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Abstract   A global parallel genetic algorithm 
(GPGA) with elimination tournament selection without 
duplicates is described in this paper. The parallel 
implementation of genetic algorithm with multiple 
threads without synchronization is thoroughly 
investigated. The problem which occurs when several 
threads select the same individual for elimination is 
recognized in such implementation. The probability of 
that event is analytically formulated. Considering that 
probability, we determine the total number of 
iterations the asynchronous GPGA should perform in 
order to achieve the same optimization effect as a serial 
GA or a synchronous GPGA. 
 
 

I. INTRODUCTION 
 

It has already been shown that the tournament selection is 
more suitable for parallel execution than any other 
selection method. Furthermore, the tournament selection 
algorithm is rather straightforward and relatively simple to 
implement. It requires only a very small amount of 
computation time [7,8,10,16]. 

The selection operator in genetic algorithm is 
responsible for promoting the good individuals in the 
population and eliminating the bad ones. Various selection 
methods differ only in the definition of 'good' and 'bad' 
individuals and in the ways of their preserving or 
elimination. A good selection choice may be the only 
difference between poor and (at least) acceptable genetic 
algorithm efficiency in many real life applications. 

The tournament selection bears one parameter usually 
denoted with k. The k-tournament selection randomly 
chooses k individuals with equal probability from the 
population. Then, depending of the selection type, 
generational k-tournament selection copies the best 
individual of the k selected ones in the mating pool. The 
process is repeated until N individuals are copied in the 
mating pool, where N is the size of the population. After 
that, the reproduction operators are applied on the mating 
pool to complete the creation of a new generation. 
Elimination k-tournament selection, on the other hand, 
eliminates the weakest one of the k selected individuals. 
Each eliminated individual is replaced with a newly 
generated one using the reproduction operator.  

The generational selection type has two significant 
drawbacks: it creates duplicates of better individuals and 
places them in the mating pool. Duplicates in the mating 
pool will slow down the whole optimization process. 
Furthermore, they can lead the population to a local 
optimum and we have to rely on the reproduction operator 

alone to maintain the population diversity. The second 
drawback lies in the fact that the reproduction operator has 
to be applied after the selection is finished. This implies 
the sequential nature of the algorithm and calls for some 
sort of synchronization mechanism. Such a mechanism 
may slow down the parallel algorithm and it also makes 
the implementation somewhat more complicated and less 
portable [4]. The elimination selection type avoids both 
mentioned problems: it does not generate any duplicates; it 
only eliminates a single population member. The 
eliminated individual can be immediately replaced by 
reproduction. Furthermore, the mechanism of preservation 
of the best individual, also called elitism, is implicitly 
included in the elimination selection, as it will be shown in 
following sections. That is another reason to implement 
this selection type in a genetic algorithm. 

The parallel genetic algorithm presented in this work is 
an instant of global parallel GA (GPGA). The attribute 
'global' refers to an algorithm that maintains a single 
population. More than one genetic operator, implemented 
in a single process or a thread, can access the population in 
the same time. Global also means, since we have one 
unique population, that any individual can compete for 
survival or mate and produce offspring with any other 
individual from the population. Such a model of PGA is 
also called master-slave genetic algorithm [5,6]. 

The GPGA described in this work is suitable for 
executing on a multiprocessor system with shared memory 
and operating system which supports multithreading. The 
multithreading technique is recognized as an efficient tool 
for transforming the genetic algorithm into parallel form. 
The maximum efficiency is achieved when the number of 
threads is equal to the number of processors. 
 

II. THE SELECTION PROBABILITY 
 
Let the population consist of N individuals and let the 
individuals are indexed by their fitness value, i.e. the best 
one has the index i=1 and the worst one i=N. The selection 
probability for the k-tournament selection is given by: 
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The i-th individual will be selected for elimination if all 

the other k-1 chosen population members are better than 
the i-th. In other words, all but one of k selected 
individuals’ indexes are less than i and one individual has 



index i. Now, the probability that all k randomly selected 

individuals have their indexes less or equal than i is 
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divided by all possible combinations: 
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From that we have to subtract the probability that all of 
the k individuals' indexes are strictly less than i: 
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 ,(i-th individual is selected, and 

the rest ones' indexes are less than i), so we get the 
mentioned expression ( 1 ). 

Taking into account the following statement: 
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another form of ( 1 ) can be derived: 
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The elitism is inherently implemented, because the k-1 

best individuals can not be eliminated. The expression        
( 3 ), being a polynomial with k-1 zero crossings, 
illustrates that fact. 

