
Self-Adaptive Pattern Formation with
Battery-Powered Robot Swarms

Guannan Li
State Key Laboratory of Robotics

Shenyang Institute of Automation, CAS
Shenyang, China

University of Chinese Academy of Sciences
Beijing, China

Email: liguannan@sia.cn

Ivan Švogor
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Abstract—This paper presents a distributed, energy-aware
algorithm for an autonomous deployment of battery–powered
robots in a specified pattern. While each robot gradually dis-
charges and leaves the formation to recharge, the algorithm
presented in this paper assures that the formation pattern is
preserved. This is achieved by defining the desired pattern as a
point cloud where each point is occupied by a robot. The point
cloud is transformed into a tree model that is shared among
all robots. This model is used by each robot independently to
govern its behavior, resulting in a self–adaptive network of robots
which automatically generate paths for joining the formation
and leaving it to recharge. Robots which leave the formation
are replaced by neighbors to preserve the formation pattern.
To demonstrate our algorithm we use a physics–based simulator
and evaluate the persistence of the pattern formation formed by a
robot swarm in an environment without global positioning, using
only range and bearing.

I. INTRODUCTION

Pattern formation with robot swarms is a popular research
domain with various potential applications, e.g. providing
infrastructural support for disaster rescue missions, distributed
sensing, remote exploration etc. The application of robot
swarms becomes particularly challenging in an environment
without a global positioning, for instance in maritime research,
ocean and space exploration. In such environments robots
need to coordinate their actions without a central authority
to oversee their activities or perform error corrections.

Hernandez-Martinez and Aranda-Bricaire presented a de-
centralized control algorithm in which robots are not aware
of their global position and goals of other robots [6]. Using
formation graphs and potential functions they deploy robots
to achieve a formation. While this work is very similar to
our general idea, the authors focus on a formal proof of
global convergence to a desired formation using well defined
formation graph properties of the Laplacian matrix, without
energy constraints. With the same general assumptions, Fuji-
naga et.al. used a swarm of robots, using the cluster-weighted
modeling algorithm and the Look-Compute-Move cycle [7].
Their paper presents the theoretical foundation and proofs of
their approach, however with no considerations of physical
limitations. They also emphasize that the time complexity of
the formation problem as an open problem for the future work.

Mei et al. tackle the timing and energy consideration in
this respect, however not with the goal of pattern formation,
but rather to achieve coverage [8]. Their solution is the Space
Partition Area Coverage Algorithm. This algorithm uses three
main time related constraints: unloading time, dispersing time,
and overlapping area. The authors present a comprehensive
model of power consumption and time analysis to minimize
the traveling distance for each robot to to achieve the desired
coverage, the consumed energy, minimizing the number of
robots. Their simulations show that they can reduce the
number of robots by 30% while achieving coverage.

Derenick et al. present another work targeting energy con-
cerns [5]. Their goal is to create a pattern formation with mo-
bile robots and recharging capability using Centroidal Voronoi-
Tessellation based control laws. With this approach, they
obtain a critical battery level for each robot which guarantees
the convergence of their solution. Their solution uses up to
7 robots per charging station, with the assumption of battery
swapping rather than recharging.

Taking inspiration from nature to solve the pattern formation
issue is also a popular approach. Guo et.al. developed a self-
organizing algorithm for swarm robot pattern formation based
on principles of gene regulation and cellular interactions [9,
10]. Each robot is treated as a cell, and the interactions be-
tween robots and the environment is modeled through reaction-
diffusion mechanisms. They present a theoretical proof of
algorithm convergence, a Matlab simulation along with real-
world experiments with e-Puck robots. Similarly, Xu et.al. take
their inspiration from biology to create an algorithm based on
Particle Swarm Optimization and Virtual Pheromone mecha-
nism [11]. In this solution, robots communicate only with their
neighbors and when they reach a non–occupied area within the
pattern, they label it and take position. Authors focus on large
numbers of robots to test efficiency and scalability of their
algorithm, i.e. pattern creation, not preservation.

