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Abstract A mixed MLPG collocation method is applied for 

modeling of deformation responses of heterogeneous 

materials in gradient elasticity. Herein, a heterogeneous 

material domain comprised of two isotropic homogeneous 

parts with different material elastic properties is considered. 

The solution for the entire domain is obtained by enforcing 

the corresponding boundary conditions along the interface of 

the homogeneous domains. For the approximation of the 

unknown field variables the Moving Least Squares (MLS) 

functions with interpolatory conditions are applied. The 

strain gradient elasticity based on the Aifantis theory with 

one microstructural parameter is utilized. The original fourth-

order equilibrium equations of gradient elasticity are solved 

in a staggered manner as an uncoupled sequence of two sets 

of second-order differential equations. The proposed mixed 

meshless approach is tested and demonstrated by a 

representative numerical example. 

Keywords: Mixed meshless approach, collocation method, 

staggered solution procedure, heterogeneous materials 

1 Introduction 

Nowadays, a large number of different meshless methods are 

utilized for the modeling of material deformation responses. 

This is due to their beneficial characteristics in comparison to 

standard mesh-based methods. The meshless numerical 

approaches are able to overcome problems such as element 

distortion and time-demanding mesh generation process. 

Nevertheless, the calculation of meshless approximation 

functions due to its high computational cost is still a major 

drawback. This deficiency can be alleviated to a certain 

extent by using the mixed Meshless Local Petrov-Galerkin 

(MLPG) Method paradigm [Atluri, Liu, Han (2006)].  

In the present contribution, the MLPG formulation based on 

the mixed approach is adapted for the modeling of 

deformation responses of heterogeneous materials based on 

the strain gradient elasticity theory. A heterogeneous 

structure consists of two homogeneous materials which are 

discretized by grid points in which equilibrium equations are 

imposed. In addition, the strain gradient elasticity based on 

the Aifantis theory with only one microstructural parameter 

is considered. The gradient theory is used in order to more 

accurately capture the material behaviour near the interface 

between regions with different material properties and to 

remove jumps in the strain fields that can be observed when a 

classical theory of linear elasticity is used. The solution of 

fourth-order differential equations arising in non-classic 

theories requires a high-order of approximation functions 

[Askes, Aifantis (2011)]. Hence, using the Finite Element 

Method (FEM) for solving this type of problems is not a wise 

choice since standard formulations need to possess C
1
 

continuity, which leads to complicated shape functions with 

large number of nodal degrees of freedom, even if mixed 

elements are utilized [Amanatidou, Aravas (2002)]. 

Therefore, these FEM procedures should not be used due to 

their inefficiency related to high numerical costs [Askes, 

Aifantis (2011)]. On the other hand, the required C
1
 

continuity is obtainable in a simple and a straightforward 

manner, when the meshless methods are considered [Atluri 

(2004)]. In the proposed method, the fourth-order equilibrium 

equations of gradient elasticity are solved as an uncoupled 

sequence of two sets of the second-order differential 

equations [Askes, Morata (2008)], for the purpose of further 

decreasing the continuity requirement of the formulation. 

Hence, two different boundary value problems, local 

(classical) and non-local (gradient), are being solved, where 

the solution of the former problem is used as an input in the 

latter problem. In both boundary value problems, 

independent variables are approximated using meshless 

functions in such a way that each material is treated as a 

separate problem [Chen, Wang, Hu, Chi (2009)]. The global 

solution for the entire heterogeneous structure is acquired by 

enforcing appropriate boundary conditions along the 

interface of two homogeneous domains. The application of 

the staggered solution scheme [Askes, Morata (2008)], 

utilizing the mixed meshless approach, results in less 

complicated meshless formulation which only has the C
0 

requirement on the approximation functions. 

A collocation meshless method is used, which may be 

considered as a special case of the MLPG approach, where 

the Dirac delta function is used as the test function. Since the 

collocation method is employed, the strong form of 

equilibrium equations is employed and time-consuming 

numerical integration process is avoided. The MLS 

approximation functions [Atluri (2004)] with interpolatory 

properties (IMLS) are applied [Most, Bucher (2008)]. This 

enables simple imposition of essential boundary conditions as 

in FEM. Natural boundary conditions on outer edges are 

enforced via the direct collocation approach. In the local 
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problem, the classical linear elastic boundary value problem 