The same individual cannot participate in a tournament 
more than once, i.e. there cannot be more that one copy of 
the same individual among the k selected. This we call the 
tournament selection without duplicates. On the other 
hand, Bäck, Miller, Goldberg, Blickle and Thiele use 
tournament selection where in the same iteration one 
individual can be selected more then once [1,3,13]. In that 
case, the probability pk’(i) of selection for elimination of 
the i-th individual is given by: 
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At the first sight, it would seem that tournament 

selection without duplicates is more complex and time 
consuming. Besides, the characteristic values such as 
selection intensity, reproduction rate and loss of diversity 
have already been determined for duplicate tournament 
selection [1,13]. Genetic algorithm's behavior can be fairly 
predicted using those values. However, if no control 
mechanism is applied, elimination tournament selection 
can produce additional duplicates, which only slow down 
the evolution process. Such control mechanism, an 
example of which can be found in [12], eliminates 
duplicate individuals, but spends much more computation 
time then relatively simple duplicate check in a single 
tournament. Furthermore, the elitism is not inherently 
implemented, unlike in no-duplicates tournament 
selection, which can be perceived from ( 3 ) if i equals 1. 
Although the expressions for selection probability differ 
significantly, the actual distributions are very similar, as 
shown in Fig. 1 [9,11]. 

 
Fig. 1: Distribution of selection for elimination probability with 3-
tournament selection and N=50 with ( _  _  _ ) and without ( ____ ) 

duplicates 
 
 

III. EXAMPLE OF GPGA WITH ELIMINATION 
TOURNAMENT SELECTION 

 
In the traditional master-slave model of the parallel GA, 
the master processor stores the entire population and 
applies genetic operators to produce the next generation 
[2,3,7,8,13]. The slave processors are used only to evaluate 
the fitness of a fraction of the population in parallel. This 
type of task division evolves from a situation where the 
calculation of the fitness value of a population member 
requires a lot of computation, if the potential solution to a 
problem we are trying to solve is not easy to evaluate. In 
our implementation of master-slave GA, the master creates 
random initial population, evaluates created individuals 
and starts the slaves (Fig. 2). Each slave performs the 
whole evolution process in contrast of traditional master-
slave GA where the slaves only evaluate the fitness. This 
is a model of global parallel GA, because each individual 
may compete and mate with any other [9,10]. 

 
 
Master thread{
initialize population;
evaluate population;
for(i=1;i<NUMBER_OF_PROCESSORS;i++){

create new Slave thread;
}
wait while all threads finish;
print results;

}

Slave thread{
while not(end condition){

select k different individuals;
eliminate the worst of k selected ind;
child=crossover(survived individuals);
replace deleted individual with child;
perform mutation with probability pm;
evaluate new individual;

}
}

Fig. 2: Asynchronous GPGA with k-tournament bad individual 
selection 

 



In this implementation, which we call the asynchronous 
GPGA, it may occur that the same individual participates 
in more that one tournament, i.e. the same individual can 
be selected by more that one thread. To cope with that, the 
synchronous version of the algorithm is devised. However, 
the code of the synchronous GPGA is more complex and 
additional processor time is spent on initialization, locking 
and unlocking of MUTEX mechanism. Furthermore, a 
thread may have to wait for another one to complete its 
task. 

In an asynchronous version, the selection of the same 
individual in more than one tournament is still not the 
reason for alarm. The worst case scenario happens when 
several threads select a single individual for elimination. In 
that case the work of only one of them will take effect – 
the one that replaced the individual latest – while the other 
threads will work in vain. The total number of iterations 
(tournament cycles) does not reflect the effective number 
of iterations because some of them had no effect. That is 
the reason why asynchronous algorithm does not give as 
good solution as the same sequential GA in given number 
of iterations. But if we know the probability of multiple 
elimination of the same individual by several threads at the 
same time, we can calculate the number of iterations done 
in vain. If the total number of iterations is increased 
according to that probability, the asynchronous GPGA will 
act exactly as, but faster than, sequential GA. 
 

IV. CALCULATING THE PROBABILITY OF 
MULTIPLE SELECTION 

 
A. The Probability of a Particular Thread Working in 

Vain in a Single Iteration 

Let the asynchronous GPGA consist of D threads: 
j1, j2, j3, ...jD. 

Let each thread in every iteration (every time it accesses 
shared data) bears an index in range 1,2,3,...,D and let the 
thread which writes the data last have the smallest index 
value. That is the only thread whose work will take effect. 
Since the algorithm is asynchronous, the threads access the 
data in random order. In every iteration there is a thread 
with index value 1 and in every iteration it can be a 
different thread. The thread with index value greater than 1 
may, but doesn't necessarily have to, perform its task in 
vain. 