Considering the work briefly presented above, one can
notice that most of the authors take one of two approaches;
a) developing an algorithm for pattern creation and its conver-
gence proof and b) studying pattern maintenance with respect
to physical constraints. In this paper we tackle both issues in



the context of a totally distributed system.
In this paper we assume such an environment and present a

self–adaptive algorithm which deploys and maintains a swarm
of robots in specified formation pattern. Compared to previous
work, the challenge on which we focus in this paper is a
limited energy source of the robots in a swarm and a task to
deploy and keep a specified formation pattern. Furthermore the
goal is to achieve this without the notion of global positioning,
i.e. by using only range and bearing information obtained
through communication with other robots. This approach is
highly applicable in underwater robotics since it does not
require access to expensive sensors like a Doppler velocity
logger or an Inertial navigation system, and in space robotics
where the global positioning system (GPS) is unavailable.
Range and bearing information can be transferred through
low bandwidth cheap light, radio or acoustic communication.
Furthermore in this paper we also consider a limited commu-
nication range preventing all robots to communicate at once,
which is why we resort to using situated communication [1].

We propose an algorithm which uses a point cloud input
respresenting a desired pattern which a swarm needs to form.
This point cloud is transformed into a tree model which
is shared by all robots in the swarm and used to gain the
knowledge about the pattern and the individual actions of each
robot within the swarm necessary to form a desired pattern.
These actions were defined using a finite state machine. When
deployed, robots proceed to form a pattern as described in
a share tree model through communication with their neigh-
bors and reaching a consensus on their individual positions.
The pattern formed by a swarm is a tree which defines a
predecessor–successor relationship through which each robot
has a replacement in the case when one of them needs to leave
the formation to recharge.

The algorithm presented in this paper guarantees that robots
are continuously recharged while keeping the pattern stable
using only situated communication and local positioning.

The rest of the paper is organized as follows. In section
II, we define the theoretical framework of our solution. We
introduce the algorithm for generating a tree model in section
III, and the behavior law as a finite state machine is introduced
in section IV. Simulation results are shown in section V.
Finally section VII concludes the paper.

II. USING A ROBOT SWARM FOR PATTERN FORMATION

The swarm ecosystem we address in this paper consists of
n robots and a charging station and a task to provide network
coverage over a given area. To achieve this, robots need to
form a pattern. The desired pattern is given in the form of a
point cloud which is transformed into a tree model T , used by
robots to calculate their local positions with respect to other
robots. In this section, we explain how robots communicate
and what information can be exchanged.

A. Behavior model

Given a pair of robots p and s, let p be the predecessor, and
let s be its successor in the tree T . Assuming that p has already

arrived to the target position while s has not, we use two local
polar coordinates to navigate robot s to its target position. First
local coordinate P p with the center and reference heading of
robot p and the second local coordinate P g with the center and
reference heading of robot s. Through situated communication,
robot p gets the position of the robot s in its own frame
of reference as P p

s (α
p
s , d

p
s), where αp

s is the bearing and dps
is the range. Similarly, robot s obtains the position of p in
its own frame of reference as P s

p (α
s
p, d

s
p). For s to reach its

target position, we assume that there is also a global reference
direction and a known angle αe

pg which represents the error
between the global reference direction and the local reference
direction of the robot p. p sends P p

s and αe
pg to s. Using

the tree T , s gets the information about the required distance
and bearing with respect to p’s global reference direction as
P g
d (α

g
d, d

g
d). Using this, it can navigate to its target position

(known from the tree T ).
Next, we present a set of behavior rules used by robots to
reach their target positions.
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Fig. 1. Coordinate of a pair of predecessor and successor.

