

National Reference Laboratory for Heavy Metals in Food Metals Unit, Division of Environmental Health Croatian Institute of Public Health

1

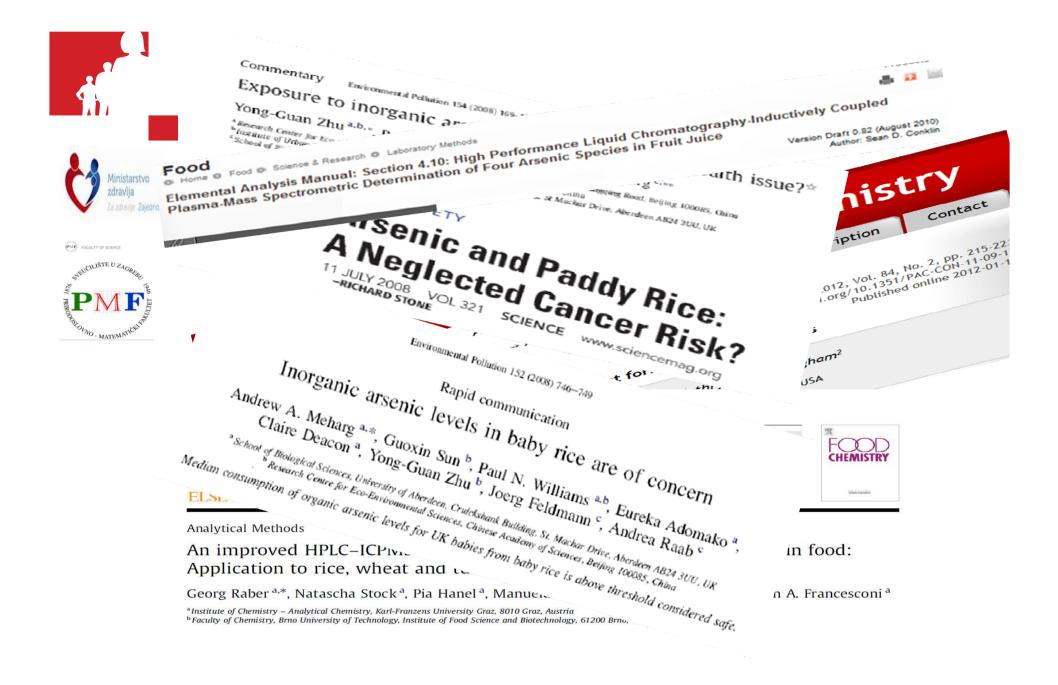
DETERMINATION OF INORGANIC ARSENIC SPECIES IN FOOD BY IN SITU IRRIDIUM TRAPPING ETAAS METHOD

Anica Benutic, MSc BSBioch

e-mail: anica.benutic@hzjz.hr

Predominant species: arsenite, arsenate, methylarsonate, methylarsenite, arsenobetaine, arsenocholine

 As³⁺ is 60 to 80 times more toxic than As⁵⁺;
organic As < inorganic As, arsenocholine and
arsenobetaine are not toxic
As³⁺ binds thiol groups inhibiting oxidative phosphrilation
As⁵⁺ interferes the synthesis of ATP Toxicity


 Absorption As⁵⁺ > As³⁺ (not trough the skin);
Inorg. As > Org. As
Transported in the blood and accumulated in liver, kidney and lungs
Excreted via urine As⁵⁺ > As³⁺; organic As > inorg. As **Metabolism**

Detoxification — Methylation of As⁵⁺ via reduction to As³⁺ 25 HSKKK . 25th Croatian meeting of chemists and chemical engineers, Poreč, 2017.

