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Abstract: This paper is concerned with the operating envelope protection design for a
broad class of nonlinear discrete-time systems based on a Robust Control Invariant (RCI) set
framework. Existing techniques for a direct design of a RCI set for a general system suffer from
the computational intractability connected with the complexity of a system model and model
dimension. For a nonlinear system with mild assumptions on its model here we use a suitably
defined linear model with additive uncertainty confined in a finite set and its corresponding
maximum RCI set. Robust constraints satisfaction for the original system is ensured for a
pre-defined set of disturbance trajectories. The approach is based on a superposition of a
nominal and perturbed dynamics, whereas the coupling effects between respective dynamics
are encompassed with the additive uncertainty. The additive uncertainty set is estimated by
employing the trajectories of disturbance and a system description. The presented approach is
scalable with respect to the system dimension. A simple example from the wind energy field is
used to illustrate the proposed method.
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1. INTRODUCTION

Robust Control Invariant (RCI) set framework has a
great importance in the field of robust system control,
whereas it can be used to design a control policy, such
that the constraints are respected for all realisations of
the model uncertainties in the future (Blanchini, 1999).
While the methods for a RCI set computation given a
Linear Time-Invariant (LTT) system model with addi-
tive uncertainty are widely accepted, the methods that
are developed for a wider class of nonlinear or Linear
Parameter-Varying (LPV) models suffer from computa-
tional intractability (Pluymers, 2006; Kerrigan, 2001).

The largest RCI set of a constrained system subject to ad-
ditive uncertainty, denoted as the Maximum RCI (MRCI)
set, is computed by intersecting the consecutive one-step
robustly controllable sets within the bounds of the imposed
system constraints (Blanchini, 1999; Blanchini and Miani,
2008). Typically used approaches in the MRCI set de-
sign for nonlinear and parameter-varying systems include
Piece-Wise Affine (PWA) or LPV models. The method
for one-step robustly controllable set computation of a
given PWA model (Kerrigan, 2001) involves enumerating
all possible transitions between the affine models. The
model uncertainty is taken into account by computing
the Minkowski set difference between the polyhedral par-
tition representing targeted regions and the polytope of
uncertainty in each iteration of the MRCI set computa-
tion algorithm which often discards the applicability of
the approach for complex models (Vasak et al., 2007).
Alamo et al. (2007) suggest employing the outer and
inner convex set approximations for the computation of
the one-step robustly controllable set that greatly reduce

the computational and memory burden compared to the
exact algorithm. Nevertheless, since the set approximation
algorithms suffer from the curse of dimensionality, i.e. the
approximation error may degrade dramatically with the
rise of model dimensions, the scalability of the proposed
method should be further investigated.

When applied to a LPV model of the system, it is some-
what easier to compute the one-step robustly control-
lable set. It includes computation of the one-step robustly
controllable set for each of the extremal linear models,
whereas the result is obtained by their intersection. One-
step robustly controllable set issued for the LPV model is
convex, thus allowing the application of algorithms with
the lower computational complexity for its computation.
Nevertheless, the MRCI set for a LPV model is solvable
only for systems with the low number of states and extreme
LTT models representing the LPV model (Pluymers, 2006).

The general framework of the robust control correc-
tion synthesis in a set theoretic approach may be found
in Rakovi¢ et al. (2009). In respective paper authors
identify two approaches for the control input correction,
specifically the inf-sup and sup-inf correction syntheses,
whereas the applied approach depends whether the distur-
bance that acts on the system is known or unknown when
the necessary control input correction is determined. The
presented framework is validated on a discrete-time LTI
model of a system. The robust control correction synthesis
for LTI systems is also presented in Vasak and Perié
(2008), Vasak and Peri¢ (2010) within a multi-mass elec-
trical drive application, with experimental results (Vasak
et al., 2010) and efficient on-line implementation (Vasak
et al., 2011). In Kvasnica et al. (2012) authors discuss



the hierarchical design methodology in the control sys-
tem layout that employs the low-level controller to ensure
satisfaction of system constraints, control system stability
and fault tolerance with respect to the technical failures in
communication between the high-level controller and the
actuators.