To explain how these rules are obtained, consider Fig. 1
which shows points s and p as current positions of two robots.
~sg and ~pg are the global reference directions which point in
the same direction, ~sg = ~pg. Also, vectors ~sr and ~pr represent
local reference directions of robots in consideration. Using
these, we get:

|αg
s − αg

p| = π

αp
s = αg

s + αe
pg

αs
p = αg

p + αe
sg

where αe
sg is the error between the local coordinate of s and

the global reference direction. Notice that both αe
pg and αe

sg

can be either positive or negative.
Let αg

s ∈ [0, 2π] and αg
p ∈ [0, 2π], then:{

αg
s − αg

p = π αg
s > π

αg
p − αg

s = π αg
s < π

so consequently:

αe
sg =

{
π + αs

p + αe
pg − αp

s αp
s − αe

pg > π
αs
p − π − αp

s + αe
pg αp

s − αe
pg < π

Therefore with a global reference direction, the vector from
robot s to the target position P g

d is:



~P g
sd(α

g
sd, d

g
sd) =

~P g
sp +

~P g
pd

where ~P g
sp and ~P g

pd are vectors from s to p and from p to s,
respectively, with a global reference direction.
Given that ~P g

pd = P g
d , and ~P g

sp = (αs
p − αe

sg, d
s
p), in the local

frame of reference of robot s the vector to its target position
is:

u = ~P s
sd = (αg

sd + αe
sg, d

g
ds).

The vector u is used as a control input for the robots
actuators. Since this approach uses a tree model, a successor
can be a predecessor for another robot. Then the error angle
αe
sg becomes αe

pg for the successor of s. To navigate all robots
to their positions, we assume that the charging station is the
tree root, i.e. a robot already in its position. So, the local
coordinate of the tree root is a global reference direction. Then,
the first error angle is αe

pg = 0, and the remaining ones (αe
sg)

are calculated for each robot successively.

B. Charging model

For a vertex vi in tree T , let Ei be its energy. We define
the operation exchange for a pair of neighboring vertices va
and vb, with va being the predecessor of vb (and consequently
vb being the successor of va). If Ea > Eb, meaning that a
predecessor has more energy than its successor, va and vb
invoke the exchange operation which swaps their positions.

With this, va becomes a successor while vb becomes its
predecessor, resulting with a state in which a predecessor has
less energy than a successor. If v0 is the charging station, it is
only allowed to have one successor v1 (i.e. only one robot can
recharge at a time) which overlaps with its position meaning
that it is getting recharged.

Theorem 1. Continuous invocation of the operation exchange
on T , where |T | = n, T will converge to E1 ≤ Ei(i =
2, ..., n).

Proof. Assume that vertex ve has the lowest energy, namely:
Ee < Ei(i ∈ {1, ..., n} \ {e}) and Ee > 0. Consider the path
from v0 to ve and let the distance between v0 to ve be given as
d0,e. Applying exchange on each pair of neighbors in path v0ve
is called a round. After each round, d0,e will decrease by 1,
therefore by continuing the application of exchange, d0,e will
decrease to the min d0,e = 1 because Ee > E0 = 0. Finally,
ve will become v1, i.e. E1 ≤ Ei(i = 2, ..., n).

From the theorem above, we have:

Corollary 1.1. If T ′ is a subtree of T obtained by cutting
leaves, a sufficient application of exchange operation will
result in E1 ≤ Ei(i = 2, ..., n).

This implies that the position exchanging process between
robots can start even before the pattern formation is complete.

Corollary 1.2. By applying the operation exchange on a di-
rected path in T , T will converge to the state where Em < En

if d0,m < d0,n.

From the previous corollary we know that a robot will be
pushed towards the edge of the tree once fully charged, while
robots with less energy will be attracted towards the root.

III. THE TREE MODEL ALGORITHM

In this section we will introduce the algorithm for generating
the tree model T , using the point cloud G (Algorithm 1).

The point cloud G is an input to the algorithm and it is
transformed into a directed graph T (which is a tree, the proof
follows). Then, two empty lists are created Lu and Ll. Lu

(line 1) is used to store points that have not been added into
the graph T , we call these the unLabeled points, while Ll is
used to store the points already added to the graph T , i.e. the
labeled points. Whenever a point is added to T the counter
Iindex is incremented, starting from 0.

The algorithm starts by adding the charging station (point
v0) to T , and appending it to the list Ll (line 2).

