
Parallelization of Elimination Tournament Selection without Synchronization

Marin Golub, Domagoj Jakobović, Leo Budin

Department of Electronics, Microelectronics, Computer and Intelligent Systems
Faculty of Electrical Engineering and Computing

Unska 3, HR-10000 Zagreb, Croatia
e-mail: {marin.golub, domagoj.jakobovic, leo.budin}@fer.hr

Abstract  A global parallel genetic algorithm
(GPGA) with elimination tournament selection without
duplicates is described in this paper. The parallel
implementation of genetic algorithm with multiple
threads without synchronization is thoroughly
investigated. The problem which occurs when several
threads select the same individual for elimination is
recognized in such implementation. The probability of
that event is analytically formulated. Considering that
probability, we determine the total number of
iterations the asynchronous GPGA should perform in
order to achieve the same optimization effect as a serial
GA or a synchronous GPGA.

I. INTRODUCTION

It has already been shown that the tournament selection is
more suitable for parallel execution than any other
selection method. Furthermore, the tournament selection
algorithm is rather straightforward and relatively simple to
implement. It requires only a very small amount of
computation time [7,8,10,16].

The selection operator in genetic algorithm is
responsible for promoting the good individuals in the
population and eliminating the bad ones. Various selection
methods differ only in the definition of 'good' and 'bad'
individuals and in the ways of their preserving or
elimination. A good selection choice may be the only
difference between poor and (at least) acceptable genetic
algorithm efficiency in many real life applications.

The tournament selection bears one parameter usually
denoted with k. The k-tournament selection randomly
chooses k individuals with equal probability from the
population. Then, depending of the selection type,
generational k-tournament selection copies the best
individual of the k selected ones in the mating pool. The
process is repeated until N individuals are copied in the
mating pool, where N is the size of the population. After
that, the reproduction operators are applied on the mating
pool to complete the creation of a new generation.
Elimination k-tournament selection, on the other hand,
eliminates the weakest one of the k selected individuals.
Each eliminated individual is replaced with a newly
generated one using the reproduction operator.

The generational selection type has two significant
drawbacks: it creates duplicates of better individuals and
places them in the mating pool. Duplicates in the mating
pool will slow down the whole optimization process.
Furthermore, they can lead the population to a local
optimum and we have to rely on the reproduction operator

alone to maintain the population diversity. The second
drawback lies in the fact that the reproduction operator has
to be applied after the selection is finished. This implies
the sequential nature of the algorithm and calls for some
sort of synchronization mechanism. Such a mechanism
may slow down the parallel algorithm and it also makes
the implementation somewhat more complicated and less
portable [4]. The elimination selection type avoids both
mentioned problems: it does not generate any duplicates; it
only eliminates a single population member. The
eliminated individual can be immediately replaced by
reproduction. Furthermore, the mechanism of preservation
of the best individual, also called elitism, is implicitly
included in the elimination selection, as it will be shown in
following sections. That is another reason to implement
this selection type in a genetic algorithm.

The parallel genetic algorithm presented in this work is
an instant of global parallel GA (GPGA). The attribute
'global' refers to an algorithm that maintains a single
population. More than one genetic operator, implemented
in a single process or a thread, can access the population in
the same time. Global also means, since we have one
unique population, that any individual can compete for
survival or mate and produce offspring with any other
individual from the population. Such a model of PGA is
also called master-slave genetic algorithm [5,6].

The GPGA described in this work is suitable for
executing on a multiprocessor system with shared memory
and operating system which supports multithreading. The
multithreading technique is recognized as an efficient tool
for transforming the genetic algorithm into parallel form.
The maximum efficiency is achieved when the number of
threads is equal to the number of processors.

II. THE SELECTION PROBABILITY

Let the population consist of N individuals and let the
individuals are indexed by their fitness value, i.e. the best
one has the index i=1 and the worst one i=N. The selection
probability for the k-tournament selection is given by:

















 −
−









=

k
N

k
i

k
i

ipk

1

)(. (1)

The i-th individual will be selected for elimination if all

the other k-1 chosen population members are better than
the i-th. In other words, all but one of k selected
individuals’ indexes are less than i and one individual has

index i. Now, the probability that all k randomly selected

individuals have their indexes less or equal than i is 








k
i

divided by all possible combinations: 








k
N

.

From that we have to subtract the probability that all of
the k individuals' indexes are strictly less than i:








 −
k

i 1
 divided by 









k
N

 ,(i-th individual is selected, and

the rest ones' indexes are less than i), so we get the
mentioned expression (1).