Design of the robust control correction system that is pre-
sented in this paper originates from the research conducted
by Vasak et al. and complies with the general ideas pre-
sented in Rakovié et al. (2009) and Kvasnica et al. (2012).
The contribution of our approach is the simplification of
the general robust control correction synthesis which may
be applied on a broad class of nonlinear systems subject to
the predefined set of disturbance trajectories. The design
method is based on a RCI set framework, whereas the
employed model that is used for the RCI set computation
has a specific structure of a linear discrete-time invariant
system with an additive uncertainty, whereas it complies
with the efficient methods for the robust control invariant
set computation, e.g. Rakovié¢ et al. (2007); Rakovié¢ and
Bari¢ (2010). In order to derive a simplified approach
for the protection system synthesis we introduce a new
notion of the robust control invariance with respect to the
provided set of disturbance trajectories. Existence of such
a set is the leading assumption for the method.

The paper is organised as follows. Section 2 gives the
outline of the notation and definitions that are important
for the understanding of the presented material. Section 3
presents the RCI set design problem for a nonlinear
discrete-time system given that the disturbance trajecto-
ries of the system are provided. The operating envelope
protection design method is proposed in Section 4. Sec-
tion 5 illustrates the proposed approach by an example
and Section 6 summarises conclusions.

2. NOTATION AND DEFINITIONS

In the recurrence equations, superscript + on top of a
variable symbol is used to denote the state of respective
variable at the next time instant, whereas its current state
is briefly denoted with a variable symbol, e.g. z+ and =
denote the next and current state respectively. The state
of a variable at the specific time instant is denoted with
the time value in the subscript, e.g. x; denotes the state at
the (discrete) time instant ¢. Countable set is denoted with
a calligraphic font, whereas the uncountable set is denoted
with a blackboard bold font.

Given two sets U and V, such that U C R™ and V C
R™, the Minkowski sum is defined by U® V £ {u +
viu € U,v € V} and the Minkowski set difference is
UeV £ {§ € R"|§+v € U, Vv € V}. Given a vector x and
a convex set U we briefly write 2 @ U instead of {z} & U.
We use ||z]| to denote the L2 norm of vector x. Polytope
is a compact (closed and bounded) convex intersection of
a finite number of half-spaces. LTI discrete-time system is
strictly stable if all its poles are within the unit circle in
the complex plane.

3. ROBUST CONTROL INVARIANCE WITH
RESPECT TO A PRE-DEFINED SET OF
DISTURBANCE TRAJECTORIES

Consider a nonlinear discrete-time system of the form

T = f(z,u,d), (1)

where x € R"” is the current state of the system, u € RP
is the current control input and d € R" is the distur-
bance acting on the system. The state update function
f is assumed continuous and derivable from all sides in
the considered domain. Disturbance is independent of
the state and input and may change at time instants,
whereas the uncertainty of disturbance estimation is con-
strained within a convex and compact set.The distur-
bance is assumed to be realised as one of the trajectories
from a pre-defined set of disturbance trajectories F =
{Fays Fdys- -, Fdy y- Although the disturbance realisation
uncertainty may be also considered, it is omitted in this
paper for simplicity of presentation. The output equation
of the system is given with

y = h(z,u,d) +v, (2)
where y € R™ is the vector of measurements, v is the
measurement noise and A is the system output function.
The system state vector x and the disturbance d are
assumed observable. The state update function f as well
as the output function h are supposed to be known.

The system should be kept within the convex set of
imposed constraints

(z,u) € Py X Py, (3)
whereas the constraints defining the set P, x P, directly
follow from the physical limitations and safety require-
ments of the system at hand. In terms of discussion from
above, the maximum robust control invariant set of sys-
tem (1) subject to the disturbance realisation scenarios in
F, denoted with I7, implies that there exists the set of

x )

admissible control inputs u € U (z) C P, such that

N
Hf = n{fft | f(zeyue, di), f(f (@6, ue, di )y wrr, digr)-o.
i=1
. € Hf, {dt,dt+1, .. } = ]:di},

(4)
where the disturbance realisations are generated according
to the provided disturbance trajectory Fg,. The distur-
bance generation is conducted as follows. Assume that the
initial time stamp of each disturbance trajectory is t. Then,
each of the trajectories is expanded in the unbounded time
interval according to the following scheme

{. . ~-Fd71,ta .. ~fd,,t7fdi,t+lafd7:,t+23 .. 'fdi7t+nfi_l7

oo ]:di;t‘Fn}'i*l’ .. .},
where nr, is the sequence length of the i-th disturbance
trajectory. The condition in (4) then implies invariance
with respect to each of the extended disturbance trajecto-
ries.