- Conclusion of opinions: PTWI (15 mg kg⁻¹) body weight value (WHO, 1988) was withdrawn
- NEW!: BMDL₀₁ = 0.3 8 µg/kg b.w. per day for inorganic arsenic
- => EU dietary exposures within this range
- => Risk to some consumers cannot be excluded
- > NEW! BMDL_{0.5} = 3 μ g/kg b.w. per day for inorganic arsenic
- => 0.5% increased incidence of lung cancer for 12 y exposure
 - "...there is a need to produce speciation data for different food commodities to support dietary exposure assessment..."
 - "…more accurate information on the inorganic arsenic content of foods is needed to improve assessments of dietary exposures to inorganic arsenic"

I "...need for validated methods for selective determination of inorganic arsenic in food matrices"

HSKIKI 25th Croatian meeting of chemists and chemical engineers, Poreč, 2017.

4

Current situation in EU legislation

Inorganic Arsenic in food

COMMISSION REGULATION (EU) 2015/1006

Commission Regulation (EU) 2015/1006 – amending Regulation (EC) No 1881/2006 - sets new MLs for inorganic arsenic in various rice products to range from 0.10 to 0.30 mg kg⁻¹.

According to Commission Recommendation (EU) 2015/1381, Member States should monitor in 2016-2018 the presence of arsenic in a wide variety of foodstuffs, by determining the content of inorganic and total arsenic and, if possible, other relevant arsenic species.

METHODS FOR iAs QUANTIFICATION (1)

Standardised methods

EN 15517(2008): iAs in seaweed by HG-AAS after acid extraction

"Nearly selective method": (DMA and MMA may interfere)

EN 16278(2012): iAs by HG-AAS after microwave extraction and SPE for feed. Validated in the range 0.190-2.7 mg kg⁻¹

GB/T5009.11-2003: Determination of total arsenic and abioarsenic in foods, issued by Ministry of Health, the Standardisation Administration of China

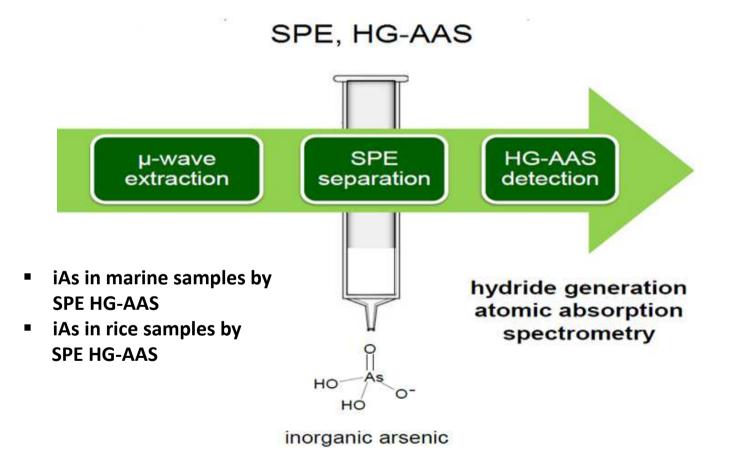
BS EN 16802:2016:Determination of inorganic arsenic in foodstuffs of marine and plant origin by anion-exchange HPLC-ICP-MS