Algorithm 1 Generate tree model from point cloud
Input: Point cloud G
Output: Tree model T recorded in table

1: unLabeled list Lu = φ, Labeled list Ll = φ, Iindex = 0
2: Ll.push(v0), RECORD(v0,Iindex,−1), Iindex = Iindex + 1
3: Sort all points in G along distance to v0 from the nearest to

furthest, as V {v1, v2, ..., vn}
4: Lu ← V {v1, v2, ..., vn}
5: while Lu 6= φ do
6: Candidate point:vc ← Lu.pop()
7: Create set Pc = {vpc : no point exists in line segment
vpcvc, vpc ∈ Ll}

8: Pick the point nearest to vc in Pc as the predecessor of vc,
call it vp

9: Ll.push(vc), RECORD(vc,Iindex,vp)
10: Iindex = Iindex + 1
11: end while
12:
13: function RECORD(vself ,Llabel,vpredecessor)
14: if the label of vpredecessor 6= −1 then
15: Calculate the distance and bearing of vself w.r.t

vpredecessor , as d and α
16: Add a row to the table, as: Lab = Llabel, Pred = the

label of vpredecessor , Dis = d, Bearing = α
17: else
18: Add a row to the table, as: Lab = Llabel, Pred = −1,

Dis = −1, Bearing = −1
19: end if
20: end function
21:
22: function PUSH(vpoint)
23: Put vpoint at the end of the sequence
24: end function
25: function POP()
26: Pick the first point out of the sequence
27: end function

On line three, all points in G are sorted (including a copy of
v0) with respect to distance from v0, from nearest to furthest
as V {v1, v2, ..., vn}. In line four the points are added into the
list Lu to represent candidate points waiting to be added to
the graph T .
Finally, a loop (lines 5–11) iterates through points in the list
Lu which represent candidate points (vc) to enter the graph. It



also iterates through a set of points in the list of added points
Ll which are its potential predecessors. If a point vpc in Ll can
be seen by vc (no points exists in the line segment between vc
and vpc), it becomes a potential predecessor. The one nearest
to vc becomes its predecessor and once a predecessor is found,
vc is moved from the list Lu to to the list Ll. For any vc, a
predecessor can be found, meaning that all points in G can be
added into T :

Theorem 2. The output of Algorithm 1 contains all points in
G.

Proof. While iterating through the tree T , vc cannot be added
to T only when Pc = φ. Assuming that Pc = φ, then for
the current Ll, ∀vl ∈ Ll, ∃vl,1, ..., vl,k ∈ Lu(k ≥ 1) lie
between vc and vl. Since we always have v0 ∈ Ll, then
∃v0,1, ..., v0,k ∈ Lu(k ≥ 1) lie between v0 and vc. Let
v0,1, ..., v0,k be a sequence sorted according to distance to
v0 from near to far, then sequence v0,1, ..., v0,k, vc is also
sorted according to distance to v0 from near to far. This means
before testing v0, we already test if v0,1, ..., v0,k can be added
to T . As no point belong to Lu exists between v0 and v0,1,
point v0,1 must be added to T . Similarly, before testing vc,
v0,1, ..., v0,k have already been added to T , which contradicts
to the assumption, Pc 6= φ. This means every point in G can
be added to T .

Theorem 3. The output of Algorithm 1 is a tree.

Proof. When Ll = v0, v1 is placed into the graph T in accor-
dance to the algorithm resulting in a graph G2 which is clearly
a tree at this point. Furthermore when Ll = v0, v1, ..., vn−1,
the graph Gn is still a tree. By adding a point vn to Gn, letting
its predecessor be the point vp, we can get Gn+1. Since Gn

is a tree, does not contain cycles. Adding a vertex and a edge
to Gn cannot result in a cycle in Gn+1. As Gn is a tree, it
is a connected graph and there exits a path between each pair
of vertexes. So ∀vi(i = 0, 1, ..., n − 1, i 6= p), there is a path
between vi and vp. So there is a path between vn and vi,
meaning that Gn+1 is also a connected graph. A connected
graph without cycles is a tree, so finally T is a tree.
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Fig. 2. In put the point cloud in the left into the algorithm, getting the output
tree in the right.