Note that I7 is the over-approximation of the MRCI set
corresponding to the system (1) with disturbance realisa-
tion d being confined in an arbitrary convex and compact
set D that encompasses all possible disturbance realisa-
tions from F. Introduced disturbance set-based approach
will allow certain simplifications in the design of the oper-
ating envelope protection system.

The admissible control input set U7 (z) in dependence of
the system state x is usually represented with a set 17,
whereas I7 = proj, 17, and

U7 (2) = {u| (z,u) € I,}. (5)
Term proj, denotes the projection operation on the =z
space.



4. METHOD FOR THE OPERATING ENVELOPE
PROTECTION DESIGN

Suppose that the system (1) is controlled with a controller
of a general structure, with u. as its output signal. Given
that the set of admissible control inputs U7 (z) is com-
puted, the control input correction that has to be applied
in order that the system is steered within the imposed
constraints is given with

U =u" — ug, (6)
v = min ||lu—u|, (7)
u
st. u € U (z).

In practice, the admissible control input set U7 (x) can be
hardly computed for a general class of nonlinear systems
due to the complexity of I7 computation. In that regard,
we propose a computationally viable approach for the
operating envelope protection design in this paper. The
approach is based on computing the inner approximation
of the admissible control input set U7 (z) C U7 (z) in a
vicinity of nominal trajectories of the system (1). Nominal
trajectories are result of the applied internal controller
input wu, that is confined in the set U, C PP, whereas
the system is exposed to the disturbance trajectories in
F. Set of admissible control inputs UF (x) is in this paper

approximated with u, @ U(z), where the derived system
state z represents a suitable extension of the system state-
space, as will be discussed in the sequel. Internal controller
is here represented with a black box model, while its
structure is irrelevant for the design of the operating enve-
lope protection system. The same applies to the controller
block.

In terms of the previous discussion, the presented operat-
ing envelope protection is implemented with

[l = uell, (®)

st.ue U7 (z) = u, ®U(2),

whereas its integration in the control system is depicted
in Fig. 1. Note that the variables Z, Z and d are generally
estimated from the available measurements y, inputs u*, @
and as such are employed in the control system. Unlike the
notation in Fig. 1, the hats of the estimated variables are
omitted in the great part of this paper for simplicity, but
the implications of the estimation uncertainty are noted
later on.

u* = min
u

Protection system

Internal controller

Controller

Fig. 1. Structural scheme of a RCI set-based operating envelope
protection system; block 'I’ determines the set of admissible
control input perturbations TD(Z); block ’II’ replaces the input
uc with the vector u* from u, @ U (z) nearest to it (for 1D input
case, this is a saturation function)

4.1 Linear time-invariant model with additive uncertainty

Similar to the approach used in the tube MPC design
strategy, in Mayne et al. (2005), let us divide the system
dynamics in two independent parts, the nominal dynamics
around the steady-state operating point and the perturbed
dynamics. For each disturbance trajectory JFy, holds the
following state update equation of the nominal dynamics in
the coordinate system of the steady-state operating point
7t = f(z + zo(d), ur, d) — xo(d"), (9)
where z is the steady-state of the system (1) for the pro-
vided disturbance d. The shorter notation =, = Z + x¢(d)
will be also used in the remainder of this paper. The
perturbed system dynamics models the behaviour of the
system around the nominal trajectory under the influence
of controls perturbed from wu,.,
it = A% + B+ 0. (10)
The actual state of the system (1), xg+Z+, is the result of
the control input u,. 4+ 4, whereas under certain conditions
the update of & can be considered independent of the
nominal system state Z, the nominal control input u, and
the disturbance d. Respective dependence, as well as the
non-modelled nonlinearities are comprised in the additive
uncertainty of the model with perturbations, denoted with
w. Matrices A, B in (10) are used to approximate the
dynamics of the system (1) in vicinity of the nominal
trajectories. They are identified according to the procedure
in Appendix A.

Proposition 1. The consistently estimated state-space mo-
del (10) is strictly stable provided that the system (1) is
stabilised with the nominal control input w,..

