |P (i)| > 1, where

P (i) = {s|(s, gi) ∈ E(final)
SP }

and E
(final)
SP are edges of subgraph GEG contained in T(final) (as defined in

Section 2). For example, Figure 11 displays how Invoice and Fiscalization
components from the CashRegister application can be combined into a single
service and thus collocated at same hardware resources. This process in not
automatized or conducted with ElaClo.420

4.3. ElaClo Framework components

Figure 12 provides a detailed component level view of the ElaClo frame-
work. We will describe each ElaClo component separately.

4.3.1. Workload Generator

The workload generator has been custom built to generate workload spec-425

ified by application developers. ElaClo enables modeling workloads as a non-
homogeneous Poisson Processes (NHPP) with intensity function λ(t) defined
as a piecewise linear function. We chose a Poisson process to achieve ran-
domness of incoming arrivals to reveal potential congestion problems, and
applying a workload model that provides changes in intensity will trigger430

elastic behavior through scale-out and scale-in actions.
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3

Figure 10: ElaClo interface for analyzing results. Annotations: 1 Tuning SLA parame-

ters, 2 Graphical comparison of topologies (cost-quality), and 3 Topology results where
topologies satisfying SLA are marked green.
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Figure 12: ElaClo framework components

For example, workload in Figure 13 can be expressed as:

λ(t) =


5 if t ≤ 5

t if 5 < x < 20

−2t+ 60 if 20 ≤ x < 50

(6)

The first part of the given example workload function from equation 6
serves as a warm-up period where we leave λ(t) at a steady low-value; the
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Figure 13: Example λ(t) function for NHPP workload

second part corresponds to increasing workload, and final part to decreasing435

workload.
In order to specify a workload mix - the ratio between different request

types, developers can provide probabilities of occurrence for each use case.
For that, some insight is required in the characteristic workloads of the tested
application or service.440

4.3.2. Component Monitoring

The ElaClo framework applied in application components provides mon-
itoring mechanism for several performance metrics:

• Response time and throughput for every operation on each component;

• System load average of allocated VM;445

• Current CPU usage levels of allocated VM.

All metrics are calculated using a moving average method with a fixed
configurable time window. This method is commonly used to reduce high
oscillations in monitored data. Calculated values are continually serialized
and sent to central Topology Monitoring component through a dedicated in-450

ternal web service. The main metrics collected are the response time and
throughput of each component operation, giving insight to the overall topol-
ogy performance. CPU usage levels and system load averages are collected
across VMs in application topology and used to support scaling decisions.
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4.3.3. Topology Monitoring455

Topology monitoring is responsible for collecting monitoring data from all
application components and their underlying infrastructure resources (vir-
tual machines). It aggregates collected metrics for components spread across
multiple nodes. For example, if a component is deployed on multiple virtual
machines, its average response time is calculated. This monitoring mecha-460

nism implements topological monitoring techniques presented in previous re-
search (Moldovan et al., 2013) and (Trihinas et al., 2014). Once aggregated,
topology monitoring data is available to be used by the elastic controller
mechanism in supporting scaling decisions.

4.3.4. Elastic Controller465

In order to test elasticity behavior and characteristics of each topology,
ElaClo needs to provide elasticity attributes for tested services: means to
elastically scale according to the current workload. For that purpose, ElaClo
has a rule-based elastic controller that uses data from the Topology Mon-
itoring module continually calculating moving load averages for all virtual470

machines assigned to application components. It then triggers scaling actions
based on rules for these values, e.g. if CPU load reaches 70%. ElaClo enables
configuration of several parameters:

• The time window for calculating moving average values.

• Thresholds for scaling in and out.475

• Cool-off periods after scaling actions (separate for scaling in and out)
to reduce scaling oscillations.

ElaClo provides defaults for these parameters. If necessary, they can be
adequately set to correspond to the amount of time needed for a new VM to
be fully operational. Additionally, if there is a need to optimize topologies480

with a more advanced elasticity controller policy, ElaClo supports turning
off the provided controller, which leaves it up to the user to integrate a more
sophisticated mechanism.

4.3.5. Topology Manager

Topology Manager (TM) is responsible for arranging the topology defined485

by the ATG graph model using provided application artifacts. The Topol-
ogy Manager actuates mapping functions fC→P , fP→W defined in Section 2
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and deployment function fP→R that is dynamically changed during topology
evaluations due to run-time elasticity.

ElaClo achieves the effect of different topologies by deploying all com-490

ponents to each VM used, and then directing the usage of each component
according to currently applied topology by configuring the load balancer and
instructing each component via Slicing Framework. This way, there is no need
for additional redeployment actions during topology changes, but rather, just
a reconfiguration of each component, which results in a significant increase495

in speed.

4.3.6. Slicing Framework

The Slicing Framework together with the Service Monitoring module are
the only two components integrated and used within the application that
need to be optimized. They are controlled from a central Topology Manager500

module in configuring different application topologies. The Topology Man-
ager controls which components should be available for each application in-
stance deployed to a specified VM type. The Slicing Framework coordinates
communication between components according to topology specifications. If
certain operations from an application component invoke other operations505

that are not available locally, Slicing framework routes the request for this
operation remotely through a load balancer which further routes the call to
a remote component. A more detailed description on how topologies are
managed and deployed is available in our previous work (Tanković et al.,
2015b).510

4.3.7. Resource Manager

The Resource manager is the actuator of decisions made in the elastic
controller. It is responsible for transforming scaling intents to infrastructure-
level actions using the infrastructure API provided by the cloud provider.
This also includes reconfiguration of the load balancer and updating the515

internal ATG graph structure in the Topology Manager to represent mod-
ifications introduced by scaling in or out. Implementing elasticity is well
researched so we will not cover this behavior here (Vaquero et al., 2011; Han
et al., 2011).

4.3.8. Evolutionary Optimization and Simulator520

These two components are responsible for extracting the simulation model
using the application topology definition (ATG) and measuring the perfor-

25



mance (response times of each provided operation o ∈ O)) of the provided
application components on a basic low load. The extracted simulation model
is used as a cost function in the process of evolutionary optimization. Details525

on how evolutionary optimization is conducted are in Section 5.
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5. Evolutionary optimization

Even a few application components can yield numerous topology vari-
ations. Given that a typical testing workload can be several hours long in
order to properly test elasticity, evaluating each of the different topologies on530

a real infrastructure can be expensive and time-consuming even with ElaClo
automation. To achieve topology optimization in an acceptable amount of
time, ElaClo uses a surrogate simulation model based on queue networks from
queue theory. Quality criteria such as cost and service response times are
then determined much faster by running a discrete-time stochastic simulation535

upon a corresponding queue network for each topology variant. Searching
for optimal candidates using simulation is achieved with an evolutionary al-
gorithm.

Section 5.1 describes the surrogate model and simulation process that
is used by ElaClo to enable faster candidate evaluation. Section 5.2 then540

elucidates the chosen optimization algorithm for searching the solution space
with the described simulation as the cost function.

5.1. Topology evaluation

The application whose topology needs to optimized must integrate Ela-
Clo Application components (as described in Section 4 and Figure 6) so545

that ElaClo can extract all the details on dependencies between application
components together with simulation model parameters such as service-time
distributions. This information is used to build surrogate models based on
queue networks (QN) models.