Fig. 2 shows a point cloud in the left in which the white ring
represents a base station. The generated tree T is shown on
the right. The number on the left side of the image represent
distances between the points, while the numbers on the right
side indicates the Label of each vertex. Arrows are pointing

TABLE I
THE TREE IN FIG. 2 RECORDED AS A TABLE

Lab Pred Dis/(cm) Bearing/(◦)

0 -1 -1 -1
1 0 0 0
2 1 100 0
3 1 100 270
4 1 100 180
5 1 100 90
6 2 100 90
7 2 100 270
8 3 100 180
9 5 100 180

from a successor to its predecessor. Notice that the vertices
labeled 0 and 1 are overlapped representing a robot in the
charging station, which is also the part of the tree.

For the tree T to be usable by robots it is represented in the
form of a table shown in Table I. It contains four items; 1) the
label of a vertex Lab, 2) the predecessor Pred of vertex Lab,
3) the distance Dis and 4) the bearing Bearing of vertex Lab
with respect to its predecessor. All vertexes in the table share
the same reference direction for the bearing. The first vertex
has no predecessor which is denoted with −1. Once a point is
added into Ll, the function Record() adds the corresponding
record into the table (lines 19–20).

IV. BEHAVIOR

A. Finite state machine

The behavior rules of robots is represented using the finite
state machine (FSM) shown in Fig. 3. The finite state machine
consists of seven states, and a charged robot is always in one
of the following: 1) Free, 2) Asking, 3) Joining, 4) Joined,
5) Upasking, 6) Goup and finally 7) Godown. Its transition
conditions are given in Table II.

TABLE II
STATE TRANSITION CONDITIONS

Index Condition

(1) Get a proper label
(2) Label application is rejected
(3) Label application is accepted
(4) Communication with predecessor is lost for a while
(5) Arrived at the target position
(6) Application to start the exchange process is approved
(7) A successor is taking the place of its predecessor
(8) Robot has less energy than its predecessor or the lower threshold
(9) The exchange process is denied
(10) The exchange process is approved
(11) Arrived at the target position

The charging station is treated as a special robot which also
runs the same FSM, however it always stays in the state
Joined, and it is assigned to the label 0. Initially all robots
are in the state Free and they need to obtain the label of the
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Fig. 3. The behavior law represented as a finite state machine.

vertex in the tree T through the interaction with neighbors
during the pattern formation process.
The FSM has two paths for each robot to engage with. The
first path is the deployment path, while the second one is the
charging path. By engaging with the deployment path, a robot
in the state Free obtains a label and becomes the part of the
pattern. Likewise, by engaging with the charging path, robots
exchange positions in order to reach the charging station.

B. Deployment path

The deployment path consists of the following states: Free,
Asking, Joining, Joined.

Free: a robot in state Free does not have a label, meaning
it still isn’t the part of the pattern. A Free robot broadcasts
its state, and moves around robots which are already within
the pattern, i.e. those in state Joining or Joined. To achieve
that behavior, two forces are applied on the robot. The first
one keeps the robot at a certain distance to robots already in
the pattern, while the second one (vertical to it) will move the
robot around the formed pattern.
To translate these forces in to a navigation rule, consider
a Free robot i and a set J of k robots which are in the
state Joining or Joined. In the frame of reference of robot
i the position of a robot j ∈ J is (αi

j , d
i
j). Following this, a

navigation behavior can be obtained as:

ui = f

1

k

k∑
j=1

(αi
j , d

i
j − do) +

1

k

∑
(αi

j +
π

2
, dm)


where do and dm are the strength of the force field. The
function function f(·) maps the resulting force to a proper
control input of the robot.
If a robot in the state Free finds a label which is not occupied
by another robot, and it can see a predecessor of this label
already in the state Joined, it will transit to state Asking.

Asking: a robot in this state still does not have a label,
however it broadcasts a message to apply for one. When a
broadcast message is confirmed, it transits to the state Joining.
If the robot is rejected however, it transits back to the state
Free. This can happen if multiple robots apply for the same
label, or when a potential predecessor is no longer in the
state Joined (i.e. it is engaged in the position exchange) The
navigation rule of the robot in the Asking state is the same as
in the Free state.