Taking into account the following statement:

!
)1(...)2()1(

k
knnnn

k
n +−⋅⋅−⋅−⋅=







. (2)

another form of (1) can be derived:

∏
−

= −
−

=
1

1)(
)(

)(
k

j
k jN

ji
N
kip . (3)

The elitism is inherently implemented, because the k-1

best individuals can not be eliminated. The expression
(3), being a polynomial with k-1 zero crossings,
illustrates that fact.

The same individual cannot participate in a tournament
more than once, i.e. there cannot be more that one copy of
the same individual among the k selected. This we call the
tournament selection without duplicates. On the other
hand, Bäck, Miller, Goldberg, Blickle and Thiele use
tournament selection where in the same iteration one
individual can be selected more then once [1,3,13]. In that
case, the probability pk’(i) of selection for elimination of
the i-th individual is given by:

kk

k N
i

N
iip 







 −−






= 1)(' . (4)

At the first sight, it would seem that tournament

selection without duplicates is more complex and time
consuming. Besides, the characteristic values such as
selection intensity, reproduction rate and loss of diversity
have already been determined for duplicate tournament
selection [1,13]. Genetic algorithm's behavior can be fairly
predicted using those values. However, if no control
mechanism is applied, elimination tournament selection
can produce additional duplicates, which only slow down
the evolution process. Such control mechanism, an
example of which can be found in [12], eliminates
duplicate individuals, but spends much more computation
time then relatively simple duplicate check in a single
tournament. Furthermore, the elitism is not inherently
implemented, unlike in no-duplicates tournament
selection, which can be perceived from (3) if i equals 1.
Although the expressions for selection probability differ
significantly, the actual distributions are very similar, as
shown in Fig. 1 [9,11].

Fig. 1: Distribution of selection for elimination probability with 3-
tournament selection and N=50 with (_ _ _) and without (____)

duplicates

III. EXAMPLE OF GPGA WITH ELIMINATION
TOURNAMENT SELECTION

In the traditional master-slave model of the parallel GA,
the master processor stores the entire population and
applies genetic operators to produce the next generation
[2,3,7,8,13]. The slave processors are used only to evaluate
the fitness of a fraction of the population in parallel. This
type of task division evolves from a situation where the
calculation of the fitness value of a population member
requires a lot of computation, if the potential solution to a
problem we are trying to solve is not easy to evaluate. In
our implementation of master-slave GA, the master creates
random initial population, evaluates created individuals
and starts the slaves (Fig. 2). Each slave performs the
whole evolution process in contrast of traditional master-
slave GA where the slaves only evaluate the fitness. This
is a model of global parallel GA, because each individual
may compete and mate with any other [9,10].

Master thread{
initialize population;
evaluate population;
for(i=1;i<NUMBER_OF_PROCESSORS;i++){

create new Slave thread;
}
wait while all threads finish;
print results;

}

Slave thread{
while not(end condition){

select k different individuals;
eliminate the worst of k selected ind;
child=crossover(survived individuals);
replace deleted individual with child;
perform mutation with probability pm;
evaluate new individual;

}
}

Fig. 2: Asynchronous GPGA with k-tournament bad individual
selection

In this implementation, which we call the asynchronous
GPGA, it may occur that the same individual participates
in more that one tournament, i.e. the same individual can
be selected by more that one thread. To cope with that, the
synchronous version of the algorithm is devised. However,
the code of the synchronous GPGA is more complex and
additional processor time is spent on initialization, locking
and unlocking of MUTEX mechanism. Furthermore, a
thread may have to wait for another one to complete its
task.

In an asynchronous version, the selection of the same
individual in more than one tournament is still not the
reason for alarm. The worst case scenario happens when
several threads select a single individual for elimination. In
that case the work of only one of them will take effect –
the one that replaced the individual latest – while the other
threads will work in vain. The total number of iterations
(tournament cycles) does not reflect the effective number
of iterations because some of them had no effect. That is
the reason why asynchronous algorithm does not give as
good solution as the same sequential GA in given number
of iterations. But if we know the probability of multiple
elimination of the same individual by several threads at the
same time, we can calculate the number of iterations done
in vain. If the total number of iterations is increased
according to that probability, the asynchronous GPGA will
act exactly as, but faster than, sequential GA.

IV. CALCULATING THE PROBABILITY OF
MULTIPLE SELECTION

A. The Probability of a Particular Thread Working in

Vain in a Single Iteration

Let the asynchronous GPGA consist of D threads:
j1, j2, j3, ...jD.

Let each thread in every iteration (every time it accesses
shared data) bears an index in range 1,2,3,...,D and let the
thread which writes the data last have the smallest index
value. That is the only thread whose work will take effect.
Since the algorithm is asynchronous, the threads access the
data in random order. In every iteration there is a thread
with index value 1 and in every iteration it can be a
different thread. The thread with index value greater than 1
may, but doesn't necessarily have to, perform its task in
vain.