for each homogeneous material is discretized by using the 

independent approximations of classical strains c

ij  and 

classical displacements c

iu . In order to derive the final closed 

system of classical discretized equations with the classical 

displacements as only unknowns, the approximated classical 

strains are expressed in terms of classical displacements 

using appropriate kinematic relations. In the similar manner, 

for the discretization of the non-local boundary value 

problem, independent approximations of the gradient 

displacements g

iu  and the derivatives of gradient 

displacements g

,i ku  are utilized. Herein, to obtain the final 

solvable system of discretized gradient equations, the 

approximated derivatives are written in terms of gradient 

displacements at the collocation nodes. The mixed MLPG 

collocation method for the modeling of deformation 

responses of a heterogeneous material using gradient 

elasticity is presented and explained at large in Section 2. The 

proposed method is tested and analyzed by considering a 

problem of the clamped heterogeneous plate subjected to 

uniform displacement at the right end in Section 3. In Section 

4 concluding remarks and further research guidelines are 

given. 

2 Mixed MLPG Method for Gradient Elasticity 

The two-dimensional heterogeneous material which occupies 

the global computational domain   surrounded by the 

global outer boundary   is considered. The boundary 
s  

represents the interface between two subdomains,   and 
 , with different homogeneous material properties. 

s  

separates the global domain   in such a manner that 
     and       . 

 

 

Figure 1: Two-dimensional heterogeneous material 

Furthermore, since in the staggered procedures two different 

boundary value problems are solved one after the other, the 

global boundary   can be denoted as c  or g  to 

distinguish whether the classical or gradient boundary value 

problem is being solved. The same analogy applies to all 

other boundaries, where some kind of boundary condition is 

prescribed, e.g. the interface boundary 
s  is in the classical 

boundary value problem denoted as c

s , while in the gradient 

one it is denoted g

s . Hence, the typical heterogeneous 

material being analyzed is now portrayed in Fig. 1. The 

governing equations for the presented example are the strong 

form 2D equilibrium equations which have to be satisfied 

within the global computational domain   divided into 
  

and 
 . According to the staggered solution procedure 

described in [Askes, Morata (2008)], two sets of second-

order partial differential equations can be utilized to describe 

the deformation of the heterogeneous material. These 

equations are here written for each homogeneous material 

separately. Thus, the first equation set representing the 

classical boundary value problem is equal to 

c c

, 0, within ,
jij x iσ b      (1) 

c c

, 0, within ,
jij x iσ b      (2) 

While the second equation set for the non-local gradient 

problem utilize a microstructural parameter l  and is 

expressed as 

g+ 2 g+ c+

, , within ,i i mm iu l u u     (3) 

g 2 g c

, , within .i i mm iu l u u       (4) 

As evident, firstly the classical boundary value problem is 

solved, whose solution is then used as an input on the right 

hand side of the gradient equations. In this operator-split 

procedure, the classical and gradient boundary conditions 

need to be satisfied on the outer boundaries of the 

heterogeneous structure, depending on which problem is 

currently being solved. Hence, as in [Atluri, Liu, Han 

(2006)], the classical boundary conditions include the 

displacements c

iu  and tractions c

it  equal to 

c+ c+ c+

u, on ,i iu u   (5) 

c c c

u ,, oni iu u     (6) 

c+ c+ c+ c+ c+

t, on ,i ij j it n t    (7) 

c c c c c

t, on ,i ij j it n t        (8) 

while the gradient boundary conditions can be the 

displacements g

iu  and second-order normal derivatives of 
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displacements g

iR  [Polizzotto (2003)], where 
ijk  denotes 

the third-order tensor comprised of second derivatives of 

displacements g

iu   

g+ g+ g+

u, on ,i iu u   (9) 

g g g-

u, on ,i iu u                                                        (10) 

2 g+
g+ g+ g+ g+ g+ g+

tg+2
, on ,i

i j k ijk i

u
R n n R

n



   


                      (11) 

2 g
g g g g g g

tg 2
, on .i

i j k ijk i

u
R n n R

n



     




   


                     (12) 

Furthermore, to acquire the solution for the entire structure, 

the conditions on the interface boundaries, c

s  and g

s , need 

to be enforced, for both the classical and the gradient 

problem. According to [Askes, Morata (2008)], if the 

classical elasticity problem is solved, these boundary 

conditions are the continuity of displacements and reciprocity 

of tractions 

c+ c c

s0, on ,i iu u                                                    (13) 

c+ c+ c c c

s0, on .ij j ij jn n                                            (14) 

On the other hand, if the gradient problem is considered, the 

interface boundary conditions include the continuity of 

displacements and reciprocity of first-order normal 

derivatives of displacements 

g+ g g

s0, on ,i iu u                                                     (15) 

g+ g
g

sg+ g
0, on .i iu u

n n





 
  