Figure 14 displays a simulation meta-model consisting of a workload550

model (described in Section 4.3.1), a component model and an ATG model
(from Section 3.1). Succinctly, the simulation model defines a variable inten-
sity workload arranged from a mix of operation invocations from available
components that are arranged in a certain topology. Service-time distribu-
tion for each operation is collected by ElaClo prior to simulation using real555

components and infrastructure. Measured response times are gathered by
applying a minimal workload intensity.

The QN model used in ElaClo is a multi-class open queue network (MC-
OQN) (Lazowska et al., 1984). Every MC-OQN node represents one or many
application components deployed on a virtual machine. According to Kendal560

notation (Gross et al., 2008), nodes are modeled as G/G/k with general
arrival- and service-times distributions and k service nodes.
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Figure 14: Simulation meta-model

The overall simulation process for determining performance of a single
topology is presented in Figure 15. Aside from the aforementioned compo-
nent model, the workload model, topology and service-time distributions,565

simulator additionally requires the cost model (from Section 3.3) and SLO
parameters (from Section 3.4). Given all that, it can predict the infrastruc-
ture costs and amount of SLA violations. By default, the elasticity algorithm
used is the rule-based algorithm (Section 4.3.4) with upper- and lower-bounds
of node availability.570

The simulation process yields several resulting metrics:

• total infrastructure cost for the given workload and topology,

• service-time distributions for all operations,

• a distribution of queue waiting times.

28



Topology

Workload model

Component 
model

Simulator

Infrastructure 
costs

SLO violations

Cost model

Component 
parameters

Simulation model

Elasticity 
algorithms

SLOs

model usage

model 
transformation

results

Figure 15: Complete process of simulating topology quality criteria

Provided data is used to calculate quality criteria in the form of response575

time percentiles and infrastructure costs required for the objective function
in the optimization process.

5.1.1. Generating QN models

We will illustrate the transformation process from an application topol-
ogy to a QN model on an illustrative example: an application M with two580

components CM = {A,B}. Operations that component interfaces support
are: oper(A) = {oA,1, oA,2}, oper(B) = {oB,1, oB,2}. A workload for M is
defined with Equation 7 intensity function and request types according to Ta-
ble 2 where τ% represents targeted response time percentile that should be
tSLA or lower. M is to be deployed on a cloud infrastructure whose provider585

offers two virtual machine types VM = {VM1, V M2} where vm1 possesses
one, and vm2 two CPUs. Cost model follows the one presented in 3.3 with
cost(vm1) = 6 $/h, and cost(vm2) = 12 $/h.

λ(tsim) =


5 if tsim ≤ 5

tsim if 5 < tsim < 20

−2tsim + 60 if 20 ≤ tsim < 50

(7)

Every request type (R = {r1, r2, r3}) is modeled as a single MC-OQN
class. Workload is represented with a intensity vector

~λ(tsim) = λ(tsim) · [p1, p2, p3]>
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Request
type

Component Operation Dependency Ratio pi (%) tSLA(ms) τ%

r1 A oA,1 - 30 500 0.95
r2 B oB,1 - 30 500 0.95
r3 A oA,2 oB,2 40 2000 0.95

Table 2: Workload for application in illustrative example

with p1, p2, p3 being request ratios from Table 2. ~λ(tsim) defines incoming
request intensity for every moment of simulation time (tsim) for each request590

type. Request types are associated with a singe operation on the corre-
sponding component that provides it, with a possibility that some operations
depend on other operations.

Every node in MC-OQN represents the application of components de-
ployed on virtual machines. The corresponding service-time (marked with595

random variable D) of each node is defined for all request classes separately:

Dvm,ri =
∑

oc,local

Doc,local +
∑

oc,remote

Dcomm (8)

where oc,local represents all operations in which rj is invoked on local
components (deployed to current vm), and oc,remote are operations from com-
ponents residing on different vms. If the dependent operation is located on
another vm, service-time is increased for additional cost of network commu-600

nication latency, represented with a random variable Dcomm.
Resulting response time for a single request is determined by summing

all participating service-times of nodes that service that particular request
type:

Dri =
∑
vmj

Dvmj ,ri . (9)

Components from our example CM = {A,B} can be mapped to elastic
groups in two ways. They can be in a single elastic group together, or
separated into two elastic groups. Figure 16 displays the former topology
where all request classes are serviced by single node (since it contains both605

components), whereas Figure 17a shows the latter variant. According to
Table 2, request class r1 with incoming intensity λ1 targets operation oA,1 on
component A, thus it is associated with node s1,1 from the first elastic group.
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s1,1

Figure 16: An example of QN with single elastic group whose virtual machine has two
service nodes

Class r2 with λ2 intensity is targeting oB,1 from component B. Class r3 with
λ3 is linked to oA,2 on component A which additionally invokes operation610

oB,2 residing on component B.
According to the application topology graph from Section 3.1, the num-

ber of nodes in every elastic group is defined at run-time using elasticity
mechanisms. This behavior is also implemented in the simulation process.
During the simulation, the saturation of each node is determined as

ρvm =
R∑
i=1

λi
µi

where µi ∼ Dvm,ri from Equation 8. ρvm is determined from every request
class that is serviced on current node.

Elasticity controller applied is a rule-based scaling controller that induces
scaling actions based on reaching lower and upper ρvm thresholds. Figure 17b615

shows an example where a second allocation group exhibits scaling to addi-
tional vm. It can be observed that load-balancer behavior is also simulated
as incoming traffic is now equally distributed between two nodes.

Virtual machine types (VM = {VM1, V M2}) are modeled with different
k parameter that represent the number of service nodes on each network node.620

On Figure 17b node s1,1 represents a vm of type VM2 with two processors
so k = 2 for that node.

5.2. Optimization algorithm

Topology optimization in this work is a combinatorial optimization prob-
lem (Korte & Vygen, 2012) with an exponentially growing search space,625

which does not necessarily induce NP-hardness Mann (2017). The presented
topology optimization is a specialization of the deployment optimization
problem present in the literature (Koziolek, 2011; Franceschelli et al., 2013)
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vm instance, thus two nodes are used

Figure 17: MC-OQN that models possible topologies from application M
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with a distinctive notion on components forming elastic groups and applying
an evaluation function where such behavior is simulated. Given that it is630

an extension of a deployment optimization problem and that there are no
closed-form solutions for its objective functions: assessing SLA violations
and infrastructure costs, it is also considered to be NP-hard Canfora et al.
(2005); Frey et al. (2013).

Additionally, it is also a multi-objective optimization problem since there635

is more than one quality criteria to be optimized (Donoso & Fabregat, 2016).
Optimization goals in multi-objective optimization are often in mutual con-
flict, meaning there is no single solution that maximizes all objective func-
tions. This is where the concept of Pareto optimality (Serafini, 2012) repre-
sents a set of solutions with optimal trade-offs among several objectives.640

Assessing SLA violation rates and infrastructure costs from the given
model in 3.3 has no known analytical solutions so we cannot formulate our
problem as an integer programming model or similar exact technique. In-
stead, a black-box optimization approach is required, since our objective
function does not provide gradient information. The best so far known ap-645

proach is to apply population-based metaheuristics Feliot et al. (2017) such
as genetic algorithms, with most popular proponents being NSGA-II and
SPEA2 Eiben & Smith (2003); Zitzler et al. (2001).