In contrast to the tube MPC approach, one cannot ensure
the satisfaction of the imposed constraints for the nominal
system state x, = x¢ + T that is a consequence of
the nominal control input wu,. Therefore, let us divide
the states of the system in two subsystems, whereas the
nominal trajectories of the first subsystem states, indexed
with the set A, do not compromise the imposed system
constraints and the nominal trajectories of the second
subsystem states, indexed with the set B, exceed the limits
of the imposed system constraints for at least one nominal
trajectory. The system constraints (3) will remain satisfied
as far as

} eP, 6 (X, xXo,) (11)

Ty
T+ Tp
and
uelP,oU,, (12)
where X, , is the smallest convex set that contains the
nominal trajectories of the subsystem A state vector, z, ,.
Similarly, Xy, denotes the smallest convex set that con-
tains the steady-state operating points of the subsystem
B, xo,. For the problem to be well-posed, sets P, & (X, , x
Xoz) and P, © U, ought to be full-dimensional. Note that
the states of the nominal subsystem A are not considered
in the state vector (11) since they comply with the imposed
system constraints, resulting with the reduced number of
the model state dimension. In a specific case the state
vector of the proposed LTI model can comprise the states
of the subsystem B exclusively.

According to the discussion, system (1) is represented with
the LTI state-space model comprising the states of system



perturbation and the nominal dynamics of the subsystem
B in the coordinate system of the steady-state operating
point,

<= 5] = [ 5][A] <[] e[ ] 00

where z is the state vector of the model. The nominal
dynamics of the subsystem B around the operating point is
represented with the envelope model. The envelope model
is estimated to include each of the nominal subsystem Zp
trajectories resulting from the given set of disturbance
trajectories F. Matrix S of the envelope model is used
to model the shape of the envelope propagation and the
additive uncertainty wg to define its scale.

The existence of the robust control invariant set of the LTI
model with the additive uncertainty (13) subject to the
constraints (11) and (12), denoted with I7., ensures that
the imposed constraints of the system supplied with the
nominal control input u, and the control input corrections
@ remain respected. The computation of the (maximum)

RCI set for model (13) is discussed in Subsection 4.4.

4.2 Envelope of nominal trajectories in coordinate system
of steady-state operating point

By consequently employing all disturbance trajectories
from the set F, the set of nominal system trajectories is
obtained if the system is supplied with the control input
u,. The nominal trajectories of the subsystem B in the
coordinate system of the disturbance-dependent operating
point are then derived, which are used to estimate the cor-
responding envelope model defined with the propagation
matrix S and the propagation uncertainty set Wg (13),

1_7;'3_ = STg + wp, wg € WB. (14)
The envelope model is estimated from a collected set of
the nominal state pairs {(i‘gj,{,fgj)}, Vj € J, where J is
the corresponding set of indices, such that

:zgj € Szp, ®Wg, Vj € J, (15)

whereas the propagation uncertainty is minimised while
imposing the bounds to the steady-state set of the enve-
lope. The corresponding optimisation problem is presented
in the following proposition.

Proposition 2. The envelope model is estimated by solving
the following optimisation problem
min - - logdet(L)
I LTt —YZp,
~+ = T > ’ i Oa <16)
(Lasz _ Yz,gj) 1
(L-Y)—-Ls>=0,L>0,Y >0,VjeJ,

where (LTL)~! is a diagonal shape matrix of the ellip-
soid that over-approximates the uncertainty set Wy and
Y = LS is also a diagonal matrix. The largest steady-state
ellipsoidal set of the envelope model is described by the
shape matrix (L] - L,)™!, where L, is a suitably selected
symmetric matrix, such that the over-approximation error
is sufficiently small.

s.t.

Once that the problem (16) is solved, the exact polytopic
uncertainty set Wy is computed from the given set of
pairs {(fgj,.’f}gj)}7 Vj € J. The uncertainty set of the

nominal dynamics Wy may be represented with the over-

approximation (Le Guernic, 2009) of the exact uncertainty
to reduce the computational complexity of the (M)RCI set
computation.