For D threads and k-tournament selection we have the
following:
• The thread with index 1 never works in vain:

0'
1, =kP . (5)

• For each additional thread the probability of working
in vain equals 1 minus the probability of performing
useless iteration (p=1-q). It will be shown later in this
section that the probability of working in vain for
thread with index j equals:

∑
=

−⋅−=
N

i

j
kkjk iqipP

1

1'
,)()(1 , (6)

where j≤D and p+q=1.

The probability of elimination of i-th individual in k-
tournament selection is calculated using (1) or (3). The
thread with index j, which selected some individual for
elimination, will be effective only if all the threads with
indexes smaller than j select some other individuals for
elimination. The probability of selection of i-th individual
by thread j equals pk(i)⋅qk(i)j-1, because j-1 threads (whose
indexes are less than j) have to select some other
individual instead of i-th one. There exist N combinations
where a thread can work effectively: it can select any of
the N individuals whereas the other threads must not select
the same one. Having that in mind, we can formulate the
probability of thread j not working in vain for one iteration
as a sum of probabilities of single selection of each
individual by that thread:

∑
=

−⋅=
N

i

j
kkjk iqipQ

1

1'
,)()(. (7)

The probability that the thread's activity will not take

effect is the opposite of the stated one (P’k,j=1-Q’k,j), so we
get the expression (6).

B. The Probability of Any Thread Working in Vain in a

Single Iteration

Considering the fact that every thread in asynchronous
algorithm can have any index value with equal probability,
the probability of a thread working in vain in k-tournament
GPGA with D threads equals:

∑
=

=
D

d
dkDk P

D
P

1

'
,,

1
. (8)

Using (6) and (8) we can obtain the expression for

probability of working in vain in a single iteration:

∑∑
= =

−⋅−=
D

d

N

i

d
kkDk iqip

D
P

1 1

1
,)()(11 , (9)

and the probability of performing a useful iteration equals:

∑∑
= =

−⋅=
D

d

N

i

d
kkDk iqip

D
Q

1 1

1
,)()(1

. (10)

The values of expected probability of performing a

useless iteration for 3-tournament selection are shown in
Table I. Fig. 3 shows the same values as a function of the
number of threads with a constant population size.

Suppose, for example, that we want to achieve
efficiency of asynchronous GPGA to 95% (restrict the
probability of performing a useless iteration is less than
5%). The minimum population size is the function of
number of threads (grayed area in Table I). For a greater
number of threads the population size should be increased
as shown in (9) and in Fig. 3.

TABLE I
PROBABILITY OF PERFORMING A USELESS ITERATION

DEPENDING ON THE POPULATION SIZE N, THE NUMBER OF
THREADS D AND k=3

 Number of threads D

N 1 2 3 4 5 6 8 10 20

10 0 0.100 0.185 0.257 0.318 0.371 0.456 0.522 0.704

20 0 0.047 0.091 0.132 0.170 0.205 0.267 0.322 0.512

50 0 0.018 0.036 0.054 0.070 0.087 0.118 0.148 0.273

70 0 0.013 0.026 0.038 0.051 0.063 0.086 0.108 0.208

100 0 0.009 0.018 0.027 0.036 0.044 0.061 0.077 0.152

150 0 0.006 0.012 0.018 0.024 0.030 0.041 0.052 0.106

200 0 0.005 0.009 0.014 0.018 0.022 0.031 0.040 0.081

500 0 0.002 0.004 0.005 0.007 0.009 0.013 0.016 0.033

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of threads

N=10 N=20 N=50 N=70
N=100 N=150 N=200 N=500

Fig. 3: Probability of performing useless iterations

C. The Total Number of Iterations

Knowing the probability of a thread working effectively in
a single iteration (10), we can calculate the needed
number of iterations that asynchronous GPGA with k-
tournament selections must perform in order to have the
same characteristics as a synchronous GPGA or serial GA
[10]:

Dk
T Q

II
,

= . (11)

V. CONCLUDING REMARKS

We presented in this paper a variant of a global parallel
GA without synchronization mechanism. The
asynchronous GPGA is faster and simpler to implement
than the synchronous version. However, for a given
number of iterations the synchronous GPGA gives slightly
better results. This is due to the occurrence of multiple

selection of the same individual by several threads in
asynchronous version, in which case some iterations of the
algorithm will be lost. It is shown in this work that we can
explicitly calculate that overhead for a given number of
threads and population size.

The probability of multiple selection increases with the
number of processors and decreases with the population
size (Fig. 3). The real world problems usually require
relatively large population sizes. For example, if the
population size is greater than 100 and we have a
multiprocessor system with four processors and shared
memory (in which the whole population is placed), the
percentage of useless iterations is less than three percent
(Table I). We can conclude that for GPGA
implementations with large population sizes, running on
multiprocessor systems with several processors, the
asynchronous version is better choice.