Figure 18 shows optimization steps used in genetic algorithms using a (µ+
λ) approach (Back et al., 2000) with NSGA-II selection procedure (Deb et al.,650

2002). The (µ + λ) approach generates λ new candidates in every iteration
(generation) from he existing µ sized population. In doing so, mutation and
crossing of candidates is used. As we continue, we will describe how each
topology is represented as candidate in population, as well as the process of
crossing and mutation operators applied.655

5.2.1. Candidate representation

Every optimization candidate represents a single topology variant of our
targeted system. It represents component mapping to elastic groups with the
associated virtual machine types per group. An example candidate is given
in Figure 19 with five components arranged into three elastic groups with660

every group having different virtual machine type.

5.2.2. Candidate operations

Genetic algorithm includes two operations: candidate mutation and cross-
ing (Back et al., 2000). Both operations are carried out randomly with a
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Figure 18: µ+ λ genetic algorithm with NSGA-II selection method

Figure 19: Example candidate with five components arranged into three elastic groups.
First group uses a vm1 virtual machine type, and other two groups use a vm2 virtual
machine type.

given probability, with the mutation probability set to pmut = 0.2 and the665

reproduction probability set to prep = 0.7. The remaining probability of
prand = 0.1 denotes randomly generating a new candidate. Crossing opera-
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Cross-operation

Figure 20: An example of candidate reproduction

tion is carried out on two parent candidates yielding two child candidates.
In ElaClo, crossing is implemented by randomly choosing a component from
the first parent and moving it to a group with the majority of its neighbors670

from a second parent. The virtual machine type for a resulting group is also
dictated from the second parent. The mutation operator randomly selects
a component among candidates and moves it to a randomly selected group
where an empty group is also considered a possibility.

Figure 20 displays an example of reproduction between two parents where675

the randomly selected component for reallocation is c2. The child on the
left is derived from the first parent by moving c2 to a group containing c3,
according to the second parent where c2 resides alongside c3. Analogously, the
child on the right is derived from second parent by moving the c2 component
to a group with c1 component. In the case where there is more than one680

possibility for choosing a resulting group, a group that is most similar to
the parent group is chosen. Similarity is measured as the number matching
components. Ties are resolved randomly.

5.3. Summary

This section disseminated a process for determining optimal topologies685

using a meta-heuristic and a queue-network simulation as the objective func-
tion. The goal for this process is to provide a cost and time effective process
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for recommending topologies to be tested on the real cloud environment. The
simulation model presented here has been devised to simulate response time
and infrastructure costs quality criteria.690
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6. Validation

This section disseminates the procedure for validating the proposed op-
timization method and demonstrating the ElaClo tool on a real-life applica-
tion. Validation goals include assessing both validity and performance of the
proposed optimization process. Validation is conducted using a case study695

Software-as-a-Service (SaaS) application, CashRegister that enables invoic-
ing and stock management for small and medium enterprises in retail business
domain. We chose this single application as a typical case Easterbrook et al.
(2008) of a smaller focused service-based application in order to gain more
insight how ElaClo can be applied to similar applications.700

Section 6.1 states the research questions for assessing the validity and
the performance of the optimization process. Section 6.2 disseminates the
methodology for answering them. Section 6.3 elucidates details in imple-
menting ElaClo prototype. Section 6.4 describes the CashRegister applica-
tion from the case study, and Section 6.5 disseminates the results of the705

statistical analysis. Finally, Section 6.6 enumerates possible limitations of
the research.

6.1. Validity levels

The goal of the optimization process proposed is to give software ar-
chitects an automated procedure for determining optimal elastic application710

topologies on a cloud infrastructure. According to Böhme & Reussner (2008)
there are three levels of validation for predicting the performance of the sys-
tem using models:

1. Validating accuracy states whether metrics obtained from models of
system are accurate compared to metrics from a real system. In the715

context of this work, we are interested in the precision of obtaining
optimal candidates from simulation models.

2. Validation of applicability assesses whether the user of the system
is able to conduct the optimization procedure. For this work, as it is
an automated process, the question remains to assess whether the user720

can obtain all necessary information in order to start the optimization
process. Since ElaClo also automatically extract application models
from artifacts, the only true precondition for using ElaClo is the dif-
ficulty of applying the ElaClo Application framework to the targeted
application. The procedure for integrating the application with our725

framework is presented in our previous work (Tanković et al., 2015b).
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3. Cost/Benefit validation is concerned with the associated costs and
benefits of the optimization procedure. For this validation, we will as-
sess the performance of the algorithm in converging on optimal topolo-
gies. We will also compare the results with other well-known heuristics730

and random search methods as suggested in Aleti et al. (2013).

For validating the accuracy of optimization results we will assess how
close the resulting candidates are to optimal results. Since this work relies
on an evolutionary algorithm using simulation models, we define the follow-
ing research questions:735

RQ1: How close is the average evolutionary algorithm result to a true Pareto
set?
RQ2: To what extent are resulting topologies obtained in simulated envi-
ronment relevant to real systems and environments?

The ElaClo tool is evaluating topologies in the cloud environment sequen-740

tially. Evaluation time for each topology is determined by the total length
of the workload model. In order to test elastic behavior properly, workload
models should be at least a couple of hours long since a single topology recon-
figuration on the cloud infrastructure takes around 2-3 minutes. This means
that the number of resulting topologies from the evolutionary algorithm must745

be relatively small. This can be achieved by setting the underlying genetic
algorithm population size (µ parameter) to around 10 to 30 individuals. The
total optimization length is primarily determined by the performance of the
evolutionary algorithm and selected parameters. Due to the importance of
the evolutionary optimization process, we define the final research question750

in assessing the performance of the algorithm.
RQ3: What are the time-related performance measures of the applied

genetic algorithm?
Finally, we are also interested in assessing how the proposed genetic al-

gorithm performs compared to other existing optimization algorithms. That755

forms the last question.
RQ4: How does the proposed genetic algorithm compare to other appli-

cable optimization algorithms?

6.2. Methodology

In order to answer RQ1 we use a quantifiable measure of optimization
precision called coverage:

C(T∗result,T∗true)
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that was introduced in (Zitzler & Thiele, 1999). The coverage measure will
compare the achieved Pareto front of quality criteria PFresult of the respective
optimal topologies T∗result obtained from a single run of genetic algorithm to
the true Pareto set PFtrue, or the best possible quality criteria achieved by
T∗true. The coverage measure describes the ratio of non-dominated solutions
(topologies) between two sets. We say that topology TA dominates topology
TB if all quality criteria achieved by TA are better then quality criteria of TB
and mark that as

TA � TB.

Due to the stochastic nature of the applied simulation method, we propose a
slight modification of the coverage metric for our experiment, where we shall
state the fraction of topologies that yield PFresult that are contained in the
set of topologies that yield PFtrue:

C∗(T∗result,T∗true) =
|T∗result ∩ T∗true|
|T∗true|

∈ [0, 1] .

The C∗ metric denotes the ratio of results from the single execution in760

the true solution T∗true where C(T∗result,T∗true) = 1 means T∗result = T∗true.
This way, solutions are compared to statistically optimal topologies, since
individual quality criteria measurements vary.