Joining: state indicates that robot has a label, i.e. it knows
its target position with respect to its predecessor. A robot in
this state uses a control rule as the one described in sec-
tion II. To reach the target position, its predecessor repeatedly
broadcasts guidance messages to each of its successors in the
state Joining. A guidance message contains 1) the label of
the Joining successor, 2) the relative position of the Joining
successor and 3) the error between global reference direction
and the local position of the predecessor, αe

pg . Using this
information, a robot in the state Joining calculates its control
input u. A robot in this state also broadcasts its state and
label so that its neighbors are aware of its presence. If the
communication with the predecessor is lost (timeout), a robot
will transit back to state Asking.

Joined: a robot in the state Joining will transit to this state
once it arrives to the target position. A robot which is in the
pattern formation will hold still and perform any processing
which might be necessary (depending on the task and the
goal of the swarm). Also, in this state a robot is receiving
messages from its neighbors, and when it receives a message
from a robot in the Asking state it either confirms or rejects
it, depending if it already has a successor. If it does not have
a successor and multiple robots apply, it chooses one (the first
in our case) and starts sending the guidance messages.

C. Charging path

The charging path is realized through the position exchange
between pairs of robots, a predecessor and a successor, until
finally the one with the least amount of energy reaches the
charging station. Its successor takes the place of its predeces-
sor, through a Go Up process while a predecessor takes the
palace of its successor through a Go Down process. The FSM
defines the charging path with two sub–paths shown in Fig. 3.

The Go Up path consists of the following states:
Joined: a robot in the Joined state listens for the messages

from its predecessor and compares its energy level to its own.
If it has less energy than its predecessor or the lower threshold,
robot transits to state UpAsking.

UpAsking: a robot in state UpAsking proceeds sending
messages to its predecessor to trigger the exchange process.
If a reply is received from the predecessor, confirming the
exchange process, it transits to state GoUp. However, if it is
refused, it transits back to state Joined. This can happen when
a predecessor is guiding a robot in the state Joining or GoUp
towards the target position. Furthermore, if a robot in the
UpAsking state does not receive a response, it will also transit
to the Joined state. This happens when multiple successors try
to trigger the exchange process, and the predecessor confirmed
the application from another successor.

GoUp: when a robot transits to this state from state Up-
Asking, it changes its label to the label of its predecessor and
then, its current predecessor (the predecessor of its original
predecessor, i.e. grandfather) is guiding it to its target positions
using guidance messages. The navigation rule depends on the
message from a current predecessor. If a robot can see its
current predecessor, the navigation rule is the same as for the



state Joining and if not a robot will be guided by the original
predecessor, who will move away so that the GoUprobot see
its new predecessor.

Joined: when finally the robot in the state GoUp arrives at
the target position, it will transit to the Joined state. And if
the target position is the charging station, it starts to recharge.
Along the Go Down path, a predecessor will encounter:

Joined: when a robot in the Joined state receives a message
from a successor in the UpAsking to exchange positions, it
needs to decide whether it should confirm or reject it. If a
robot in the state Joined has a at least one successor in the
state Joining, GoUp or GoDown it should reject the request
to start the exchange process. Otherwise, it should confirm the
position exchange request, from its successor with the energy
level. If this happens it transits to the state GoDown. The
robot in charging will reject all requests if it has less energy
than the upper threshold.

GoDown: a robot in the GoDown state starts sending
messages to apply for a label of its successor. When it is
accepted, a robot will transit to the state Joining and obtain a
label. The navigation rule of the robot in the GoDown state
is such that it moves a bit to make space for its successor in
the the GoUp state. After its successor takes its position, it
will start moving towards the old position of its successor.

Joining: When the application of a GoDown robot is
confirmed, it will be guided to the target position in the same
manor as in the Joining state. It will also transit to the state
Joined once arrives at destination.

Joined: the Go Down path ends at a Joined state.
The exchange process repeats and finally the robot with the

lowest energy will move to the charging station, and robot has
just been charged will be pushed to the edge of the tree T .

V. SIMULATION

This section presents a setup of a simulation used to verify
the theoretical framework presented previously, along with
simulation results and a brief discussion.