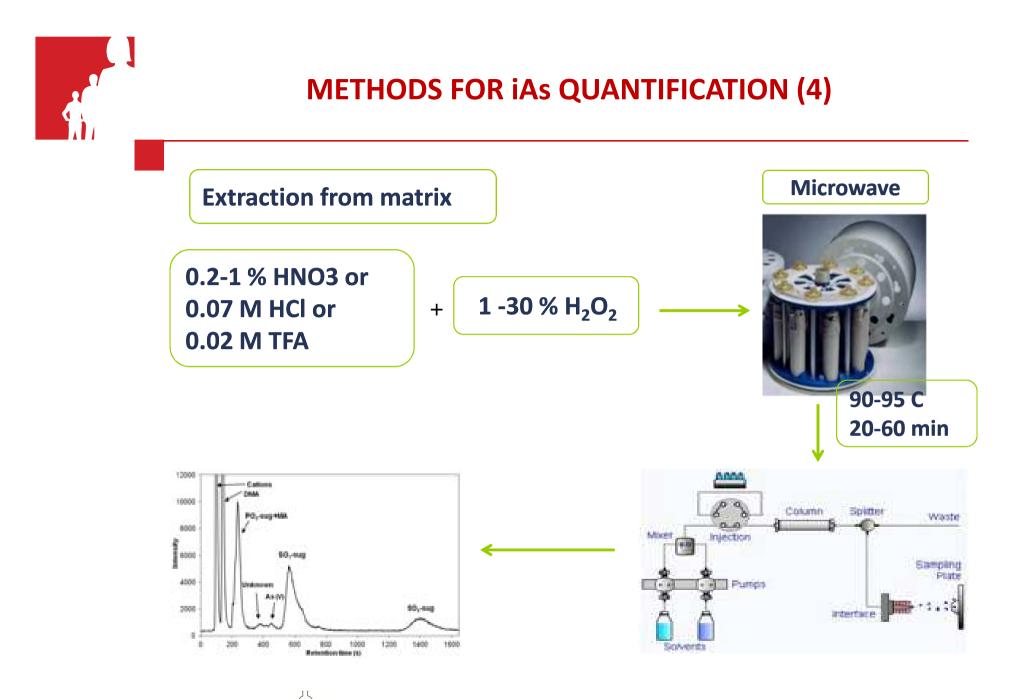
METHODS FOR iAs QUANTIFICATION (2)

Analysis of inorganic arsenic in seafood

- > Inorganic arsenic affinity to thiol groups in proteins
- Hydrolysis of the As-S bond is required to liberate inorganic As to solution
- > "Classical" As extraction using aqueous MeOH not sufficient

Only 31 % of spiked As³⁺ was recovered using MeOH/water solvent


Typical approach:


- \succ Digestion by strong HCl => AsCl₃
- **Extraction by organic solvents (CCl₄) or destillation**
- Co-extraction of MA and DMA possible => overestimation
- Determination by HG-AAS

Muñoz et al, Analyst, 1999, 124, 601-7 Oygard et al, J. AOAC, 1999, 82, 1217-1223

METHODS FOR iAs QUANTIFICATION (3)

Selective Determination of Inorganic Arsenic in Food by Microwave-assisted Extraction and Solid Phase Extraction

Determination of iAs in different food commodities

rice and rice products (N=8)