As a goal for this research we will set a minimal coverage C∗ in average
execution to 0.7, which states that in an average optimization process, a765

minimum of 70% of topologies will be discovered from true solution set T∗true.
This will be tested with a one-way Student t-test with the null hypothesis
stating that average value of C∗ is 0.7, with the alternative hypothesis being
that this value is larger than 0.7. We will set the upper p-value limit to 1%.
A precondition to the Student t-test is a normal distribution of the measured770

value, which will be tested with a Kolmogorov–Smirnov test.
The true Pareto front PFtrue and topologies T∗true are not a priori known.

Due to the large solution space, computational requirements and the stochas-
tic nature of the simulation, it is not possible to determine exactly. For this
reason, we approximate PFtrue by conducting a series of optimization pro-775

cesses and determining the resulting Pareto set from all results combined.
This is standard procedure in multi-objective optimization (Fonseca et al.,
2005).

Obtaining the exact optimal topologies by evaluation in the cloud envi-
ronment is also not practical since a single topology evaluation takes up to
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several hours, depending on workload. In addition, due to elasticity variabil-
ity, each evaluation should be repeated multiple times. Therefore, an alter-
native approach is required to answer RQ2: we conduct additional series of
evolutionary optimization in simulation environment, but this time with in-
verted quality criteria goals that will yield additional set of solutions T∗inverse.
Such solutions should represent topologies with higher costs and lower quality
attributes. Then, both solution sets: T∗inverse and T∗result, will be evaluated
using ElaClo and a real application. This will result in quality criteria ob-
tained in a real cloud environment: fcloud(T

∗
result) and fcloud(T

∗
inverse). We

will then assess the number of dominated solutions from T∗inverse by solutions
in T∗result, which must be statistically larger than the number of dominated
results from T∗result by results in T∗inverse. If solution TA dominates solution
TB with quality criteria measured in a real environment, we shall note this
as:

TA
∗� TB.

For quantifying the dominance count, we introduce a Dominance-Score
(DS) metric for a topology T with respect to a topology set T:780

DS(T,T) =
∑
Ti∈T

fDOM(T, Ti)

where

fDOM(TA, TB) =

{
1 if TA

∗� TB

0 otherwise
.

DS expresses how many topologies from a certain group are dominated by
the topology from which a score is given. The average DS score of a topology
in T∗result in relation to T∗inverse should be statistically larger then the opposite
case. We will compare scores between groups with a Mann-Whitney U test
(Mann & Whitney, 1947), also known as Wilcoxon rank-sum test for which a785

null-hypothesis will state that the DS score for a randomly chosen candidate
from the first group will be less than or greater than a randomly selected DS
score from the second group. Statistical significance for these tests will be
set to p < 0.01. We will also express a set of common-language effect-size
parameters (McGraw & Wong, 1992) for a more intuitive understanding of790

the given results.
In order to answer RQ3 we will determine the minimum number of gen-

erations in the genetic algorithm required for a target coverage of C∗ = 0.7
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under a statistical significance of p < 0.01. We will also graphically display
the average C∗ for each GA generation with the corresponding population795

quality criteria (average infrastructure cost and response time violation per-
centage).

Ideally, to answer RQ4, the optimization problem should be solved with
an exact algorithm. Since that is not possible and the only possible option is
applying population-based meta-heuristics (as stated in Section 5), we will800

separately compare the selection and the local-search parts of the GA with
similar heuristics. In comparing the selection process we will compare the
applied NSGA-II method with the well known SPEA2 algorithm (Zitzler
et al., 2001). For the local-search, which is implemented in cross and mutate
operations, we will compare them with a simple Monte Carlo search method805

(MCS), which will perform a random global search over the candidates. Such
comparison was also recommended in a systematic study on architecture
optimization provided by Aleti et al. (2013).

6.3. ElaClo reference implementation

In order to evaluate our proposed optimization framework, we imple-810

mented ElaClo for evaluating service-based applications built on top of the
JavaEE component-based development platform. Workload Generator has
been implemented in Python using the Tornado1 web framework for asyn-
chronous networking. A technique described in (Ross, 2012) was used to
generate an NHPP Poisson process according to a user-defined λ(t) function.815

Topology Monitoring, Resource Manager, Elastic Controller and Topology
Manager have also been implemented as Python web applications. Monitor-
ing and topology data are kept in-memory, since only recent results from all
services are needed for scaling decisions. A user interface is created in HTML
and JavaScript, exploiting various open-source components for graphing and820

charting. HAProxy has been used as a load-balancer for services in differ-
ent topologies. To provide dynamic switches between different topologies, we
have implemented a web service around HAProxy to dynamically reconfigure
and reload it according to the current ATG model. More technical details
on building load-balancing environment to represent different topologies is825

provided in (Tanković et al., 2015b). Our ElaClo implementation operates
over DigitalOcean 2 VPS servers but it can easily be extended to use differ-

1Tornado Web Server, available at http://www.tornadoweb.org/en/stable/
2DigitalOcean: Cloud Hosting company, www.digitalocean.com
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Figure 21: Cash Register Java application domain class model

ent providers (e.g. Amazon Web Services) as well. This can enable testing
topologies involving multiple cloud providers.

6.4. CashRegister Case Study830

A case study used to evaluate ElaClo is from a real-life cloud application
CashRegister provided in a Software-as-a-Service (SaaS) model. CashReg-
ister was developed by the organization Superius d.o.o. 3 and currently
available in the Croatian, Slovenian and Czech Republic market with more
than six thousand daily active users. CashRegister is designed for retail ser-835

vices: issuing quotes, invoices, tracking product stock levels, retail reporting,
and satisfying fiscalization legislations stating that each issued invoice should
be electronically verified with a local government dedicated web services.

A reduced class diagram of domain model classes present in CashRegister
is presented in Figure 21. Organizations, represented by Organization class,840

using CashRegister are small and medium businesses selling their products
and services in retail shops (POS ) or at their websites (WebShop). Offered
Products can be composed of Materials and Normal Products and are sold
by creating Invoice documents. At the end of each selling cycle, which is
typically one day, a Z-Report is created containing recapitulation of every845

issued invoice. Inventory Documents are created for replenishing stocks, as
CashRegister also keeps track of product inventory.

Currently, CashRegister is deployed on a private infrastructure and is en-
gineered as a monolithic three-tier application (Figure 22). There is an ongo-

3Superius d.o.o. - a SaaS company from Croatia available at http://www.superius.co
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ing initiative from CashRegister service providers to re-engineer CashRegister850

as application exploiting several web services following a service-oriented ar-
chitecture guidelines and deploy the whole service to cloud infrastructure to
achieve elastic capacity due to volatile workload demands.

For our case study, we extracted five major CashRegister application
components and made them available for communication with the ElaClo855

environment using the ElaClo Application framework. These components
are displayed in Figure 23 and all have distinct functionalities:

• Reporting component enables detailed sales reports like daily and monthly
recapitulations,

• Invoice component is responsible for issuing invoices and visibility to860

issued invoices,

• Status components enables services for data synchronizations between
client and server,

• Fiscalization components verify issued invoices with government web
services,865

• Resource component enables management over products available for
sale.

