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Abstract—Despite previous successes and growing research
interest in swarm robotics there are still many challenges to
be addressed. We focus on compatibility, code portability and
programability of swarms. Most research teams customize ex-
isting hardware platforms and develop very specific software
platforms with little to no regard to previously mentioned issues.
In this paper we present our ongoing efforts to create a platform-
agnostic software ecosystem for swarms of UAVs that can be used
with off-the-shelf hardware, and with existing simulators.

I. INTRODUCTION

Multi-robot systems and swarms of unmanned aerial vehi-
cles (UAVs) in particular have many practical applications. In
recent years there have been significant advancements in this
research field. However, very rarely do UAV swarms leave
the controlled and safe environment of laboratories, and when
they do it is for short-duration experiments. The current use
of swarms is generally based on custom, centralized solutions,
in environments with reliable communication. Our work is
focused on swarm deployment, fully distributed autonomy,
and programability of heterogeneous swarms. Our goal is to
develop a platform-agnostic software ecosystem for swarms
which provides a way to reuse existing swarm behaviors,
regardless of the underlying fleet.

II. THE SOFTWARE ECOSYSTEM

Figure 1 shows ROSBuzz1, a platform-agnostic software
ecosystem for swarms created to address previously described
challenges. It consists of four independent layers based on
ROS2 and MAVLink3.

1) Swarm control layer: This is the topmost layer in charge
for implementation of swarm behavior algorithms through a of
a set of Buzz programs [1]. Buzz is a domain specific language
(DSL) inspired by Python and Lua which provides swarm
specific data structures and control sequences independently
from the underlying platform. The desired swarm behavior
is defined in a Buzz script that is shared with the fleet, and
executed by all the members of the swarm. Typically, the
script implements behaviors by allocating tasks to groups of
UAVs, based on neighbor communication (broadcast, querying
specific topics, and overall swarm consensus [2]).

1https://github.com/MISTLab/ROSBuzz
2http://www.ros.org
3http://qgroundcontrol.org/mavlink/start

2) Swarm communication layer: This layer is used to pro-
vide a communication platform between robots in the swarm
and it is designed to minimize data transfers. To implement
swarm algorithms, we need a form of situated communica-
tion [3]. All outgoing messages are tagged with the position
information of the source (from GPS or other localization
system). When messages are received, the layer updates the
local information about neighbors locations. It is worth noting
that there is no assumption that the all swarm members can
communicate at all times. This layer is implemented in C++
as a ROS node, while the low-level communication is realized
by XBee modules. However, since it is independent from both
top and bottom layers, it can be easily replaced with any other
hardware (e.g. WiFi or Bluetooth).

3) Control distribution layer: This is the key node of the
entire ecosystem. It publishes a ROS node (rosbuzz_node)
which acts as a mediator between ROS and Buzz. This layer
is in charge of obtaining sensor data by subscribing to specific
ROS topics and delivering the content to Buzz scripts. In
turn, Buzz scripts use this information to propagate control
messages which are then translated into the MAVLink protocol
in ROSBuzz. The subsequent layers deliver these messages to
the actual or simulated robot hardware. When Buzz scripts are
compiled, the result is an executable bytecode for the platform-
independent Buzz Virtual Machine (BVM). The BVM is a
stack-based virtual machine written in C, open–source, and
highly customizable and portable. The key aspect of ROSBuzz

Fig. 1. ROSBuzz software ecosystem for UAV swarm.
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is its usage of BVM to update and maintain swarm related
information. Most importantly, there are two key data sets
maintained by the BVM: a) the swarm data holder which
contains all swarm specific information, and b) the update
monitor which contains the bytecode, current system state,
standby code and currently executed code. Buzz scripts can be
updated during operations through the update monitor, which
is a gateway for continuous integration of Buzz scripts. It
manages current and new releases and provides an integrity
test of the code. The main idea with this approach is to have
the ability to change the swarm behavior while operating in
conditions of long–term autonomy and to simplify the code
deployment procedure across a large fleet.
A new code release can be activated by two triggers: a file
system trigger which occurs upon change of the script, and a
neighbor trigger which occurs when any of the neighbors have
a new code release. To achieve consistency across the swarm,
a barrier synchronization mechanism is used to wait until a
sufficient number of robots are ready to proceed [4]. This is
achieved with Buzz primitives for swarm-level consensus.

The main goal of this layer is to hide the complex interaction
between ROS and the BVM, and allow software developers to
fully focus on development of swarm behavior and swarm re-
lated algorithms through Buzz scripts, while ROSBuzz handles
Buzz compilation and message propagation towards ROS.

4) Robot Abstraction Layer: The connection between ROS
and UAVs is realized through MAVROS4, which is an extend-
able ROS communication node for the MAVLink protocol.
MAVLink is used for marshaling and communication between
upper layers and the robot hardware by a set of standardized
messages. Due to its widespread use, MAVLink is continu-
ously maintained and empowered by various third party tools
for monitoring and control of (semi– or fully–) autonomous
vehicles (e.g APM Planner).

ROSBuzz leverages the loose-coupling of a publisher-
subscriber architectural style to allow robotics researchers and
practitioners to adapt any of the layers for their particular
use, without affecting other layers. However, since ROSBuzz
is designed as a mediator between Buzz and ROS, there
should hardly be any necessity for this. ROSBuzz places the
focus on defining the swarm behavior, rather than to hardware
and software infrastructure which realize it. ROSBuzz also
allows for Buzz execution on both simulated and real drones,
hardware–in–the–loop or software–in–the–loop.

III. PRELIMINARY RESULTS

1) The heterogeneous platform: Our current experimental
platform consists of a simulated environment and a hetero-
geneous swarm platform. For the simulated environment we
use both ARGoS[5] and Gazebo since both have advantages
and drawbacks, and for our heterogeneous swarm platform
we use six DJI Matrice 100 (equipped with either NVidia
Jetson TK1 or TX1 on-board computers, Zenmuse X3 camera,
and a collision avoidance module) and four 3DR Solo (with a
mounted Raspberry Pi3) quadcopters.

4https://github.com/mavlink/mavros

2) Ongoing experiments: We validated the implementation
and performance of the entire software ecosystem in simula-
tion and with real robots. Our initial experiments, targeted at
validating the communication model, demonstrated flocking of
multiple, heterogeneous UAVs shown in Figure 2.

Fig. 2. Heterogeneous swarm consisting of one 3DR Solo and two DJI M100
UAVs.

At the moment we are improving ROSBuzz and performing
experiments related to heterogeneous swarm pattern formation
and movement.

IV. CONCLUSIONS

The goal of this paper is to briefly present our ongoing
efforts to develop a platform-agnostic software ecosystem for
heterogeneous UAV swarms. To design swarm behavior we use
Buzz, a domain-specific language with special primitives for
swarm programming. A major concern related to portability
and compatibility with existing platforms is addressed through
MAVROS. Our ROS node, ROSBuzz mediates the communi-
cation between Buzz and ROS and enables robotics researchers
and practitioners to focus on the swarms with little concern to
hardware and software infrastructure. This allows Buzz to be
executed on a whole variety of real and virtual robots available
through simulation environments like Gazebo, or ARGoS
which support MAVLink. Finally, the main contributions of
this work are a) a complete open source software ecosystem,
ready to fly on distributed UAV systems, b) platform agnostic
solution realized through multiple independent, exchangeable
loosely coupled layers and c) swarm behavior update system
for in–the–air safe manipulation of the fleets’ intelligence.
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