Remark 1. One may additionally reduce the over-approxi-
mation error of the envelope by introducing the nominal
state observation error og,

Y = I + 035, (17)
where the observation error op resides in the suitably
determined compact and convex set Qg with origin in its
interior. The envelope model constraint then becomes

us, €7, ®0p, Vj € J. (18)
Given that the nominal state observation error is intro-
duced, the model state vector and corresponding con-
straints for the MRCI set derivation should be reformu-
lated as

[%”}‘%} €P, & (Xo, x (Xog ®0g)).  (19)

4.8 Uncertainty of perturbed dynamics

The applied control input corrections will steer the system
away from the nominal trajectory. Since the considered
system is nonlinear, the uncertainty of the perturbed dy-
namics depends on the current system state, control input
and disturbance. The uncertainty set of the perturbed
dynamics is therefore estimated in the reachable sets of
the system subject to the disturbance trajectories in F,
whereas the control input is confined in u, ® (P, © U,)
and state constraints provided with P,. The reachability
analysis should account for the estimation uncertainties of
the system state and the disturbance, while the output
of the internal controller u, depends on respective esti-
mates. Accurate reachability can be performed for the low-
dimensional systems given that they can be approximated
arbitrarily well by a linearised model with the additive un-
certainty at each time instant, whereas for reachability of
the higher-dimensional system one should consider certain
approximations (Le Guernic, 2009; Dang and Maler, 1998;
Girard, 2005).

The estimation of the perturbed dynamics uncertainty is
conducted by employing the pre-defined set of disturbance
trajectories in the reachability analysis, whereas the sam-
ples of perturbed dynamics uncertainty {wy}, Vk € K,
where K is the corresponding set of indices, are estimated
at each time instant of each disturbance trajectory Fy,
according to

arg min @y oy,
W, W
st. f(z,ur +4,d) = Az + Ba+... (20)
f.A(xraurad)

Si‘B+@B+$OB +U/k, U}B6W87
where f4 denotes the indexing of subsystem dimensions
A, the state x in (20) is in the time instant ¢ of the
reachability analysis sampled from the set of reachable
system states Xy, the control input correction « is sampled
from P, © U,., disturbance d is realised according to the
disturbance trajectory set Fg,, & equals  —xo—Z, whereas
Z and zq are determined from the state of the nominal sys-
tem trajectory and disturbance realisation d respectively.
Observed samples of the uncertainty {wg}, Vk € K, at
time instant ¢ are used to estimate the convex hull of the
perturbed dynamics uncertainty W;.



Estimated uncertainty sets of the perturbed dynamics in
time instants are used to determine the equivalent fixed
uncertainty set of the perturbed dynamics Woo. The set
W is derived according to the following principles. Start-
ing from the time instant ¢y, the one-step state update
equation is given with AZ;, + By, + Wy, and

Wy, € Wy € Woo (21)
The next step is given with A?%;, + ABty, + Biy,4+1 +
A’lDtO + ’ll~)t0+17 thus

Wy, € Wto,'@to+1 € Wt0+1a Awto @Wt0+1 C AW, @Vé’oc)-
22

Therefore, given the sequence of the uncertainty sets
{Wl}f"z‘:i“, estimate of the fixed uncertainty set W, is
for the first g time instants lower-bounded with
th g Woov
Wt0+1 3] Awto CWe @ AWoov

: (23)

Wigtio—1 @ AWy 2@ ... & APTITW,, C

Woo @ AW, @ ... @ AW
Note that estimating the smallest fixed uncertainty set
W, that complies with (23) may be computationally
intractable for large ig. Therefore, irrespective of the pa-
rameter ig value, the over-approximating fixed uncertainty
set W, may be estimated by considering a certain number
of newest sets in the sequence and by performing the
estimate W iteratively. E.g. if three newest uncertainty

sets are considered to update the fixed uncertainty set at
time instant ¢, the following set inequality should apply

W, ® AW, @ A2W,_5 C W, @ AW, @ A2W,. (24)
Once the uncertainty set Wo, is determined, the overall
uncertainty of the LTI model equals to

W =W, x Wgs. (25)

4.4 (Mazimum) RCI set computation

The design of an operating envelope protection based on
a RCI set framework reduces to the MRCI set compu-
tation of the LTI model (13) with constraints (11), (12)
and the additive uncertainty set (25). In order to ensure
that the set of admissible control input corrections is full-
dimensional, that is U, C P,, hard constraints should be
imposed to the output of the internal controller. The state
estimation error may be included in the RCI set design
procedure, as discussed in Vasak and Peri¢ (2010), Hure
et al. (2016).