ACKNOWLEDGEMENTS

This work was carried out within the projects: 036-014
Problem-Solving Environments in Engineering and 036-
814 Complex Functions Optimizing Using Evolution
Programs, funded by Ministry of Science and Technology
of the Republic of Croatia.

REFERENCES

[1] Bäck, T., “Selective Pressure in Evolutionary
Algorithms: A Characterization of Selection
Mechanisms”, Proc. of the First IEEE Conference on
Evolutionary Computation, IEEE Press, Piscataway
NJ, pp. 57-62, 1994., available from: http://ls11-
www.informatik.uni-dortmund.de/people/baeck/
papers/wcci94-sel.ps.gz.

[2] Bäck, T., "Generalized Convergence Models for
Tournament- and (µ,λ)-Selection", Proceedings of the
Sixth International Conference on Genetic
Algorithms, San Francisco, CA, pp. 2-8, 1995.

[3] Blickle, T., Thiele, L., “A Mathematical Analysis of
Tournament Selection”, Proc. of the Sixth
International Conference on Genetic Algorithms, San
Francisco, CA, pp. 2-8, 1995.

[4] Budin, L., Golub, M., Jakobović, D., "Parallel
Adaptive Genetic Algorithm", International
ICSC/IFAC Symposium on Neural Computation
NC’98, Vienna, 1998, pp. 157-163.

[5] Cantú-Paz E., "A Summary of Research on Parallel
Genetic Algorithms", 1995., available from:
www.dai.ed.ac.uk/groups/evalg/Local_Copies_of_Pap
ers/Cantu-Paz.A_Summary_of_Research_on_
Parallel_Genetic_Algorithms.ps.gz

[6] Cantú-Paz, E., "A Survey of Parallel Genetic
Algorithms", Calculateurs Paralleles, Vol. 10, No. 2.
Paris: Hermes, 1998., available via ftp from: ftp://ftp-
illigal.ge.uiuc.edu/pub/papers/Publications/cantupaz/s
urvey.ps.Z.

[7] Cantú-Paz, E., Goldberg, D.E., "Parallel Genetic
Algorithms with Distributed Panmictic Populations",
1999., available from: http://www-illigal.ge.uiuc.edu/
cgi-bin/orderform/orderform.cgi.

[8] Cantú-Paz, E., "Migration Policies, Selection
Pressure, and Parallel Evolutionary Algorithms",
1999., available via ftp from: ftp://ftp-
illigal.ge.uiuc.edu/pub/papers/IlliGALs/99015.ps.Z.

[9] Golub, M., Jakobović, D., "A New Model of Global
Parallel Genetic Algorithm", Proceedings of the 22nd
International Conference ITI2000, Pula, 2000, pp.
363-368.

[10] Golub, M., Budin, L., "An Asynchronous Model of
Global Parallel Genetic Algorithms", Second ICSC
Symposium on Engineering of Intelligent Systems
EIS2000, University of Paisley, Scotland, UK, 2000,
pp. 353-359.

[11] Golub, M., "Improving the Efficiency of Parallel
Genetic Algorithms", Ph.D. Thesis, Zagreb, 2001. (in
Croatian)

[12] Michalewicz, Z., "Genetic Algorithms + Data
Structures = Evolutionary Programs", Springer-
Verlag, Berlin, 1992.

[13] Miller, B.L., Goldberg, D.E., “GAs Tournament
Selection and the Effects of Noise”, 1995., available
from: http://www.dai.ed.ac.uk/groups/evalg/Local_
Copies_of_Papers/Miller.Goldberg.GAs_Tournament
_Selection_and_the_Effects_of_Noise.ps.gz.

[14] Muehlenbein, H., "Evolution in Time and Space - The
Parallel Genetic Algorithm", Foundations of Genetic
Algorithms, G. Rawlins (ed.), pp. 316-337, Morgan-
Kaufman, 1991., available via ftp from:
ftp://borneo.gmd.de/pub/as/ga/gmd_as_ga-91_01.ps

[15] Munetomo, M., Takai, Y., Sato, Y., "An Efficient
Migration Scheme for Subpopulation-Based
Asynchronously PGA", Hokkaido University
Information Engineering Technical Report HIER-IS-
9301, Sapporo, July, 1993.

[16] Yoshida, N., Yasuoka, T., Moriki, T., "Parallel and
Distributed Processing in VLSI Implementation of
Genetic Algorithms", Proceedings of the Third
International ICSC Symposia on Intelligent Industrial
Autimation, IIA’99 and Soft Computnig, SOCO’99,
June 1-4, Genova, Italy, pp. 450-454, 1999.

