Qualitative Multiple Criteria Models with Cycles: A Preliminary Study with Method DEX

Marko Bohanec
Jožef Stefan Institute, Department of Knowledge Technologies, Ljubljana, Slovenia

Nikola Kadoić, Nina Begičević Ređep
University of Zagreb, Faculty of Organization and Informatics, Varaždin, Croatia
Objectives

A preliminary study of introducing cycles into DEX models

DEX (Decision EXpert): Hierarchical qualitative (rule-based) multi-criteria method
https://en.wikipedia.org/wiki/Decision_EXpert
Outline

DEX Method:
- Principles
- Some applications

Motivation: Why introducing cycles in DEX?
- Applications in agriculture
- Cycles in other methods, e.g., ANP
- Computational power of the Conway’s Game of Life

Case Study: Evaluation of Researchers

Conclusions
What is DEX?

Decision EXpert
Originates in 1980’s

DEX

Multi-Criteria Decision Analysis
• modeling using criteria and utility functions
• problem decomposition and structuring
• evaluation and analysis of decision alternatives

Artificial Intelligence
Expert Systems
• qualitative (symbolic) variables
• "if-then" rules
• decision model = knowledge base
• handling imprecision and uncertainty
• transparent models, explanation

Machine Learning

Fuzzy sets
• verbal measures
• fuzzy operators
Multiattribute Decision Aid: A Fuzzy Heuristic

JANET EFSTATHIOU

Fig. 1. Definitions of verbal utility values on U^*, [0, 1].

<table>
<thead>
<tr>
<th>D1 Nature</th>
<th>D2 Performance</th>
<th>D3 Size</th>
<th>D4 Price</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>sc, non-sc</td>
<td>good</td>
<td>S</td>
<td>cheap</td>
<td>v^3 high</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>res.</td>
<td>" high</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>dear</td>
<td>low</td>
</tr>
<tr>
<td>sc, non-sc</td>
<td>good</td>
<td>med. small</td>
<td>cheap</td>
<td>v^2 high</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>res.</td>
<td>high</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>dear</td>
<td>low</td>
</tr>
<tr>
<td>sc, non-sc</td>
<td>good</td>
<td>med. large</td>
<td>cheap</td>
<td>med. low</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>res.</td>
<td>low</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>cheap</td>
<td>" low</td>
</tr>
<tr>
<td>sc, non-sc</td>
<td>med.</td>
<td>small</td>
<td>cheap</td>
<td>v^3 high</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>res.</td>
<td>high</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>dear</td>
<td>" low</td>
</tr>
<tr>
<td>sc, non-sc</td>
<td>med.</td>
<td>med. small</td>
<td>cheap</td>
<td>high</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>res.</td>
<td>med. high</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>dear</td>
<td>" low</td>
</tr>
<tr>
<td>sc, non-sc</td>
<td>med.</td>
<td>med. large</td>
<td>res.</td>
<td>low</td>
</tr>
<tr>
<td>sc, non-sc</td>
<td>good, med.</td>
<td>poor</td>
<td>large</td>
<td>v^3 low</td>
</tr>
<tr>
<td>sc, non-sc</td>
<td>poor</td>
<td>small</td>
<td>res.</td>
<td>med. high</td>
</tr>
</tbody>
</table>
Fig. 6. Point-by-point representation of FORMAL aggregate utility function.

Fig. 8. An example of tree of attributes for an educational qualification.
DEX

Method for qualitative multi-attribute modeling

DEX is similar to other multi-attribute methods:

1. Multiple attributes, hierarchically structured
2. Evaluation of alternatives: bottom-up aggregation
DEX

Method for **qualitative** multi-attribute modeling

DEX is different from the majority of multi-attribute methods:

1. Attributes are discrete, symbolic, qualitative

![Attribute Diagram]

- **CAR**
 - **PRICE**
 - **BUYING** \(\in \{\text{high, medium, low}\} \)
 - **MAINT**
 - **TECH.CH.** \(\in \{\text{bad, acc, good, exc}\} \)
 - **FUEL** \(\in \{\text{low, medium, high}\} \)
 - **SAFETY**
 - **COMFORT**
Method for **qualitative multi-attribute modeling**

DEX is different from the majority of multi-attribute methods:

1. Attributes are discrete, symbolic, qualitative
 Attribute scales can be **unordered** (categorical),
 but are typically **preferentially ordered** (increasing or decreasing)

```
CAR

PRICE
BUYING ∈ {high, medium, low}

TECH.CH.

TECH.CH. ∈ {bad, acc, good, exc}

FUEL
FUEL ∈ {low, medium, high}

MAINT
SAFETY
COMFORT
```
Method for **qualitative** multi-attribute modeling

DEX is different from other multi-attribute methods:

2. Evaluation of alternatives (aggregation) is defined by *decision tables*

Elementary decision rule:

if FUEL=med & SAFETY=good and COMFORT=med
then TECH.CH.=good
Functionality

- creation and editing of qualitative DEX models:
 - model structure
 - decision tables
- acquisition and evaluation of alternatives
- analysis of alternatives: “what-if”, “±1 analysis”, comparison of alternatives, selective explanation
- tabular and graphical reports

http://kt.ijs.si/MarkoBohanec/dexi.html
Cropping Systems: Ecology Part

GMO Presence in Food and Feed

Parkinson’s Disease: Medication Change

Decision rules

<table>
<thead>
<tr>
<th>Bradykinesia</th>
<th>Tremor</th>
<th>Gait</th>
<th>Dyskinesia</th>
<th>On/off Fluctuations</th>
<th>Epidemiologic</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>19%</td>
<td>19%</td>
<td>24%</td>
<td>13%</td>
<td>15%</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>problematic</td>
<td>problematic</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>problematic</td>
</tr>
<tr>
<td>2</td>
<td>problematic</td>
<td>*</td>
<td><=problematic</td>
<td>*</td>
<td>*</td>
<td>problematic</td>
</tr>
<tr>
<td>3</td>
<td>problematic</td>
<td>*</td>
<td>*</td>
<td>problematic</td>
<td>*</td>
<td>problematic</td>
</tr>
<tr>
<td>4</td>
<td>problematic</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>active</td>
<td>problematic</td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>problematic</td>
<td>*</td>
<td><=problematic</td>
<td>*</td>
<td>problematic</td>
</tr>
<tr>
<td>6</td>
<td>*</td>
<td>problematic</td>
<td>*</td>
<td>*</td>
<td>active</td>
<td>problematic</td>
</tr>
<tr>
<td>7</td>
<td>*</td>
<td>problematic</td>
<td>*</td>
<td>active</td>
<td>*</td>
<td>problematic</td>
</tr>
<tr>
<td>8</td>
<td>*</td>
<td>*</td>
<td>problematic</td>
<td>*</td>
<td>*</td>
<td>problematic</td>
</tr>
<tr>
<td>9</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>severe</td>
<td>*</td>
<td>problematic</td>
</tr>
<tr>
<td>10</td>
<td>*</td>
<td>*</td>
<td>problematic</td>
<td>*</td>
<td>active</td>
<td>problematic</td>
</tr>
<tr>
<td>11</td>
<td>problematic</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>12</td>
<td>normal</td>
<td>problematic</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>13</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>problematic</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>14</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>>=problematic</td>
<td>problematic</td>
<td>normal</td>
</tr>
<tr>
<td>15</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>problematic</td>
<td>normal</td>
<td>*</td>
</tr>
<tr>
<td>16</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>*</td>
</tr>
</tbody>
</table>

Motor Non-Motor Epidemiologic CarePlan

<table>
<thead>
<tr>
<th>Motor</th>
<th>Non-Motor</th>
<th>Epidemiologic</th>
<th>CarePlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>50%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>problematic</td>
<td>*</td>
<td>change</td>
</tr>
<tr>
<td>2</td>
<td><=maybe</td>
<td><=maybe</td>
<td>change</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>problematic</td>
<td>change</td>
</tr>
<tr>
<td>4</td>
<td>maybe</td>
<td>normal</td>
<td>maybe</td>
</tr>
<tr>
<td>5</td>
<td>normal</td>
<td>maybe</td>
<td>maybe</td>
</tr>
<tr>
<td>6</td>
<td>normal</td>
<td>normal</td>
<td>no_change</td>
</tr>
</tbody>
</table>
Motivation for “DEX with Cycles”

Most MCDM methods employ:
– an inputs \rightarrow output(s) structure: tree or directed graph without cycles
– a step-by-step aggregation of inputs into the output(s)
Motivation for “DEX with Cycles”

However, sometimes we do need cycles in order to represent:

– criteria inter-dependence
– dynamic properties of the alternatives
Some MCDM methods do employ cycles:

- **ANP**: Analytic Network Process (Saaty, 1996)
- **WINGS**: Weighted Influence Non-linear Gauge System (Michnik, 2013)
- **DEMATEL**: Decision Making Trial and Evaluation Laboratory (Gabus & Fontela, 1972)

Motivation for “DEX with Cycles”
Motivation for “DEX with Cycles”

CGL: Conway’s Game of Life (Conway, 1970)

Rules ("B3/S23"):

<table>
<thead>
<tr>
<th>Cell Status</th>
<th># Neighbours</th>
<th>New Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>live</td>
<td>< 2</td>
<td>dead</td>
</tr>
<tr>
<td>live</td>
<td>2 or 3</td>
<td>live</td>
</tr>
<tr>
<td>live</td>
<td>> 3</td>
<td>dead</td>
</tr>
<tr>
<td>dead</td>
<td>3</td>
<td>live</td>
</tr>
<tr>
<td>dead</td>
<td>not 3</td>
<td>dead</td>
</tr>
</tbody>
</table>

Wikipedia: (Camargo, 2008)

Motivation for “DEX with Cycles”

1. CGL is Turing complete: As powerful as any computer with unlimited memory and no time constraints (Berlekamp et al., 1982)
2. CGL can be implemented with DEX models with cycles

Apply rules

Count neighbors

\[\text{N1} \ldots \text{N8} \]

Decision rules

_CGL_Cell Neighbors *CGL_Cell_

1. **dead** \(\leq 2 \) **dead**
2. \(* \) \(\leq 1 \) **dead**
3. \(* \) \(\geq 4 \) **dead**
4. \(* \) 3 **live**
5. **live** 2:3 **live**
Case Study: Evaluating Researchers

Goal: Assess the quality and perspective of seven university researchers

Methods: “DEX with Cycles” and ANP

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E6</th>
<th>E7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(univ, national), associate</td>
<td>(univ, national), associate</td>
<td>(univ, national), associate</td>
<td>(univ, national,</td>
<td>(2 univ + national)</td>
<td>(univ + national)</td>
<td>(1 univ)</td>
</tr>
<tr>
<td></td>
<td>associate</td>
<td>associate</td>
<td>associate</td>
<td>international), associate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (univ, national), associate</td>
<td>2 (univ, national), associate</td>
<td>2 (univ, national),</td>
<td>3 (univ, national,</td>
<td>3 (2 univ + national)</td>
<td>4 (univ + national)</td>
<td>1 (univ)</td>
</tr>
<tr>
<td></td>
<td>associate</td>
<td>associate</td>
<td>associate</td>
<td>international), associate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papers</td>
<td>Papers</td>
<td>Papers</td>
<td>Papers</td>
<td>Papers</td>
<td>Papers</td>
<td>Papers</td>
</tr>
<tr>
<td></td>
<td>1 wos, 3 journals, 18</td>
<td>40 conference papers, 5</td>
<td>2 wos, 20 papers on</td>
<td>10 conferences, 1 journal</td>
<td>17 conference papers, 5</td>
<td>43 conference papers + 10</td>
<td>5 conference and 1</td>
</tr>
<tr>
<td></td>
<td>conferences</td>
<td>journal</td>
<td>conferences, 5 journal</td>
<td>journal</td>
<td>journal papers, 2 WOS, 1 CC</td>
<td>journal papers</td>
<td>journal paper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Citations</td>
<td>Citations</td>
<td>Citations</td>
<td>Citations</td>
<td>Citations</td>
<td>Citations</td>
<td>Citations</td>
</tr>
<tr>
<td></td>
<td>55 (google)</td>
<td>152 (google)</td>
<td>16 (google)</td>
<td>21 (google)</td>
<td>70 (google)</td>
<td>260</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ScientificAwards</td>
<td>ScientificAwards</td>
<td>ScientificAwards</td>
<td>ScientificAwards</td>
<td>ScientificAwards</td>
<td>ScientificAwards</td>
<td>ScientificAwards</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>5 best paper awards on</td>
<td>No</td>
<td>No</td>
<td>Yes, 2 prizes</td>
<td>Yes, 1</td>
<td>Yes, 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conferences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Courseware</td>
<td>Courseware</td>
<td>Courseware</td>
<td>Courseware</td>
<td>Courseware</td>
<td>Courseware</td>
<td>Courseware</td>
</tr>
<tr>
<td></td>
<td>Presentations for laboratory</td>
<td>Presentations for laboratory</td>
<td>Presentations for seminars</td>
<td>Notes for laboratory</td>
<td>Teaching materials for</td>
<td>Presentations for laboratory</td>
<td>Teaching materials for</td>
</tr>
<tr>
<td></td>
<td>exercises</td>
<td>exercises</td>
<td>seminars</td>
<td>exercises, 1 book</td>
<td>seminars</td>
<td>exercises</td>
<td>seminars and e-course</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>StudentEvaluation</td>
<td>StudentEvaluation</td>
<td>StudentEvaluation</td>
<td>StudentEvaluation</td>
<td>StudentEvaluation</td>
<td>StudentEvaluation</td>
<td>StudentEvaluation</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>3</td>
<td>4.6</td>
<td>4</td>
<td>4.6</td>
<td>4.4</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>Supervision</td>
<td>Supervision</td>
<td>Supervision</td>
<td>Supervision</td>
<td>Supervision</td>
<td>Supervision</td>
<td>Supervision</td>
</tr>
<tr>
<td></td>
<td>9 bachelor</td>
<td>12 bachelor</td>
<td>14 bachelor</td>
<td>6 bachelor, 1 master</td>
<td>10 bachelor, 2 master,</td>
<td>10 bachelor</td>
<td>3 bachelor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 candidates for rector’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>award (1 win)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Membership</td>
<td>Membership</td>
<td>Membership</td>
<td>Membership</td>
<td>Membership</td>
<td>Membership</td>
<td>Membership</td>
</tr>
<tr>
<td></td>
<td>3 scientific, 2 social</td>
<td>3 scientific, 2 social</td>
<td>3 scientific, 5 social</td>
<td>2 scientific, 0 social</td>
<td>3 scientific, 3 social</td>
<td>3 scientific, 2 social</td>
<td>2 scientific, 2 social</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes, 2</td>
<td>Yes, 1</td>
<td>No</td>
<td>Yes, 3</td>
<td>No</td>
<td>Yes, 2</td>
</tr>
<tr>
<td></td>
<td>SocialAwards</td>
<td>SocialAwards</td>
<td>SocialAwards</td>
<td>SocialAwards</td>
<td>SocialAwards</td>
<td>SocialAwards</td>
<td>SocialAwards</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes, 1</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes, 2</td>
<td>Yes, 1</td>
</tr>
</tbody>
</table>
DEX Model Structure with Cycles