One should keep in mind that the bigger is the set of
admissible control actions P,, © U,. the larger is the uncer-
tainty set W, of the perturbation model (10). Depending
on the system and the applied control law for u,., the re-
spective uncertainty may rise significantly when enlarging
the admissible set of control input corrections above some
threshold, which may result with an empty MRCI set. In
that regard, the size measure of the resulting MRCI set
can be a performance measure for the selection of U,..

For a linear model with linear constraints, the maximum
robust control invariant set is an intersection of halfs-
paces and can be computed in an iterative manner by
employing the algorithm which can be found in Blanchini

(1999), Blanchini and Miani (2008). There is no guaran-
tee that the respective algorithm will terminate in finite
time, hence it it usually run with an upper bound on
the number of iterations or with a lower bound on the
size measure of difference between constructed sets in con-
secutive iterations. One can find the arbitrarily accurate
polyhedral robust control invariant under-approximation
of the maximum robust control invariant set in a finite
number of steps by employing the approach in Blanchini
(1991). Set of algorithms for the MRCI set computation
may be found in the MPT3 toolbox (Kvasnica et al.,
2015). Otherwise, for the higher-dimensional models one
can e.g. employ the parameterised RCI set computation
algorithm, as discussed in Rakovié¢ and Bari¢ (2010), or use
the piecewise ellipsoidal sets (Kurzhanskiy and Varaiya,
2006) to represent the MRCI set under-approximation.

4.5 Deployment of designed RCI set

The set of admissible control inputs is given with
u, @ U(z), where u, is the output of the internal controller
and U(2) is the set of admissible control input corrections
with respect to the model state z. The state of the model
should be estimated from the available measurements of
the system. Note that the system state x is represented
with a sum of the operating point x, the nominal system
state & around the operating point and the perturbation
state Z. The approach to estimate the feasible model
state from the one that is provided by the certain state
estimation algorithm is proposed in this subsection.

Let us suppose that the delayed control input vector u;_1,
vector of measurements y; and its variance is at disposition
for the system state estimation at time instant t. By
performing the iteration of the nonlinear state estimation,
where the state vector is defined with

X
q= 2By | >
T

corresponding state estimate ¢ and covariance matrix P
are estimated. Respective estimates can be derived by
employing the method for nonlinear estimation, e.g. the
unscented Kalman filter (Wan and Van Der Merwe, 2000)
or generally established extended Kalman filter (Jazwin-
ski, 2007). Once obtained estimates ¢ and P are used to
find the feasible state ¢* with the maximum probability,

¢"=min (g - Q)"P Y qg—q)

st. | X | = v - e l,.
B T —ITBy, —TB

Model state estimate Z is uniquely determined with ¢*.
The set of admissible control inputs U(2) is easily obtained
given the state of the model Z. The system is supplied
with the control input that is determined as a projection
of the controller input u. on the set of the admissible
control inputs, resulting with u* as depicted in Fig. 1.
The simple control correction algorithms for the lower-
dimensional control inputs can be found in Vasak and Perié
(2010) and Hure et al. (2016).

5. ILLUSTRATIVE EXAMPLE
5.1 Simplified wind turbine model

(26)

(27)

Presented method for the RCI set design is evaluated on
a simplified model of a direct-drive wind turbine system



operating above the nominal wind speed (Burton et al.,
2001; Hure et al., 2016), given with the following equations

TﬁB + ﬂ = ﬂrcfa (28&)
Jiw = Ta(ﬁva Uw) - Tg,nom, (28b)
y=18 w, (28¢)

where 3 is the pitch angle of the blades, [ is the pitch
angle reference and T is the time constant of the blade
pitching dynamics; J; is the inertia of the turbine, w is the
rotational speed of the turbine, with T, (8,w,v,,) is given
the nonlinear static function of the turbine aerodynamics,
vy is the rotor-effective wind speed and T} nom is the rated
generator torque; y is the vector of measurements. Imposed
system constraints are given with

-2 S ﬂ S 35 [0]7 =11 S /8 S 11 [O/S]a (29>
2.304 < w < 3.35 [rad/s], —2 < Bret < 35 [°].