 
                                            (16) 

The two-dimensional heterogeneous continuum   is 

discretized by two set of nodes 1,2,...,I N  and 

1,2,...,M P , where N and P indicate the total number of 

nodes within 
  and 

 , respectively. Herein, the same 

sets and position of the nodes are used for the discretization 

of both the classical and the gradient boundary value 

problem. Now, for each considered discretization node, the 

MLPG concept [Atluri (2004)] is applied, wherein the Dirac 

delta test function is chosen as the weight function in local 

weak forms, and the local approximation domains are defined 

around each node in order to compute the connectivity 

between the nodes. For the nodes positioned on the interface 

boundaries, the approximation domains are truncated in such 

a manner that the discretization nodes from one 

homogeneous material influence only the nodes belonging to 

that material. For the discretization of both boundary value 

problems, the mixed collocation procedure [Atluri, Liu, Han 

(2006)] is utilized. All unknown field variables are 

approximated separately within subdomains   and  , 

where the same approximation functions are employed for all 

field components. For the shape function construction, the 

well-known MLS approximation scheme [Atluri (2004)] is 

employed. The interpolatory properties of the MLS 

approximation function are achieved by utilizing the weight 

function according to [Most, Bucher (2008)]. Since the 

discretization of the classical boundary value problem using 

the mixed MLPG approach is well documented in the 

scientific literature, the description of the obtained equations 

for the classical problem is here skipped and the reader is 

referred to [Jalušić, Sorić, Jarak (2017)], where this approach 

is described in depth. In this contribution, the main focus is 

shifted to the discretization of the gradient boundary value 

problem and the corresponding boundary conditions. Here, 

the displacement and derivatives of displacements are 

unknown field variables. Thus, for the nodes within the 

material  , and nodes positioned on the boundaries g

u

 , 

g

t

 , and g

s

  these approximations are written as 

s

g ( ) g

1

ˆ( ) ( )( ) , with ,in

N

h

i J i J

J

u u


   



 x x                          (17) 

s

g ( ) g

G

1

ˆ( ) ( ) ( )( ) , within ,

N

h

i J i J

J

u u


   



  x x                    (18) 

where 
J
  represents the nodal value of two-dimensional 

shape function for node J, 
s

N  stands for the number of 

nodes within the approximation domain 
s , while  gˆ

i J
u   

and  g

G
ˆ

i J
u 

 denote the nodal values of the displacement and 

derivatives of displacement components. Now, firstly the 

governing equations of the gradient problem, (3) and (4), are 

rewritten in their matrix form at the discretization nodes in 

the domains   and   

g 2 +T g c ,[ ( )]I I Il     u u u          (19) 

g 2 T g c ,[ ( )]M M Ml      u u u          (20) 

where 2 T ( )     denotes the Laplacian operators written 

in matrix form. Hence, the operators   and   are equal to 

1 2+T

1 2

( ) ( )
( ) 0 ( ) 0

,
( ) ( )

0 ( ) 0 ( )

I I

I I

x x

x x

 

 

  
 
 

 
  
 

  

x x

x x



           (21) 
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1 2T

1 2

( ) ( )
( ) 0 ( ) 0

.
( ) ( )

0 ( ) 0 ( )

M M

M M

x x

x x

x x

x x

 



 

  
 
 

 
  
 

  



                (22) 

The governing equations (19) and (20) are now 

simultaneously discretized by the approximations (17) and 

(18) resulting in 

s sg g
2 +T c

G

1 1

,[ ( )]
N N

J KJ K I

J K

l 
 

 
  

 

   u u u                              (23) 

s sg g
2 T c

G

1 1

.[ ( )]
N N

J KJ K M

J K

l 
 

 
   

 

   u u u        (24)

In the above equations, 
g

G



u  and 
g

G



u  denote the vectors of 

unknown derivatives of displacement defined by 

g+ g+ g+ g+
g+

T 1 2 1 2
G

1 1 2 2

ˆ ˆ ˆ ˆ
,[ ] [ ]u u u u

x x x x

   


   
u                             (25) 

g g g g
g

T 1 2 1 2
G

1 1 2 2

ˆ ˆ ˆ ˆ
.[ ] [ ]u u u u

x x x x

   
    


   

u        (26) 