Employee

Science
- Sc. Projects
- Papers
- Citations
- Sc. Awards

Education
- Courseware
- Supervision
- Stud.’s Eval.

Contribution to Society
- Soc. Projects
- Soc. Awards
- Memberships

Papers

Citations

Sc. Awards

Supervision

Sc. Projects

Citations

Stud.’s Eval.

Soc. Awards
Implementation

Indirectly in DEXi software (http://kt.ijs.si/MarkoBohanec/dexi.html):

- Converting models with cycles to hierarchies:
 - splitting a dynamic attribute “Name” to: “_Name” (input) and “*Name” (output)
- Implementing an evaluation algorithm similar to CGL:

 set initial values to all input variables $\rightarrow S_0$

 repeat

 $S_{t+1} \leftarrow \text{Evaluate}(S_t)$

 until $\exists S \in \{S_0, \ldots, S_t\}$: $S_{t+1} = S$
Model in DEXi

Model structure and scales

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee</td>
<td>very_low; low; med; high; very_high</td>
</tr>
<tr>
<td>Science</td>
<td>very_low; low; med; high; very_high</td>
</tr>
<tr>
<td>*ScientificProjects</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>_Papers</td>
<td>low; acc; exc</td>
</tr>
<tr>
<td>_Citations</td>
<td>low; med; high</td>
</tr>
<tr>
<td>*Papers</td>
<td>low; acc; exc</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>low; acc; exc</td>
</tr>
<tr>
<td>_SocialProjects</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>_ScientificAwards</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>*Citations</td>
<td>low; med; high</td>
</tr>
<tr>
<td>_Citations</td>
<td>low; med; high</td>
</tr>
<tr>
<td>_Papers</td>
<td>low; acc; exc</td>
</tr>
<tr>
<td>*ScientificAwards</td>
<td>none; low; high</td>
</tr>
<tr>
<td>_ScientificAwards</td>
<td>none; low; high</td>
</tr>
<tr>
<td>Education</td>
<td>very_low; low; med; high; very_high</td>
</tr>
<tr>
<td>*Courseware</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>_Courseware</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>Papers</td>
<td>low; acc; exc</td>
</tr>
<tr>
<td>*StudentsEvaluation</td>
<td>low; med; high</td>
</tr>
<tr>
<td>_StudentsEvaluation</td>
<td>low; med; high</td>
</tr>
<tr>
<td>_Courseware</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>*StudentsEvaluation</td>
<td>none; low; average; excellent</td>
</tr>
<tr>
<td>*SocialProjects</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>_SocialProjects</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>*SocialAwards</td>
<td>none; low; high</td>
</tr>
<tr>
<td>_SocialAwards</td>
<td>none; low; high</td>
</tr>
<tr>
<td>_SocialProjects</td>
<td>none; low; average; good; exc</td>
</tr>
<tr>
<td>_ScientificAwards</td>
<td>none; low; high</td>
</tr>
</tbody>
</table>