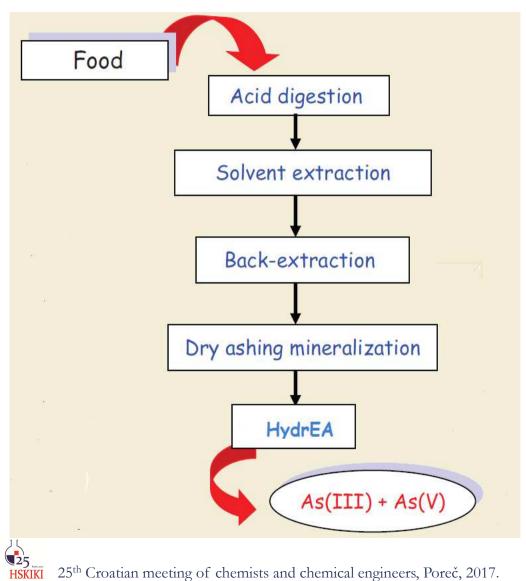
NOT FACILITY OF SCHOOL

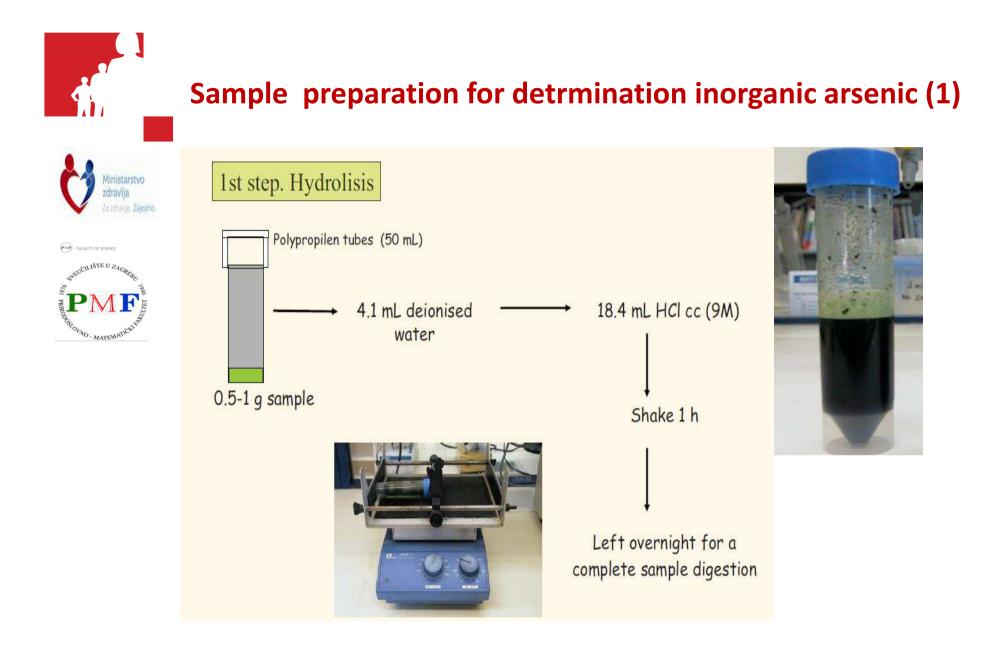
cereals and cereal-based food (N=7

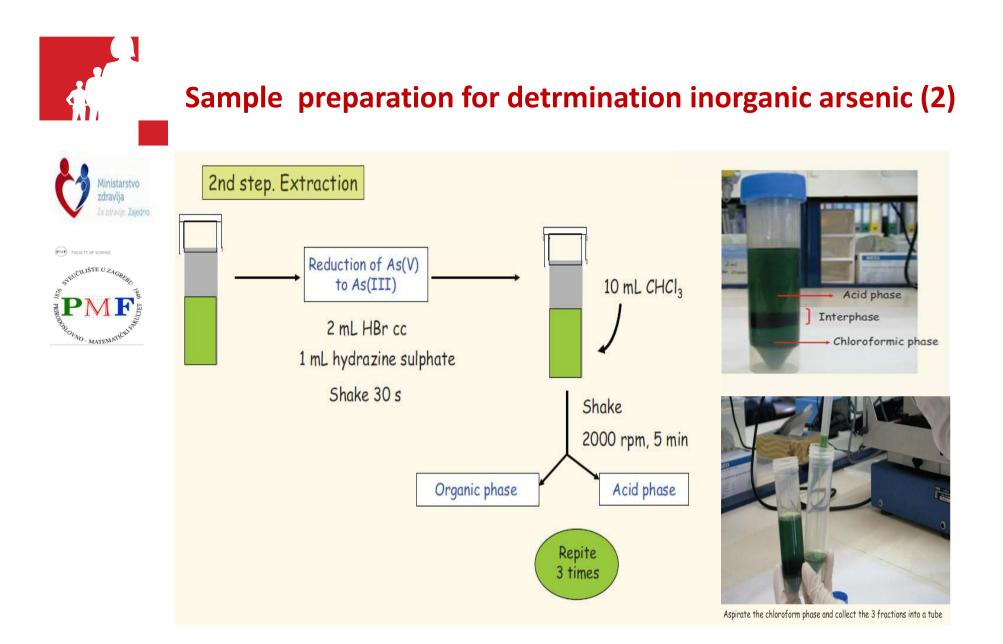
> potatoes, carrots, cabbage, lettuce/vegetables (N=25)