As obvious, the equations (23) and (24) represent an 

unsolvable system since the global number of nodal 

unknowns is larger than the number of equations. Thus, the 

system of equations is here closed simply by enforcing the 

compatibility at each node between the approximated nodal 

derivatives of displacements, 
g ( ) g

G G( )
h

KK

 

u x u  and 

g ( ) g

G G( )
h

KK

 

u x u , and the nodal displacements gˆ
J


u  and gˆ

J


u , 

respectively. Hence, the compatibility equations written 

using kinematic differential operators, g

KD
  and g

KD
 , are    

g g g

G K
ˆ ˆ ,Du u

                                          (27) 

g g g

G K
ˆ ˆ .Du u

                 (28) 

Equations (27) and (28) are now again written at every 

discretization node and discretized by (17), which yields  

s sg g g
g

G K

1 1

) ,(

N N

K J JJ K KJ

J J

u D x u G u
 

  
  

 

                                  (29) 

s sg g g
g

G K

1 1

( ) ,

N N

K J JJ K KJ

J J

u D x u G u
 

  
  

 

          (30)

where  KKJ J

 G G x  and  KKJ J

 G G x  indicate the 

matrices consisting of the first-order derivatives of shape 

functions, written analogously to operators in (21) and (22). 

Inserting the discretized compatibility relations (29) and (30), 

into the discretized governing equations (23) and (24), a 

solvable system of linear algebraic equations with only the 

nodal displacements as unknowns is attained 

g+ g+ g+ˆ , withi ,nIJ J I

 K u F                                                (31) 

g g gˆ , withi ,nMJ J M

    K u F                       (32) 

where the gradient nodal coefficient matrices g+

IJK  and g

MJ


K  

are equal to 

s s s

g+ + 2 g+T g+

1 1 1

,[ ]
N N N

IJ IJ IK KJ

J K J

l
  

  

   K S G G                                    (33) 

s s s

g 2 g T g

1 1 1

.[ ]
N N N

MJ MJ MK KJ

J K J

l
  



 

 



   K S G G        (34) 

Herein, the matrices +

IJS  and 
MJ


S  are the diagonal matrices 

comprising of nodal shape function values  

+ ( ) 0
,

0 ( )

J I

IJ

J I

x
S

x
         (35) 

( ) 0
.

0 ( )

J M

MJ

J M

x
S

x
        (36) 

The gradient nodal force vectors g+

IF  and g

M


F  in (31) and 

(32) are composed of the known values of classical 

displacements. As obvious, by utilizing the staggered 

procedure and the presented mixed meshless strategy, the 

coefficient matrices g+

IJK  and g

MJ


K  are assembled using only 

the first-order derivatives of shape functions. All 

approximation functions in this contribution possess the 

interpolation property at the nodes. Consequently, the 

essential boundary conditions are enforced straightforwardly, 

analogously to the procedure in FEM. Therefore, by 

discretizing the displacement boundary conditions (9) and 

(10) with the approximation (17), we obtain 

s

g+ g+ g

u

1

on ,ˆ ,

N

I J J

J








u u            (37) 

s

g

1

g

u

g oˆ ,, n

N

I J J

J




 



  u u          (38) 

The natural boundary conditions (11) and (12) on the 

boundaries g+

t  and g

t

  are imposed using the direct 

collocation approach. Here, in order to derive the discretized 

equation of the natural boundary conditions dependent only 

on the nodal values of unknown displacements, the 

compatibility between second-order and first-order 

derivatives of displacements at the collocation nodes is 

imposed. Hence, for the heterogeneous structure this 

compatibility can be written using differential operators, sg

KD
  

and sg

KD
 , equal to 

g sg g

SG K G
ˆ ˆ ,u D u

                                (39) 

g sg g

SG K G
ˆ ˆ ,u D u

                              (40) 
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where g+

SGû  and g

SG
ˆ 
u  denote the vectors of unknown nodal 

second-order derivatives of displacements. Now, by 

employing the equations (39) and (40), and the compatibility 

between the first-order derivatives and the displacements 

defined by (27) and (28), along with the displacement 

approximation (17) we obtain the following discretized 

expressions for gradient natural boundary conditions 

s s

g+ SG+ g g+

t

1 1

onˆ , ,

N N

I I IK KJ J

K J

R N H G u
 

 

 

              (41) 

s s

g

t

g SG g

1 1

o .ˆ , n

N N

M M MK KJ J

K J

R N H G u
 

     

 

                        (42) 

In the above equations, the matrices 
IKH
  and 

MKH
  connect 

the second- and first-order derivatives of displacements via 

the first-derivatives of shape functions,  

1 2

2

2

T 1

2

( ) 0 ( ) 0 0 0

0 0 0 ( ) 0 ( )

,

0 ( ) 0 0 0 0

0 0 0 0 ( ) 0

K K

K K

F

I I

I I

I

K

K

K
I

x x

x x

x

x

x x

x x

H

x

x

 