Some rules

<table>
<thead>
<tr>
<th>_Citations</th>
<th>_Papers</th>
<th>*Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td><=acc</td>
<td>low</td>
</tr>
<tr>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>low</td>
<td>exc</td>
<td>med</td>
</tr>
<tr>
<td>med</td>
<td>acc</td>
<td>med</td>
</tr>
<tr>
<td>high</td>
<td>low</td>
<td>med</td>
</tr>
<tr>
<td>>=med</td>
<td>exc</td>
<td>high</td>
</tr>
<tr>
<td>high</td>
<td>>=acc</td>
<td>high</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>_StudentsEvaluation</th>
<th>_Courseware</th>
<th>*StudentsEvaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td><=average</td>
<td>low</td>
</tr>
<tr>
<td><=med</td>
<td>none</td>
<td>low</td>
</tr>
<tr>
<td>low</td>
<td>>=good</td>
<td>med</td>
</tr>
<tr>
<td><=med</td>
<td>good</td>
<td>med</td>
</tr>
<tr>
<td>low</td>
<td>low:good</td>
<td>med</td>
</tr>
<tr>
<td>>=med</td>
<td>low</td>
<td>med</td>
</tr>
<tr>
<td>high</td>
<td><=low</td>
<td>med</td>
</tr>
<tr>
<td>>=med</td>
<td>exc</td>
<td>high</td>
</tr>
<tr>
<td>high</td>
<td>>=average</td>
<td>high</td>
</tr>
</tbody>
</table>
Evaluation: Employee E1

<table>
<thead>
<tr>
<th>Attribute</th>
<th>[0] E1</th>
<th>[1] E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee</td>
<td>very_low</td>
<td>very_low</td>
</tr>
<tr>
<td>Science</td>
<td>med</td>
<td>med</td>
</tr>
<tr>
<td>*ScientificProjects</td>
<td>average</td>
<td>average</td>
</tr>
<tr>
<td>ScientificProjects</td>
<td>average</td>
<td>average</td>
</tr>
<tr>
<td>_Papers</td>
<td>acc</td>
<td>acc</td>
</tr>
<tr>
<td>_Citations</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>*Papers</td>
<td>acc</td>
<td>acc</td>
</tr>
<tr>
<td>_Papers</td>
<td>acc</td>
<td>acc</td>
</tr>
<tr>
<td>ScientificProjects</td>
<td>average</td>
<td>average</td>
</tr>
<tr>
<td>_SocialProjects</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>*Citations</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_Citations</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_Papers</td>
<td>acc</td>
<td>acc</td>
</tr>
<tr>
<td>*ScientificAwards</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>ScientificAwards</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Education</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>*Courseware</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Courseware</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>average</td>
<td>average</td>
</tr>
<tr>
<td>_Papers</td>
<td>acc</td>
<td>acc</td>
</tr>
<tr>
<td>*StudentsEvaluation</td>
<td>med</td>
<td>med</td>
</tr>
<tr>
<td>StudentsEvaluation</td>
<td>med</td>
<td>med</td>
</tr>
<tr>
<td>_Courseware</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Supervision</td>
<td>average</td>
<td>average</td>
</tr>
<tr>
<td>ContributionToSociety</td>
<td>very_low</td>
<td>very_low</td>
</tr>
<tr>
<td>Memberships</td>
<td>med</td>
<td>med</td>
</tr>
<tr>
<td>*SocialProjects</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>SocialProjects</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>average</td>
<td>average</td>
</tr>
<tr>
<td>_SocialAwards</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>*SocialAwards</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>SocialAwards</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>_SocialProjects</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>_SocialAwards</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>_ScientificAwards</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
Evaluation: Employee E2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*ScientificProjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_Papers</td>
<td>med</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>very_high</td>
<td>very_high</td>
<td>very_high</td>
<td>very_high</td>
</tr>
<tr>
<td>_Citations</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>*Papers</td>
<td>acc</td>
<td>acc</td>
<td>exc</td>
<td>exc</td>
<td>acc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>_Papers</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>_SocialProjects</td>
<td>average</td>
<td>good</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>med</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>*Citations</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>_Citations</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>_Papers</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>*ScientificAwards</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>_ScientificAwards</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Courseware</td>
<td>average</td>
<td>average</td>
<td>average</td>
<td>good</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>_Courseware</td>
<td>low</td>
<td>average</td>
<td>average</td>
<td>average</td>
<td>good</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>_Papers</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>*StudentsEvaluation</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>med</td>
<td>high</td>
</tr>
<tr>
<td>_StudentsEvaluation</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>med</td>
</tr>
<tr>
<td>Courseware</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Supervision</td>
<td>average</td>
<td>average</td>
<td>average</td>
<td>average</td>
<td>average</td>
<td>good</td>
<td>avg</td>
<td>avg</td>
</tr>
<tr>
<td>ContributionToSociety</td>
<td>high</td>
<td>very_high</td>
<td>very_high</td>
<td>very_high</td>
<td>very_high</td>
<td>very_high</td>
<td>very_high</td>
<td>very_high</td>
</tr>
<tr>
<td>Memberships</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
</tr>
<tr>
<td>*SocialProjects</td>
<td>good</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>_SocialProjects</td>
<td>average</td>
<td>good</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>*Social Awards</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>_SocialAwards</td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>_SocialProjects</td>
<td>average</td>
<td>good</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
<td>exc</td>
</tr>
<tr>
<td>_ScientificAwards</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