Since CashRegister is a critical business application, consumer SLOs are
defined based on response time of critical services like issuing invoices, and
ElaClo will be used to determine a set of Pareto optimal topologies w.r.t.870

infrastructure costs and SLO violations. Table 3 displays predefines SLOs
from CashRegister system. Every response time SLO is defined on a 95th
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percentile (τ% = 0.95), which means that response time should be lower than
tSLA 95% of the time.

Table 3: SLOs for CashRegister system

Scenario Component Description tSLA(ms) τ%

UC1 Invoice Fetch details about invoice 500 0.95
UC2 Resource Fetch products and partners data 500 0.95
UC3 Invoice Create a new invoice 2500 0.98
UC4 Report Fetch daily sale report 4000 0.95
UC5 Status Details about system state 300 0.95

To obtain a workload model, we analyzed production logs of the CashReg-875

ister system, which contained more than 13 million transactions over 40 days
of usage. Using these data we constructed a time series of average daily usage
intensity (number of requests per unit of time) calculated over one minute
periods (1440 entries for 24-hour usage).

We then applied a piece-wise linear interpolation to obtain a workload880

intensity function λ(t) with multiple linear segments s1, s2, ..., sn for a total
of n segments. Figure 24 displays the correlation between the number of
segments n and both Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) between λ(t) and the original time-series. We
used n = 240 segments for λ(t). Figure 25 displays the λ(t) workload model885

with n = 240 compared to the original workload data.
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Figure 24: RMSE and MAPE errors of workload model against real workload depending
on number of segments n

For elasticity strategy we used a common rule-based approach with lower
and upper CPU usage thresholds that trigger scale-up and -down action.
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6.5. Validation of the optimization process

CashRegister application has five components, and the optimization pro-890

cess will differentiate among three virtual machine types (Table 4), which
produces a total of 1561 available topologies according to Equation 2.

Table 4: Virtual machine types considered in the optimization process

Type Name CPUs RAM [GB] Price/h

VM1 Small 1 1 0.015
VM2 Medium 2 2 0.03
VM4 Large 4 4 0.06

In order to formulate the simulation model we must extract the response
time distributions for every operation provided by every component. These
distribution are collected by ElaClo automatically by running the applica-895

tion on a minimal single user workload. Obtained measurements are fitted
as a log-normal distribution, which is a better fit to response times than
the commonly used exponential distribution. Figure 26 shows a comparison
between a lognormal and an exponential distribution for modeling response
time. This especially holds for lower end values of response time (below900

1000 ms for given example). Lognormal distributions were parameterized
using the first two moments of real distributions.

Table 5 gives the parameterization values of the lognormal response time
distributions for all operations, where lognormal distributions are defined by
two parameters:

lnN (µ, σ2) ,

a location parameter µ ∈ R and a scale parameter σ > 0, which are computed
against the first two moments of real distribution according to:

µ = ln

(
m2

√
v +m2

)
, σ =

√
ln
(

1 +
v

m2

)
,

where m is the measured first moment (mean), and v the second moment
(variance).

With parameters needed for the simulation model defined, we can proceed
to the process of search-based optimization using the genetic algorithm with
a queue network simulation model. With the algorithm presented in Section
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our CashRegister case study between real system, and models using lognormal and expo-
nential distribution

Table 5: Parameters of lognormal distribution of response time for individual operations

Operation Component Description µ σ

CreateInvoice Invoice Creating invoice -0.39 0.76
Fiscalize F iscalization Fiscalization of invoice -1.12 0.64
GetStatus Status System status report -2.58 1.39
GetReport Report Generating sales report 0.49 0.71
InvoiceList Invoice Fetching invoice details -1.13 0.94
GetResources Resource List products and customers -1.99 1.46

5 we have narrowed the search space T to recommended 8 candidates optimal
in the simulation environment. Parameters used by the genetic algorithm,
including population size µ, new candidates per generation λ, and the total
number of generations n, were set to:

µ = 30, λ = 12, n = 100 .
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Figure 27: Average infrastructure cost and response time violations for each generation in
GA

The average genetic algorithm execution time on a virtual machine with905

a single core was about 12.5 hours. Due to the possibility of parallelizing
evaluations in the genetic algorithm, a 4-core virtual machine was used, which
shortened average execution time to four hours. The process can be further
optimized by using up to λ cores, which is the maximum number of new
evaluations per genetic algorithm iteration (population). Figure 27 gives910

average values for simulated quality criteria for each population so we can
observe the progress of genetic algorithm. We observe an increasing trend in
average costs towards the larger iterations, due to large variance of costs in
a set of Pareto-optimal solutions.

Table 6 enumerates the obtained solution set after running GA with qSLA915

being the amount of requests exceeded tSLA given in Table 3, and qCOST

the total infrastructure leasing cost during simulation according to the cost
model introduced in 3.3 and the prices set in Table 4. Obtained solution set
can now be further analyzed using real topologies in cloud environment with
ElaClo.920

Simulated results indicate that it is better to use smaller virtual machine
types. Small machines lower the infrastructure costs of low intensity workload
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Table 6: Pareto-set candidates obtained with genetic algorithm in simulation environment

Topology T qCOST qSLA

G1 = {Fiscalization, Invoice,Report,Resource, Status} type(G1) = VM1 84.00 21.52

G1 = {Fiscalization,Report,Resource}
G2 = {Invoice, Status}

type(G1) = VM1

type(G2) = VM1

85.00 9.59

G1 = {Fiscalization,Report,Resource, Status}
G2 = {Invoice}

type(G1) = VM1

type(G2) = VM1

86.00 8.64

G1 = {Fiscalization,Report, Status}
G2 = {Invoice,Resource}

type(G1) = VM1

type(G2) = VM1

87.00 5.99

G1 = {Fiscalization,Report, Status}
G2 = {Resource}
G3 = {Invoice}

type(G1) = VM1

type(G2) = VM1

type(G3) = VM1

95.00 4.90

G1 = {Fiscalization,Report}
G2 = {Resource}
G3 = {Invoice}
G4 = {Status}

type(G1) = VM2

type(G2) = VM1

type(G3) = VM1

type(G4) = VM1

147.00 3.01

G1 = {Report,Resource}
G2 = {Status}
G3 = {Invoice}
G4 = {Fiscalization}

type(G1) = VM1

type(G2) = VM1

type(G3) = VM1

type(G4) = VM2

154.00 2.84

G1 = {Fiscalization}
G2 = {Report}
G3 = {Resource}
G4 = {Invoice}
G5 = {Status}

type(G1) = VM1

type(G2) = VM4

type(G3) = VM1

type(G4) = VM1

type(G5) = VM2

259.00 1.09

periods. Smaller virtual machines also enable a more fine-grained elasticity
realization where current capacity can follow current workload demands more
precisely. The benefit of having larger virtual machines is their ability to925

handle high frequency workload changes where elasticity mechanism are too
slow to react (adding additional virtual machines takes at least two minutes
on most cloud providers).