For D threads and k-tournament selection we have the 
following: 
•  The thread with index 1 never works in vain: 

0'
1, =kP . ( 5 ) 

•  For each additional thread the probability of working 
in vain equals 1 minus the probability of performing 
useless iteration (p=1-q). It will be shown later in this 
section that the probability of working in vain for 
thread with index j equals: 
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where j≤D and p+q=1. 

The probability of elimination of i-th individual in k-
tournament selection is calculated using ( 1 ) or ( 3 ). The 
thread with index j, which selected some individual for 
elimination, will be effective only if all the threads with 
indexes smaller than j select some other individuals for 
elimination. The probability of selection of i-th individual 
by thread j equals pk(i)⋅qk(i)j-1, because j-1 threads (whose 
indexes are less than j) have to select some other 
individual instead of i-th one. There exist N combinations 
where a thread can work effectively: it can select any of 
the N individuals whereas the other threads must not select 
the same one. Having that in mind, we can formulate the 
probability of thread j not working in vain for one iteration 
as a sum of probabilities of single selection of each 
individual by that thread: 
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The probability that the thread's activity will not take 

effect is the opposite of the stated one (P’k,j=1-Q’k,j), so we 
get the expression ( 6 ). 

 
B. The Probability of Any Thread Working in Vain in a 

Single Iteration 

Considering the fact that every thread in asynchronous 
algorithm can have any index value with equal probability, 
the probability of a thread working in vain in k-tournament 
GPGA with D threads equals: 
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Using ( 6 ) and ( 8 ) we can obtain the expression for 

probability of working in vain in a single iteration: 
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and the probability of performing a useful iteration equals: 
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The values of expected probability of performing a 

useless iteration for 3-tournament selection are shown in 
Table I. Fig. 3 shows the same values as a function of the 
number of threads with a constant population size. 

Suppose, for example, that we want to achieve 
efficiency of asynchronous GPGA to 95% (restrict the 
probability of performing a useless iteration is less than 
5%). The minimum population size is the function of 
number of threads (grayed area in Table I). For a greater 
number of threads the population size should be increased 
as shown in ( 9 ) and in Fig. 3. 

 
 



TABLE I 
PROBABILITY OF PERFORMING A USELESS ITERATION 

DEPENDING ON THE POPULATION SIZE N, THE NUMBER OF 
THREADS D AND k=3  

 
 Number of threads D 

N 1 2 3 4 5 6 8 10 20 

10 0 0.100 0.185 0.257 0.318 0.371 0.456 0.522 0.704

20 0 0.047 0.091 0.132 0.170 0.205 0.267 0.322 0.512

50 0 0.018 0.036 0.054 0.070 0.087 0.118 0.148 0.273

70 0 0.013 0.026 0.038 0.051 0.063 0.086 0.108 0.208

100 0 0.009 0.018 0.027 0.036 0.044 0.061 0.077 0.152

150 0 0.006 0.012 0.018 0.024 0.030 0.041 0.052 0.106

200 0 0.005 0.009 0.014 0.018 0.022 0.031 0.040 0.081

500 0 0.002 0.004 0.005 0.007 0.009 0.013 0.016 0.033
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Fig. 3: Probability of performing useless iterations 
 
 

C. The Total Number of Iterations 

Knowing the probability of a thread working effectively in 
a single iteration ( 10 ), we can calculate the needed 
number of iterations that asynchronous GPGA with k-
tournament selections must perform in order to have the 
same characteristics as a synchronous GPGA or serial GA 
[10]: 
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V. CONCLUDING REMARKS 
 
We presented in this paper a variant of a global parallel 
GA without synchronization mechanism. The 
asynchronous GPGA is faster and simpler to implement 
than the synchronous version. However, for a given 
number of iterations the synchronous GPGA gives slightly 
better results. This is due to the occurrence of multiple 

selection of the same individual by several threads in 
asynchronous version, in which case some iterations of the 
algorithm will be lost. It is shown in this work that we can 
explicitly calculate that overhead for a given number of 
threads and population size. 

The probability of multiple selection increases with the 
number of processors and decreases with the population 
size (Fig. 3). The real world problems usually require 
relatively large population sizes. For example, if the 
population size is greater than 100 and we have a 
multiprocessor system with four processors and shared 
memory (in which the whole population is placed), the 
percentage of useless iterations is less than three percent 
(Table I). We can conclude that for GPGA 
implementations with large population sizes, running on 
multiprocessor systems with several processors, the 
asynchronous version is better choice. 
 

ACKNOWLEDGEMENTS 
 
This work was carried out within the projects: 036-014 
Problem-Solving Environments in Engineering and 036-
814 Complex Functions Optimizing Using Evolution 
Programs, funded by Ministry of Science and Technology 
of the Republic of Croatia. 
 