 





 

 







  
 
  

  
 

  
  


 

 
 

 
  

           (43) 

1 2

21T

2

2

( ) 0 ( ) 0 0 0

0 0 0 ( ) 0 ( )

,

0 ( ) 0 0 0 0

0 0 0 0 ( ) 0

K K

K K

F

M M

M M

M

K

K

K
M

x x

x x

x

x

x x

x x

H

x

x

 

 





 

 







  
 
  

  
 

  
  


 

 
 

 
  

                      (44) 

while the matrices KJ


G  and KJ


G  are analogous to the ones 

defined by (29) and (30). These equations are now inserted 

into the global coefficient matrix in the rows corresponding 

to the current node positioned on g

t

  and g

t

 , respectively. 

For the nodes on the boundary g

s , the interface conditions 

(15) and (16) are discretized by using approximations (17) 

and (18), while also utilizing the discretized compatibility 

conditions, (29) and (30), in the reciprocity of natural 

boundary conditions. Hence, the final form of the discretized 

interface conditions of this procedure states 

s s

+ g

s

g

1 1

ˆ on ,ˆ ,

N N

J J J J

J J

 
 

  

 

 u u              (45) 

s s

G+ g+ G g

1

s

1

ˆ ˆ , on ,

N N

I IJ J M MJ J

J J

 

    

 

  N G u N G u                      (46) 

where G+

IN  and G

M


N  denote the matrices composed of the 

unit normal vectors associated to the first-order derivatives of 

displacements. 

3 Numerical Example 

3.1 Plate under uniform displacement 

A heterogeneous plate is utilized in order to test the ability of 

the proposed method to remove discontinuities from the 

strain field. The material properties of the left part of the 

plate are taken as 1000E   and 0.25   , while the 

material data of the right side are 10000E   and 0.3   . 

The geometry of each homogeneous subdomain is defined by 

the length 3L   and the height 3H  . The left side of the 

plate is fixed, while the unit displacement is imposed on the 

right side. The geometry and the boundary conditions are 

defined and depicted in Fig. 2 and Fig. 3. 
 

 

Figure 2: Plate with classical boundary conditions 

 

Figure 3: Plate with gradient boundary conditions 

For the verification of the presented mixed collocation 

approach, the distributions of the strain components g

x  and 

g

xy  along the line 0.9y   are portrayed in Fig. 4 and Fig. 5 

for two different values of the microstructural parameter l . 

The plate is discretized by the uniform nodal distributions, in 

both x  and y  directions using 242 nodes, where 
sh  defines 

the horizontal and vertical distance between nodes. The 

second-order IMLS functions are applied for the solution of 

the problem with the size of the approximation domain equal 

to s s2.4r h . As evident, from the distributions of the strain 
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components, the use of the microstructural parameter larger 

than zero causes the change in the strain field at and around 

the interface of the homogeneous domains. 

 

Figure 4: Distribution of strain g

x  for 0.9y   

 

Figure 5: Distribution of strain g

xy  for 0.9y   

For 0l   no discontinuity in the strain field is observed at 

the interface boundary. Accordingly, it can be concluded that 

the method is suitable for smoothing the strain field. 

4 Conclusion 

The mixed collocation method based on the Meshless Local 

Petrov-Galerkin (MLPG) concept has been proposed and 

applied for the modeling of deformation responses of 

heterogeneous materials based on gradient elasticity. The 

problem is solved in a staggered manner using the Aifantis 

strain gradient theory with only one unknown microstructural 

parameter, whereby firstly the boundary value problem of 

classical elasticity is solved, whose solution is then used as 

the input for the corresponding gradient boundary value 

problem. Both problems are described by the second-order 

equations, instead of the original fourth-order differential 

equations. By employing the mixed MLPG concept, the 

necessary derivative order of approximation functions is 

further reduced in the equations. Given that a collocation 

method is used, there is no need for numerical integration. 

Thus, the application of the staggered solution scheme and 

the mixed meshless approach results in an accurate and stable 

numerical formulation, where only the first-order derivatives 

of shape functions need to be calculated. The gradient theory 

is used here in order to more accurately capture the material 

behaviour near the interface between regions with different 

material properties and to remove jumps in the strain fields 

that can be observed when a classical theory of linear 

elasticity is used. This enables more physical description of 

the transition of the strain distributions between various 

homogeneous material regions inside heterogeneous 

structures. In further research, the described meshless 

computational strategy will be extended to the modeling of 

damage initiation in the zones where the strain localization is 

present, and considered for the use in meshless multiscale 

computation algorithms.  
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