Institut “Jožef Stefan” Ljubljana, Slovenija
Evaluation: Employee E7

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee</td>
<td>very_low</td>
<td>very_low</td>
<td>very_low</td>
<td>very_low</td>
<td>very_low</td>
<td>very_low</td>
</tr>
<tr>
<td>Science</td>
<td>very_low</td>
<td>very_low</td>
<td>very_low</td>
<td>very_low</td>
<td>very_low</td>
<td>very_low</td>
</tr>
<tr>
<td>*ScientificProjects</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_Papers</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>*Citations</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_Citations</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_Papers</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>*Papers</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_Papers</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>*ScientificAwards</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_ScientificAwards</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Education</td>
<td>high</td>
<td>med</td>
<td>low</td>
<td>very_low</td>
<td>very_low</td>
<td>very_low</td>
</tr>
<tr>
<td>*Courseware</td>
<td>average</td>
<td>low</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>_Courseware</td>
<td>good</td>
<td>average</td>
<td>low</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>_ScientificProjects</td>
<td>low</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>_Papers</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>*StudentsEvaluation</td>
<td>high</td>
<td>high</td>
<td>med</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_StudentsEvaluation</td>
<td>high</td>
<td>high</td>
<td>med</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Supervision</td>
<td>good</td>
<td>average</td>
<td>low</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>ContributionToSociety</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Memberships</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
<td>med</td>
</tr>
<tr>
<td>*SocialProjects</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_SocialProjects</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>*SocialAwards</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_SocialAwards</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>*ScientificAwards</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>_ScientificAwards</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>
Conclusions

Idea:
- Introduce cycles to qualitative DEX models
- in order to model criteria inter-dependence and dynamic properties of alternatives.

Findings:
- Introducing cycles to DEX is feasible
- and promises to boost their theoretical computational power.
- Cycles break the convenient input → output structure of MCDM models,
- and there are several possible approaches to the evaluation.
- Current implementation: hierarchies of input-output pairs and a CGL-like iteration

Further work:
- Learning on real-life use cases, comparing with other methods, e.g. ANP
- Studying theoretical properties, e.g. convergence, oscillations
2018 Open Conference of the IFIP WG 8.3 on Decision Support Systems
DSS Research Delivering High Impacts to Business and Society
13 -15 June, 2018, Ljubljana, Slovenia

2018 Open Conference of the IFIP WG 8.3 on Decision Support Systems (IFIP 2018 DSS)
to be held during 13-15 June 2018 in Ljubljana, Slovenia.

The theme of the conference is “DSS Research Delivering High Impacts to Business and Society”

http://ifip2018dss.ijs.si/
Thank you

Marko Bohanec
marko.bohanec@ijs.si