 

REFERENCES 
 

[1] Bäck, T., “Selective Pressure in Evolutionary 
Algorithms: A Characterization of Selection 
Mechanisms”, Proc. of the First IEEE Conference on 
Evolutionary Computation, IEEE Press, Piscataway 
NJ, pp. 57-62, 1994., available from: http://ls11-
www.informatik.uni-dortmund.de/people/baeck/ 
papers/wcci94-sel.ps.gz. 

[2] Bäck, T., "Generalized Convergence Models for 
Tournament- and (µ,λ)-Selection", Proceedings of the 
Sixth International Conference on Genetic 
Algorithms, San Francisco, CA, pp. 2-8, 1995. 

[3] Blickle, T., Thiele, L., “A Mathematical Analysis of 
Tournament Selection”, Proc. of the Sixth 
International Conference on Genetic Algorithms, San 
Francisco, CA, pp. 2-8, 1995. 

[4] Budin, L., Golub, M., Jakobović, D., "Parallel 
Adaptive Genetic Algorithm", International 
ICSC/IFAC Symposium on Neural Computation 
NC’98, Vienna, 1998, pp. 157-163. 

[5] Cantú-Paz E., "A Summary of Research on Parallel 
Genetic Algorithms", 1995., available from: 
www.dai.ed.ac.uk/groups/evalg/Local_Copies_of_Pap
ers/Cantu-Paz.A_Summary_of_Research_on_ 
Parallel_Genetic_Algorithms.ps.gz 

[6] Cantú-Paz, E., "A Survey of Parallel Genetic 
Algorithms", Calculateurs Paralleles, Vol. 10, No. 2. 
Paris: Hermes, 1998., available via ftp from: ftp://ftp-
illigal.ge.uiuc.edu/pub/papers/Publications/cantupaz/s
urvey.ps.Z. 

[7] Cantú-Paz, E., Goldberg, D.E., "Parallel Genetic 
Algorithms with Distributed Panmictic Populations", 
1999., available from: http://www-illigal.ge.uiuc.edu/ 
cgi-bin/orderform/orderform.cgi. 



[8] Cantú-Paz, E., "Migration Policies, Selection 
Pressure, and Parallel Evolutionary Algorithms", 
1999., available via ftp from: ftp://ftp-
illigal.ge.uiuc.edu/pub/papers/IlliGALs/99015.ps.Z. 

[9] Golub, M., Jakobović, D., "A New Model of Global 
Parallel Genetic Algorithm", Proceedings of the 22nd 
International Conference ITI2000, Pula, 2000, pp. 
363-368. 

[10] Golub, M., Budin, L., "An Asynchronous Model of 
Global Parallel Genetic Algorithms", Second ICSC 
Symposium on Engineering of Intelligent Systems 
EIS2000, University of Paisley, Scotland, UK, 2000, 
pp. 353-359. 

[11] Golub, M., "Improving the Efficiency of Parallel 
Genetic Algorithms", Ph.D. Thesis, Zagreb, 2001. (in 
Croatian) 

[12] Michalewicz, Z., "Genetic Algorithms + Data 
Structures = Evolutionary Programs", Springer-
Verlag, Berlin, 1992. 

[13] Miller, B.L., Goldberg, D.E., “GAs Tournament 
Selection and the Effects of Noise”, 1995., available 
from: http://www.dai.ed.ac.uk/groups/evalg/Local_ 
Copies_of_Papers/Miller.Goldberg.GAs_Tournament
_Selection_and_the_Effects_of_Noise.ps.gz. 

[14] Muehlenbein, H., "Evolution in Time and Space - The 
Parallel Genetic Algorithm", Foundations of Genetic 
Algorithms, G. Rawlins (ed.), pp. 316-337, Morgan-
Kaufman, 1991., available via ftp from: 
ftp://borneo.gmd.de/pub/as/ga/gmd_as_ga-91_01.ps 

[15] Munetomo, M., Takai, Y., Sato, Y., "An Efficient 
Migration Scheme for Subpopulation-Based 
Asynchronously PGA", Hokkaido University 
Information Engineering Technical Report HIER-IS-
9301, Sapporo, July, 1993. 

[16] Yoshida, N., Yasuoka, T., Moriki, T., "Parallel and 
Distributed Processing in VLSI Implementation of 
Genetic Algorithms", Proceedings of the Third 
International ICSC Symposia on Intelligent Industrial 
Autimation, IIA’99 and Soft Computnig, SOCO’99, 
June 1-4, Genova, Italy, pp. 450-454, 1999. 

 