A. Simulation environment and assumptions

As a simulation environment we used ARGoS (Fig. 8), a
multi–physics robot simulator along with Buzz, which is a
domain specific language designed in particularly for program-
ming swarm behavior[2, 3]. The robot used in the simulations
is a customized version of FootBot which includes additional
LEDs and a battery model. A battery model allows us to
simulate its charging and discharging [4].

To validate the presented algorithm and evaluate the per-
sistence of formation pattern we performed multiple thorough
and extensive simulations. We consider a scenario in which a
swarm of robots has a goal to form a pattern over a certain
area, and once the pattern is formed, each robot acts as a base
station to provide network coverage. We simulate this by using
different discharge currents.

The formation is considered to be stable if none of the robots
fully discharges. However, the system has a physical constraint
related to its energy input. Looking at it as a black box, for the

swarm to be stable, its energy input must be more and equal
to its energy consumption. This means that given the charging
time tc using the charging current Ic, and the discharging time
td using the discharging current Id the condition Id · td <
Ic · tc must be satisfied. This implies that the charging time
should always be shorter than discharging time, and the degree
of freedom which can control this is the charging current,
i.e. with its increase the total charging time can be reduced.
Consequently, introducing n robots into a swarm, the charging
time needs to decrease n times, i.e. the charging current must
be such that n · Id + c, where c assures the reserve power
(necessary to form the pattern).

This constraint is in direct relation to the properties of the
battery, its capacity and charging C rating [4]. For simulation
purpose, we assume that the battery supports fast charging.
However, it can also be assumed that at the charging station,
the battery is physically replaced [5].

B. Simulation setup

The simulation starts with all robots in the idle state, after
which the pattern formation algorithm starts the deployment.
Depending on robots current state, its battery is discharged
with three different currents shown in Table III. For example,
if a robot is moving towards its target position its battery is
discharged with 1 A, since when it is moving it consumes 0.8
A, and when its idle (on-board computers and sensors) it con-
sumes 0.2 A. In the state Joined the discharge current is such
that it simulates heavy processing by on-board computers, i.e.
providing network coverage in accordance to the considered
scenario. The battery model is such that it represents a single
celled battery with 4.2 V, and a reduced capacity of 200 mAh,
to keep the duration of simulations reasonable.

TABLE III
BATTERY MODEL PROPERTIES AND AVERAGE CURRENT CONSUMPTION

(ACC)

ACC Idle (supporting
on-board electronics)

ACC
Driving

ACC state
Joined

Battery
capacity

0.2 A 0.8 A 1.2 A 200 mAh

We have learned experimentally that 8000 simulation steps
are sufficient to verify or demonstrate the stability of the
system. With simulation step set to 0.1 S, the run–time of
each simulation translates to 8 minutes in the real world.

a) b) c) d)

Fig. 4. Pattern formations used in simulations. Black node represents a
charging station, and they are named a, b, c, d; from left to right respectively.

The simulation was performed using four different pattern
formations shown in Fig. 4 which were selected with following
concerns a) depth of the tree (which translates to number
of position exchanges for a robot to reach the power station



and to the maximal number of possible position exchanges at
any given moment) and b) the position and number of direct
successors from the charging station (which translates to the
number of robots competing to recharge). In this paper, only
the pattern formation c is presented, while the remaining ones,
along with all collected data from simulations are available on
the open science data repository FigShare1.

C. Results and discussion

Fig. 5 shows the state of charge (SoC) for each robot
while simulating the pattern formation c. All robots start fully
charged and gradually discharge. Each time when a robot
has a higher SoC than its successor, they exchange positions.
When reaching a charging station, robots SoC starts gradually
increasing until the next robot (its first successor) takes its
place in accordance to Algorithm 1. Fig. 5 shows that the
system is stable with (at most) 9 robots, while the SoC never
drops under 50%, meaning that there is some power reserve
which allows for a decrease of charging current.

Fig. 5. State of charge for each of the 9 robots in 8000 simulation steps.