The set of disturbance trajectories F is composed of the
turbulent wind speed data collected at the real wind farm
site.
The internal controller that is considered for a RCI set
design has a form of the static feed-forward control law
with disturbance as its only input variable, Bret = fr,0(Vw),
whereas u, = Bre r and d = v,. The nominal system
dynamics is constrained with respect to

0<A<32[7), —8<B<8[/s],

0 < Brer <32 [°].
The wind speed estimation error |8, — v,| < 1 [m/s] is
included in the design of the protection system. The wind

speed estimation error is in the simulation emulated with
the band-limited white noise signal.

(30)

5.2 Problem formulation

RCI set is designed for the LTI model of the wind turbine
with the additive uncertainty, obtained according to the
presented method,

0.779 0 0 0.221
2T =1 -0.0042 0973 0 z+ | —0.0005 | @+ w,
0 0 0.916 0
[0, —0.0053, —0.0258] " < w < [0, 0.0086, 0.0471] ", (31)
where the state vector is defined with z = [B,LD,(D]T,
T = [3,0]" and 75 = o, whereas for the control in-
put correction applies & = frer. The observation error

—0.015 < o < 0.015[rad/s] and the steady-state envelope
parameter L, = 1.455 were used for the estimation of the
envelope model. The imposed constraints of the model are
given with

—2<B<3[°], 3<B<3[/s), (32)
—0.5086 < @ + @ < 0.5086 [rad/s].

5.8 Results

The MRCI set is determined for the model and uncer-
tainty set in (31) with constraints (32) and the result
is depicted in Fig. 2, obtained by employing the MPT3
toolbox (Herceg et al., 2013). The computed MRCI set is
used to form the admissible control input set u, @ U(z) of
the wind turbine control system.

Obtained simulation results of the wind turbine rotational

1.5
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=
= 0.5 1
£
3 0
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N 8]
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Fig. 2. The MRCI set of the wind turbine LTT model
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Fig. 3. (a) Selected section of the rotational turbine speed re-
sponse when the protection system is used and otherwise ; (b)
Comparison of the controller output u., the internal controller
output u, and the corrected control input u* when the set-
based protection system is employed

speed in case that the RCI set-based protection is em-
ployed and otherwise is given in Fig. 3a. Comparison of
the controller output wu., internal controller output wu,
and the corrected control output w* (refer to Fig. 1) of
the control system with employed protection is shown in
Fig. 3b. Control input u, is the output of the wind turbine
gain-scheduled PI controller.



6. CONCLUSIONS

The RCI set-based operating envelope protection design
for a nonlinear discrete-time system subject to the set of
disturbance trajectories is discussed in this paper. The pre-
sented approach is based on a LTI model with an additive
uncertainty representing the system dynamics around the
nominal trajectory and an envelope model of the nominal
trajectory. Respective models are estimated by employing
the collected scenarios of disturbance realisations during
the operation of the system.

Existing algorithms for the RCI set design of LTI systems
subject to additive uncertainty enable the application of
the presented method to a wide range of systems. The
resulting RCI set can be used for the real-time implementa-
tion of the operating envelope protection with high safety
requirements. The procedures that are presented in the
RCI set design process may be further refined in order
to get even larger invariant set of the system. In that
regard, suggestions for the internal controller synthesis and
selection of associated constraints may be given.
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Appendix A. IDENTIFICATION OF PERTURBED SYSTEM
DYNAMICS

Given that the perturbation dynamics may be arbitrarily well
approximated with the linearised model in the close vicinity of the
nominal trajectory, the following prediction equation may be posed
&t = A% + B+ e, (A.1)
where T
ei=[Ai—A B — B[z @ | (A.2)
is the prediction error given the linearisation matrices A;, B; of the
system around the nominal trajectories.

If the quadratic prediction error function is to be minimised, the
corresponding performance function is given with

e;eiz“[AifA,BifB][jT an (A.3)

Computationally viable approach for the minimisation of the worst-
case prediction error (A.3) can be derived by employing the induced
2-norm (Meyer, 2000) as a quantity measure. By employing the in-
duced 2-norm one can minimise the maximum norm of the prediction
error on a boundary of the nominal trajectory neighbourhood that
is defined with a unit sphere,

min max
AB |57 e |],=1

[A; —AB; - B [&" aT]TH. (A.4)

Good initial guess for the matrices A, B may be found in the finite set
of linearised matrices {(A;, B;)} that are obtained by linearisation
of the system around the nominal trajectories.