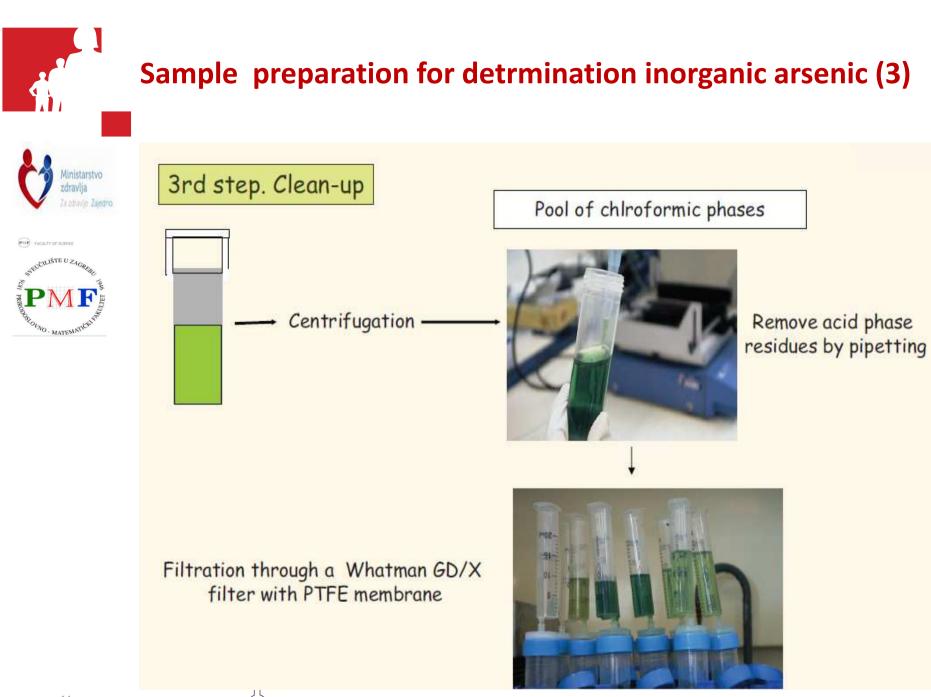
barley, corn/Grains (N=4)

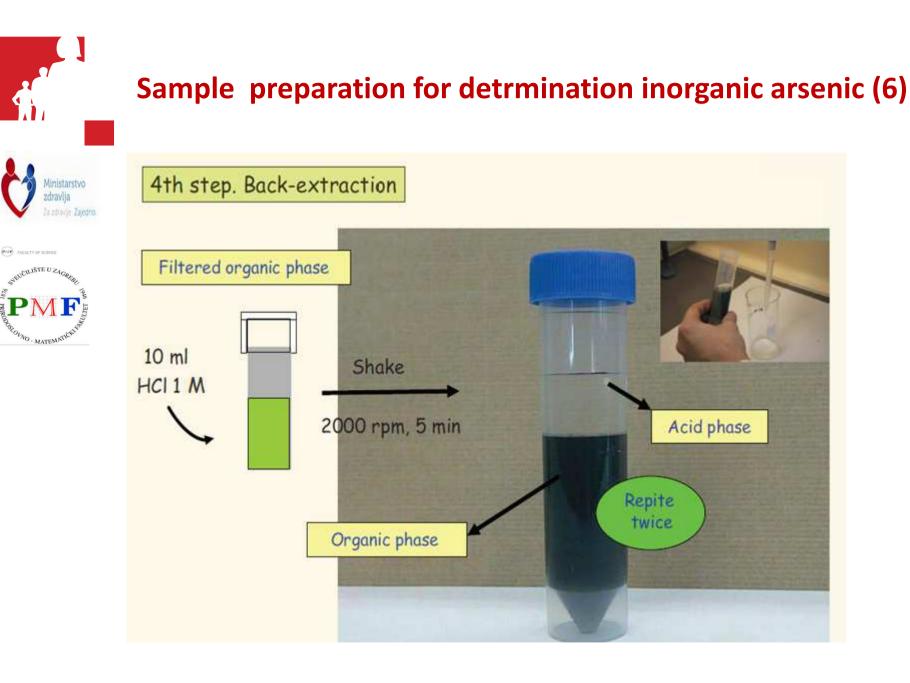
> sardines, tuna and mackerel/Sea fish (N=30)