Before answering the given research questions, we evaluated whether the
evaluations of topologies in simulated environment are consistent. For that930

purpose we conducted a Kruskal-Wallis H non-parametric statistical test
(Kruskal & Wallis, 1952) with a null-hypothesis that all results come from the
same distribution regardless of simulated topology. Inability to reject that
hypothesis would show that different topologies have no impact on selected
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Table 7: Results of Kruskal-Wallisovog H non-parametric test

Quality criteria
Test result

p-value % of compared topologies

qCOST
<0.05 93.5%
<0.01 91.3%

qSLA
<0.05 76.2%
<0.01 69.6%

quality criteria. We ran 58 different topologies through the Kruskal-Wallis H935

test. These 58 topologies had at least ten simulation evaluations conducted
through the process of optimizations. Table 7 gives the results of this test:
we can reject the null-hypothesis with p < 0.01 for more that 91% of com-
pared topologies for the criteria of infrastructure cost, and more than 69%
of topologies for the response time criteria. Results support the assumption940

that our surrogate model produces converging evaluation results.

6.5.1. Performance and accuracy

To validate the performance aspects of the genetic algorithm we con-
ducted a series of 40 optimization runs. Figure 28 displays a heat map of all
evaluated topologies compared to the quality of candidates in a true Pareto-945

set forming a Pareto frontier PFtrue. As noted, for answering RQ1 and RQ3,
we used the coverage metric. Optimization runs were configured to perform
100 generations (n = 100), which resulted in 100 datasets with a population
of 40 samples, with each sample coming from single run. We performed a
Student t-test for the data from each generation to assert whether the cover-950

age goal was achieved. Results indicate that all generations before the 88th
failed to reject the null-hypothesis. For the 88th iteration, the null-hypothesis
was rejected with p − value < 0.01, which went down to p − value < 0.001
by the 100th iteration. We can conclude that on average it takes 88 genera-
tions to reach our coverage goal of C∗ = 0.7. By achieving targeted coverage955

we conclude that the precision of the algorithm is satisfactory (RQ1) and
that it takes less then 100 generations of the algorithm to achieve it (RQ3)
Figure 29 displays the convergence of coverage metric collected through algo-
rithm generations: average coverage from 40 runs together with the standard
deviation.960
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In order to answer RQ2 and test if optimal candidates from a simulated
environment selected by GA (Table 6) also achieved optimal properties in
a real environment, we evaluated their quality criteria using cloud resources
with ElaClo. All suggested optimal candidates from GA were iteratively
evaluated. Figure 30 shows the achieved quality attributes on the cloud965

environment for optimal topologies suggested by GA. We observe that the
majority of candidates are non-dominated, which means that the results from
GA are indeed indicative. Table 8 displays the result of the evaluation in a
real environment with the final list of optimal topologies.

The second step was to obtain a set of least optimal candidate topologies970

in a simulated environment by the inverting evaluation goals, displayed in
Figure 31. Their quality criteria was again evaluated by ElaClo on a real
cloud infrastructure. The quality criteria of the best and worst topologies
from GA are displayed in Figure 32. We observe that the best candidates
from the simulation retain the same result in a real environment.975

To show the similarities in performance between real and simulated envi-
ronments, we computed the DS score (defined in Section 6.2) between both
sets of solutions with a Mann-Whitney U test and successfully rejected the
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null-hypothesis in favor of the alternative hypothesis (p < 1 · 10−4) with
a U-statistic of 100.0. Therefore, quality relations achieved with GA a in980

simulated environment hold also for real cloud environments.
Common-language effect-sizes are also obtained: dominance ratio be-

tween two groups of solution sets is 38%, meaning that when comparing
each two solutions between both groups, in 38% cases, the topology from
first group yields both lower costs and lower amount of response time vio-985

lations. Further, in 97% of cases, the first group yields lower infrastructure
costs, and finally, in 41% of cases yields a lower amount of response time
violations.

For the given case-study, we observe that the optimization process is ef-
ficient at selecting topologies that yield lower infrastructure costs. At the990

same time, it is able to locate topologies that achieve similar or better re-
sults in terms of response time violations. From the resulting effect-sizes, we
conclude that our automatically generated MC-OQN performance model is
better at assessing cost than response time violations. This is expected since
it is very hard to model response time precisely without carefully manually995

designed performance models like LQN-s. However, the goal of optimiza-
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Topology T qCOST qSLA

G1 = {Fiscalization, Invoice,Report,Resource, Status} type(G1) = VM1 4.00 5.68

G1 = {Fiscalization,Report,Resource, Status}
G2 = {Invoice}

type(G1) = VM1

type(G2) = VM1

4.88 3.30

G1 = {Fiscalization,Report, Status}
G2 = {Invoice,Resource}

type(G1) = VM1

type(G2) = VM1

5.00 1.99

G1 = {Resource}
G2 = {Invoice}
G3 = {Fiscalization,Report, Status}

type(G1) = VM1

type(G2) = VM1

type(G3) = VM1

5.30 1.55

G1 = {Status}
G2 = {Report,Resource}
G3 = {Fiscalization}
G4 = {Invoice}

type(G1) = VM1

type(G2) = VM1

type(G3) = VM2

type(G4) = VM1

7.20 1.31

G1 = {Fiscalization}
G2 = {Report}
G3 = {Resource}
G4 = {Invoice}
G5 = {Status}

type(G1) = VM1

type(G2) = VM4

type(G3) = VM1

type(G4) = VM1

type(G5) = VM2

10.56 0.81

Table 8: Final set of optimal topologies after evaluation in the cloud

tion in a simulation environment is to suggest optimal candidates and since
the final evaluation is performed on real infrastructure, we regard the model
informative and expressive enough for that task.

The optimization results reveal that there are non-trivial efficient topolo-1000

gies besides the commonly applied topologies that either deploy components
separately or in a single composite. Results suggest that for our case study,
costs can be significantly reduced by combining certain components. Such
topologies induce only a minor penalty in overall response time, which does
not result in SLA violation.1005
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evaluated on a real cloud environment
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6.5.2. Comparison

We performed a series of 20 optimization runs for each algorithm vari-
ant: NSGA-II, SPEA2 and MCS. We computed the coverage metrics and
stored the resulting populations with their respecting QoS values. Table
9 displays the results. NSGA-II and SPEA2 selection algorithms are very1010

similar, which corroborates the previous comparisons of these algorithms
on other optimization problems in noisy environments (Bui et al., 2004).
NSGA-II tends to conduct more evaluations, and is thus more expensive
than SPEA2, but it results in somewhat better coverage. The proposed lo-
cal search methods in GA enable better convergence that is observable by1015

the degraded performance of MCS. NSGA-II and SPEA2 with local searches
achieve a 37% better coverage on average for 25% fewer evaluations. This
suggests that applying local search through crossing and mutation opera-
tions accelerates algorithm convergence. Figure 33 shows an example result
from a single optimization run performed with all three variants. MCS failed1020

to sufficiently reach the Pareto frontier. We also supported these claims by
performing a Mann-Whitney rank test on the coverage values achieved by
all algorithms. Table 10 displays the comparison among all algorithm pairs.
NSGA-II and SPEA2, while there is no statistically significant difference be-
tween them, significantly outperform MCS, which empirically supports our1025

proposed methods for conducting local search in GA.