Fig. 6. Availability of the desired pattern formation

Simulations have shown that with introduction of new
robots, the pattern formation and the simulated network cov-
erage stability will not increase. This is due the fact that
the proposed algorithm insists on continuous and immediate
exchange of positions between a predecessor and a successor
when there is a SoC difference. As Fig. 6 shows this doesn’t
completely impair the formation. In fact, 60–80% of robots

1Remaining experiments are available at https://doi.org/10.6084/m9.
figshare.4776637

are at any given time at their exact position as the desired
pattern requires, while the rest of them are engaged in the
position exchange process. In absolute terms this means that
2 to 3 robots are exchanging positions. As for the stability
of the simulated network coverage, figure Fig. 7 shows that
on average 80% robots are keeping the established network
alive, meaning that on average only 1 or 2 are not in the
pattern or at a nearby position. This does not mean that the
coverage is completely unavailable since the a predecessor
only moves slightly from its position in order to make space
for its successor. Until this happens, a predecessor is acting
as a base station (i.e. simulating data processing).

Fig. 7. Availability of robots within the pattern. Network is unavailable if
any of the positions within the pattern are not occupied by a robot.

Fig. 8. ARGoS capture showing formation pattern c. R7 is charging, while
R3 with less power is exchanging the position with R6 which has more power.

Fig. 8 is a screen capture from ARGoS which shows the
robots in the pattern formation c. At the particular moment
of screen capture, robots R6 and R3 are exchanging positions.
R3 is on its way to the position of R6, while R6 is performing
its task (acting as a base station).

Since the charging station is positioned in the middle the
depth of pattern formation c is 4, meaning that robots at leaf
positions need to make four position exchanges in order to
reach the charging station. And since the charging station
has two immediate branches, two robots are competing to
get charged at the same time. Given its depth and number of

https://doi.org/10.6084/m9.figshare.4776637
https://doi.org/10.6084/m9.figshare.4776637


direct branches from the root, pattern formation c has a good
representation of properties of all other patterns, and this is
why it is chosen to be presented in this paper.

Performing simulations with the remaining patterns has
shown that pattern a is the hardest one to keep stable, since it
has the highest depth. For a robot to reach the charging station
it requires 9 position exchanges, and given the parameters in
Table III it was stable with only 6 robots. Pattern b was stable
with 7 robots, and interestingly it had the highest percentage
of robots in the formation in any given moment. This is since
the exchange process between the charging station and its
successor momentarily blocks all other exchanges. Finally, the
pattern d, with depth 2 and its topology allowed for at most
4 position exchanges while being stable with 9 robots.

As a concluding remark, notice that providing network
coverage and keeping the pattern formation stable are con-
flicting requirements. In one hand the full network coverage
is not available when robots are exchanging positions and on
the other hand robots need to exchange positions in order
to recharge. Also, from a physical standpoint the general
condition for system stability is Id · td < Ic · tc, while the
pattern stability also depends on tree model topology.

VI. CONCLUSION

This paper presents an energy–aware robot deployment and
pattern formation algorithm which uses only local positioning
to achieve it. In addition, the presented algorithm addresses
both energy concerns and sensory limitations which can be
expected in space, underwater and remote environments. To
overcome this, a point cloud which represents a desired
pattern is transformed into a tree model which is shared by
all robots in a swarm. Each robot takes a place within the
tree model by communicating through situated communication
only with their neighbors with messages containing only range,
bearing and battery level information. Employing a set of
behavior rules in the form of a finite state machine, each robot
coordinates its own actions necessary to create the pattern and
keep it. If any of the robots in the formation has an energy level
lower that its predecessor (known from the shared tree model)
they exchange places. This continues until finally the robot
with the least energy gets to the root, i.e. the charging station.
To validate our algorithm, we provide a formal proof that it
converges, along with a series of simulation which demonstrate
it and show that the pattern formations are stable and none of
the robots are fully discharged (following a set of conditions).

Simulations have also shown that there is a great potential
for future work, primarily considering a non–uniform dis-
charge, deeper investigation into the tree model topology and
also considering a healing scheme for robots which get fully
discharged. We are also working on expanding the tree model
into a forest model so that multiple charging stations will be
involved in the system, expanding the scale of the pattern.
Finally, our plan is to test it on a real–world system with a
heterogeneous swarm.
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