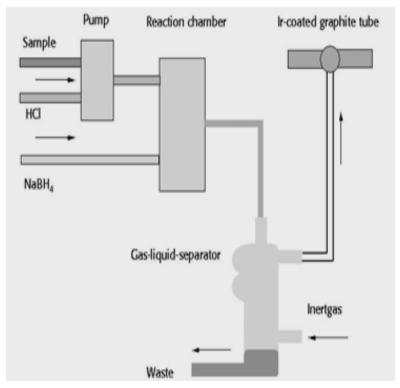



FACULTY OF SCIENCE CILISTE UZA,


NO MATEMATIC


METHODS FOR iAs QUANTIFICATION (4)


BY IN SITU IRRIDIUM TRAPPING ETAAS METHOD


DETERMINATION OF INORGANIC ARSENIC SPECIES IN FOOD BY *IN SITU* IRRIDIUM TRAPPING ETAAS METHOD

5th step. Quantification

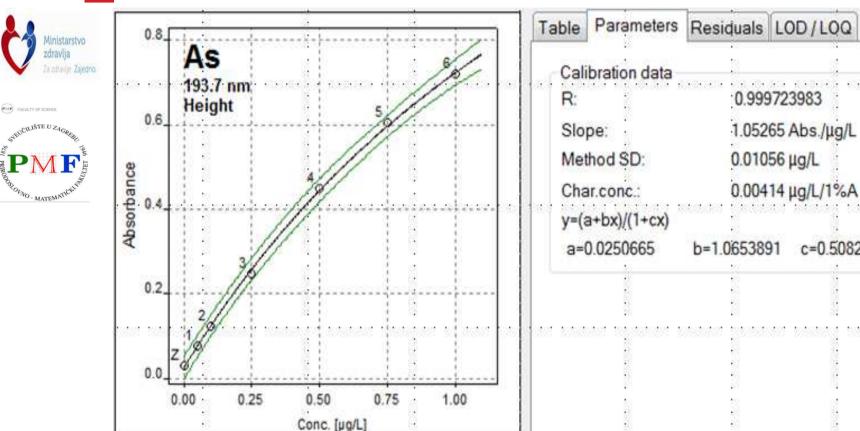
Dry mineralisation and quantification by HydrEA/continuous technique

Limit of detection: 0.005 – 0.01 mg kg⁻¹

Precision: 3 % Recovery: As³⁺= 91-114 %

The measurements were carried out using an AAS ZEEnit 700 and a hydride system HS 51

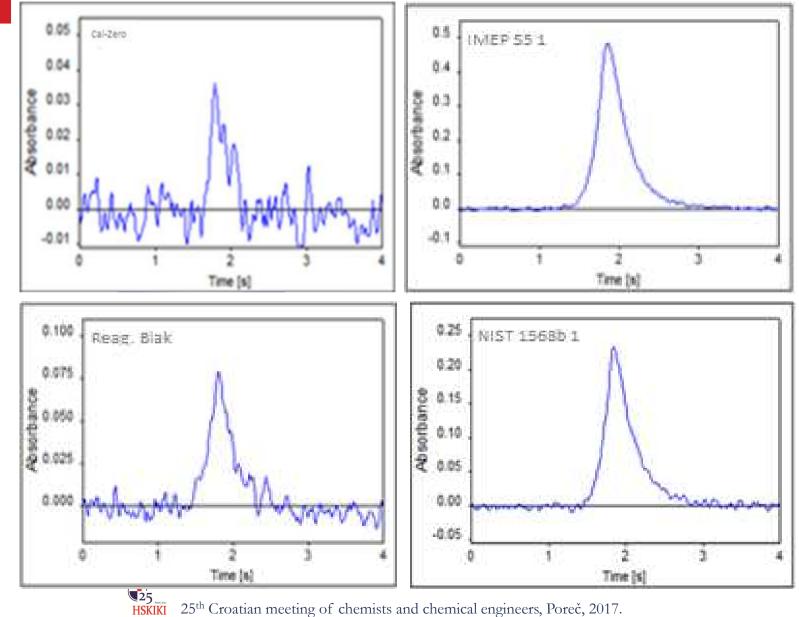
Instrumental parameters


Element	Wavelength [nm]	Slit [nm]		Lamp current [mA]	
As	193.7	0.8		HCL/ 5.0	
Element	Graphite tube	TPyr. [°C]	TAton	n. [°C]	Ramp [°Cs ⁻¹]
As	Standard tube Ir coated	310	21	00	1200