Table 9: A comparison of coverage, number of evaluations, average resulting topology
costs and SLA violations within different search algorithms

Coverage C∗ # of evaluations qCOST qSLA

MCS 0.565 ± 0.09 128.7 ± 15 181.1 ± 102.8 5.9 ± 4.8
SPEA2 0.773 ± 0.16 (+36.8%) 90.3 ± 6 (-29.8%) 121.1 ± 32.9 6.3 ± 5.3
NSGA-II 0.781 ± 0.13 (+38.2%) 100.7 ± 13 (-21.8%) 119.7 ± 36.6 6.7 ± 5.5
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Figure 33: A comparison of resulting Pareto sets from different algorithms

Table 10: Results of the Mann-Whitney rank test among coverages obtained by running
different optimization algorithms; the alternative hypothesis states that algorithms listed
in rows have better coverage against algorithms in columns

SPEA2 MCS
H p-value H p-value

NSGA-II 890.0 0.190 1436.5 < 10−9

SPEA2 - 1402.0 < 10−9

58



6.6. Limitations
Our research demonstrates a solution for optimizing application topolo-

gies of the implemented software components in a cloud environment exploit-
ing elasticity capabilities. Since there are many different architectures from1030

which a software application can be implemented, we will share the known
limitations of the current framework together with guidelines for future re-
search.

The ElaClo framework is intended to be used with a component-based ap-
plication where components are provided as web services to front-end compo-1035

nents. Large enterprise solutions where there are multiple levels of composed
components, possibly organized around an enterprise service-bus (ESB) are
currently not supported. Additionally, ElaClo can optimize topologies from
components that are stateless, which is also a precondition for achieving elas-
ticity with horizontal scaling. As such, it cannot be employed on optimizing1040

configurations of components for data persistence like databases and cash-
ing mechanisms. This means that such components should not be included
in the topology optimization process. Application developers should take
care to provide alternative components that can mimic their behavior or en-
sure that these components are deployed independently of the ElaClo cloud1045

framework. This should not be an issue if cloud-based storage services are
used, since they already provide elastic storage capabilities.

The surrogate model applied could also be improved with ability to model
I/O congestions that components experience towards media such as hard-
disks or outer web services that are not part of the application topology.1050

Currently, the simulation model is simple, but nonetheless, proves to be
effective in yielding optimal topology suggestions.

There are also threats to the validity of this research that should be
considered (Jedlitschka et al., 2008):

• Construct validity. The assumption of the ATG model is that elas-1055

ticity can be achieved by simple horizontal scaling of components.
There could be cases where a more complex method of scaling is re-
quired based on the possibility that some functionality could be hard
to implement in a stateless way.

• External validity. ElaClo is evaluated on a single case study. Al-1060

though we consider the CashRegister representative, and realistic case
used by thousands of users, additional case studies could reveal untested
difficulties in applying ElaClo.
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7. Related Work

The development of effective software topologies and deployments in the1065

cloud has not been thoroughly studied. Most previous research focused on
elasticity attribute of software processes (Dustdar et al., 2011) or on under-
lying infrastructure (Dhingra, 2014). An extensive review on both types of
this research is available at (Ardagna et al., 2014). When researching impact
of the software topologies, most work has concentrated on the deployment1070

of application components divided by architectural layers (e.g. database,
load-balancing, application servers) (Leymann et al., 2011), or large-scale
placement of independent software applications to cloud computing centers
(Li et al., 2011a) on an Infrastructure-As-A-Service level where optimization
is carried for the benefit of the infrastructure provider. A similar problem1075

has been studied in the form of deducing optimal service compositions where
a pool of existing services has been provided with different quality attributes
(Teixeira et al., 2015). Web services in this context are mostly used in Pro-
gramming in the large models (e.g. BPEL) Jula et al. (2014). The benefits
of such optimization is achieved by service users that strive to use the most1080

efficient services.
Our work considers optimization that benefits service providers in provid-

ing cost-effective services (Programming in the small). End services should
offer competitive SLAs by optimizing topology of internal software compo-
nents through their optimal integration with infrastructure resources. Re-1085

search with similar optimization goals is mostly oriented at embedded sys-
tems (Mart́ınez-Álvarez et al., 2013; Li et al., 2011b; Bhuvaneswari, 2015;
Aleti et al., 2009), or specialized sub-systems like databases (Zhao et al.,
2016), but cloud provisioning environments introduce dynamic deployment
capabilities (e.g. through elasticity), which adds additional complexity to1090

available optimization techniques.
Huang & Shen (2015) studied service deployment in the SaaS and SOA

environments, similar to the context of our study. They proposed an inte-
grated approach to service deployment for reducing service execution times.
They took into consideration inter-service communication costs and poten-1095

tial parallelism among services. They rested their solution on solving graph
problems. Their study was primarily targeted at applications with prede-
fined workflows. Our study additionally takes into consideration an impor-
tant property for SaaS applications: workload mix and intensity variation,
which are the main drivers of elasticity attributes in cloud applications.1100
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Hadded et al. (2015) proposed an algorithm for deciding the number of
elasticity controllers in service-based applications, grouping services in elas-
tic groups similar to ElaClo. The input for their algorithm was the service
dependency graph, as the algorithm took into considerations only the depen-
dency relationships among services. ElaClo executes on real infrastructure,1105

and while it takes more time to execute tests, it gives the ability to specify
test workload and SLA criteria, and compare end-results among topologies.

Another work targeting optimal resource allocation is the ROAR mod-
eling framework (Sun et al., 2015). ROAR simplifies and optimizes cloud
resource allocation to meet QoS standards. It is best used for layered archi-1110

tectural designs where ROAR enables the modeling of incoming workloads
and uses cloud infrastructure to determine minimum VM number to sat-
isfy QoS goals. ElaClo’s goal is similar to ROAR, in that goal but with
some distinctive differences: ElaClo is oriented at optimizing topology at the
component level, while ROAR targets multi-tier architectures optimizing re-1115

source amounts for each tier. Additionally, ROAR does not include testing
of elasticity behavior in dynamically provisioning underlying infrastructure
according to current demand levels. Optimizing topology that exhibits elas-
ticity is crucial due to effects that different topologies have on scaling.

Król & Kitowski (2016) explored service self-scalability in large-scale soft-1120

ware platforms. They proposed grouping functionality in self-scalable ser-
vices and applied their findings in a data-farming domain. A similar concept
is used in ElaClo, which finds optimal topologies by proposing self-scalable
elastic groups of components with further evaluation of each proposed topol-
ogy.1125

The S-IDE tool (Celik & Tekinerdogan, 2013) is also used for infras-
tructure allocation decisions, but in simulation systems domain. S-IDE ef-
fectively allocates resources at the deployment phase in simulation systems
where simulation modules can be deployed to physical resources in many dif-
ferent ways. S-IDE automatically derives feasible deployment alternatives,1130

and then uses CTAP (Capacitated Task Allocation Problem) (Zheng et al.,
2007) to evaluate each solution.

Andrikopoulos et al. (2014) have been studying optimal application topolo-
gies in the cloud as well. Their research was oriented at providing custom
utility functions for optimality selection. Their research does not yet address1135

variable workloads, so no elasticity is considered.
Lloyd et al. (2013) conducted an empirical study on the performance

of all deployment variants for an multi-tier applications consisting of four
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components, resulting in 15 different topologies. They displayed an perfor-
mance variation of 1̃-2% due to isolating application components to separate1140

VMs. The main difference between their research and ours is that they
applied horizontal decomposition based on layers (e.g. application server,
database server, file server, proxy server) whereas ElaClo works with com-
ponents differentiated by functional requirements (e.g. invoicing, reporting,
system services). This is an important difference since we displayed much1145

larger performance variations. Lloyd et al. indicated that service isolation
entails additional resources but could be beneficial for enabling fine-grained
elasticity. This claim was also proven by the results we obtained, since work-
load we applied was non-deterministic, using a non-homogeneous Poisson
process to simulate large variation in the number of clients. Emphasizing1150

variability in a cloud environment is crucial, and has been recognized as an
important research factor (Schwarzkopf et al., 2012).

There are also many research efforts to optimize overall application ar-
chitectures. They primarily focus on optimization at design-time based on
software models (Franceschelli et al., 2013; Etemaadi & Chaudron, 2015;1155

Ashraf et al., 2015). Design-time optimization methods rely on detailed sys-
tem models (e.g. Markov chains, Petri-nets, Queuing network models) and
thus require an experienced architect (Harchol-Balter, 2013). Evolutionary
algorithms are exploited to evaluate large design-spaces. Precision of the
results of design-time optimizations are inherently limited by the accuracy1160

of the developed software performance model.
The following sections give a more detailed description of existing archi-

tecture optimization tools.

7.1. ArcheOpterix

ArcheOpterix (Aleti et al., 2009) is a tool developed for optimizing em-1165

bedded component-based systems. It is based on providing AADL specifica-
tions 4 and quality criteria requirements for targeted systems. The current
ArcheOpterix tool version can optimize deployments of components to hard-
ware nodes of different type w.r.t. minimal communication between hardware
nodes. ArcheOpterix uses evolutionary algorithms and is implemented as an1170

Eclipse plug-in.

4Architecture Analysis and Design Language (AADL), available at http://www.aadl.
info/
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7.2. PerOpteryx

PerOpteryx (Koziolek et al., 2011) is a tool used for optimizing component-
based system models, not necessarily in embedded form. PerOpterix is
based on defining different degrees of freedom that systems configurations1175

can achieve such as selection of alternative components, server types and
deployment options. The optimization phase emphasizes evolutionary al-
gorithms with the evaluation functions based on simulation using Layered
Queue Networks. Similar to ArcheOpterix, PerOpterix is implemented as
Eclipse plug-in.1180

7.3. SPACE4CLOUD

SPACE4CLOUD (Franceschelli et al., 2013) provides Palladio component
model (PCM) (Reussner et al., 2011) extension that enables design-time
performance and cost estimation for cloud systems. SPACE4CLOUD defines
a cloud information system meta-model that enables multi-cloud setups, and1185

it supports modeling of volatile workloads and performance analysis for a
given cloud PCM model.

A new tool combining SPACE4CLOUD and PerOpteryx has been an-
nounced (Ciavotta et al., 2015) that enables searching the design space for
optimal deployment configuration of software components. The system is1190

envisioned in two stages: (1) applying PerOpteryx to find the best configu-
ration under peak workload, then (2) applying SPACE4CLOUD to optimize
virtual machine types for a complete 24-hour workload given a configuration
from the first step.

The ElaClo tool combines these two steps in a single simulation model in1195

order to explore the effects of volatile workload and elasticity mechanisms to
quality and costs under different configurations. We believe that this process
cannot be separated into two independent problems because of the combined
effects among topologies and run-time elasticity efficiency on different quality
criteria.1200

7.4. Discussion

Based on the analysis of the related work in architecture optimization,
the biggest novelty of the ElaClo framework is the hybrid approach to archi-
tecture optimization: combining optimization techniques from design-time
modeling with performance evaluation tools based on measurement. Ela-1205

Clo’s intention is to be complementary to existing design-time tools with
its main application in the assembly phase, where software components are
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ready to be deployed and evaluated. Performance models can then be ex-
tracted automatically from given application components with more accurate
results and used to automatically suggest promising topologies. ElaClo also1210

provides all the automation required to evaluate such topologies on real cloud
infrastructure which significantly reduces expert user effort.

In ElaClo, the extracted performance model is based on multi-class queu-
ing networks with general response-time distributions. Similar to design-
time optimization approaches, ElaClo also employs genetic algorithms cou-1215

pled with queue network simulations to evaluate each candidate. ElaClo is
unique in arranging components into elastic groups and simulating elasticity
behavior. Elasticity is simulated through automatic addition and removal of
computing nodes based on node utilization. Finally, recommended topologies
from the simulation environment are re-evaluated on real cloud infrastructure1220

to obtain the final results.
The downside of our framework compared to existing design-time ap-

proaches is the application of simpler performance models. Layered Queue
Networks employed in previous works can express more sophisticated inter-
actions between software components. However, these interactions are not1225

trivial to extract automatically so we have compensated this loss of precision
by applying measured service time distributions and the ability to model the
elasticity within the simulator.
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8. Conclusions and Future Work

This paper introduced the ElaClo framework for optimizing topologies1230

of service-based applications according to response-time based service-level
objectives and cloud infrastructure operation costs. ElaClo provides these
capabilities by providing a development framework to be used in targeted
application together with a cloud based test-bed service with an integrated
simulation environment to accelerate optimization process. By using ElaClo,1235

developers are empowered with meaningful information about topology eval-
uation and optimization processes and so they can target and offer feasible
service-level objectives.

We demonstrated the capabilities of ElaClo on a real-life application and
displayed that there are non-trivial topologies available that perform better1240

than using trivial deployments. Since the space of all possible topologies
is vast, ElaClo determines optimal topology candidates using a simulation
environment by automatically extracting simulation models based on mea-
surement from the real application components. Suggested topologies were
re-evaluated on a real infrastructure under same volatile workload model, ex-1245

ploiting ElaClo to automatically manage the cloud topology, generate work-
load, monitor and enable service elasticity. We applied several statistical
tests to evaluate the accuracy and efficiency of the optimization process in
simulated environment and concluded that applying genetic algorithms on
simple queue network performance models can differentiate topologies that1250

tend to be optimal when tested in the real environment.
The largest challenge in applying ElaClo is the process of integrating Ela-

Clo’s application framework into applications that needs to optimized. This
requires additional effort from service providers and limits ElaClo applica-
bility in different component framework implementations. For that reason,1255

future work will involve integrating application containers (e.g. Docker) to
facilitate managing incremental changes to component artifacts throughout
development process, enabling comparison of topologies across different ap-
plication versions and consisting of components with different technological
background (e.g. application servers, implementation languages). The pos-1260

sibility to generate TOSCA (Katsaros et al., 2014) models based on chosen
topologies will also be provided to ease up further deployment in production
environments. Additionally, integration with OpenStack infrastructure APIs
will be implemented to enable testing topologies spanning across multiple
data centers (Katsaros et al., 2014).1265
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The most important area for future improvement includes enabling even
faster techniques for searching the possible solution-space based on analyti-
cal models and solutions. We are currently researching automatic extraction
of Layered Queue Network (LQN) models from application artifacts and ap-
plying analytical solvers like LQNS (Franks et al., 2009). There is also a1270

need to establish an automated evaluation framework that can validate sur-
rogate model speed and precision. By knowing that, the final optimization
framework would utilize multiple cost functions: (1) analytical models, (2)
simulation models, and (3) measurement on real systems. The most appro-
priate technique should be automatically selected based on higher-level goals1275

(e.g. optimization duration or precision) set by the application’s architects.
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