Hydride generation parameters

Operation mode	Continous flow	Sample load time	16 s
Pump speed	3	Reasction time	30 s
Enrichment cycles	1	Rinse time	15 s
Gas flow	6NL/h	Carrier solution	3 % HCl
Cleaning	15 s with acid	Reduction agent	0.3 % NaBH ₄ in 0.1 % NaOH

Calibration function


Calibration shall be performed by means of external calibration. The calibration curve ranges from 0.05 to 1.0 µg L⁻¹ of As³⁺. All As ³⁺ calibration standard solutions shall be freshly prepared before each calibration.

c=0.5082431

2250503034

Signals of the As³⁺ - Determination by HydrEA

Measured Inorganic arsenic concentration
in rice and rice product

	Country Incoice	mg kg ⁻¹		
Sample	Country/region	Inorganic arsenic	ML	
	of origin	(As ³⁺ +As ⁵⁺)		
Long grain white rice	Cambodia	0.068±0.010	0.20	
Long grain, parboiled rice	Italy	0.125±0.018	0.25	
Active Rice-snack classic	Germany	0.196±0.030	0.30	
(rice crackers with sea salt)				
Brown rice flakes	Italy	0.075±0.012	0.20	
Sesam bio-reis snack	Germany	0.139±0.020	0.30	
Rice medium grain	Italy	0.065±0.010	0.20	
Lang grain rice	Italy	0.060±0.009	0.20	
Long grain white rice	Italy	0.063±0.009	0.20	

results are given as mean ± U (k=2; p=95 %); (n = 2)

U' = The expanded measurement uncertainty, using a coverage factor of 2 which gives a level of confidence of approximately 95 % (U = 2u).

inistarstvo

Measured Inorganic arsenic concentration in Rice destined for the production of food for infants and young children

Sample	Country/ mg kg ⁻¹		
Sample	region of	Inorganic arsenic	ML
	origin	(As ³⁺ + As ⁵⁺)	
Fruit yogurt duet with apple and	Hungary	0.017±0.002)	0.10
strawberry (under 10 months)			
Processed cereal-based foods for infants	Germany	0.119±0.017	0.10
Cereal with rice for infants and young children	Croatia	0.061±0.009	0.10
Organic Eco, cereal-based foods from organic farming, rice flakes	Croatia	0.071±0.010	0.10
3 cereals (rice, millet, buckwheat) with an initial milk	Croatia	0.030±0.004	0.10
Instant cereal porridge of rice and corn with transitional milk of infant formulas	Spain	0.035±0.005	0.10
Cereal-based foods, rice flakes - BIO	Poland	0.107±0.016	0.10

results are given as mean ± U (k=2; p=95 %); (n = 2)

U' = The expanded measurement uncertainty, using a coverage factor of 2 which gives a level of confidence of approximately 95 % (U = 2u).

Measured Inorganic arsenic concentration in fish, grains and vegetables

Food product	n	Concentration range (mg kg ⁻¹)
Fresh tuna	15	0.015 (0.008 - 0.021)
Canned tuna	12	0.024 (0.013 - 0.048)
Canned mackerel	3	0.036 (0.030 - 0.053)
Canned sardine	1	0.07
Grains (barley, corn)	4	0.010 - 0.016
Vegetables (potatoes, carrots, cabbage, lettuce)	25	0.010 - 0.013

FACULTY OF SCIENCE

NO MATEMAT

Trueness (%) of inorganic arsenic determination in certified reference materials

Certified	Inorganic arsenic (As ³⁺ + As ⁵⁺) (mg kg ⁻¹)				
Reference Materials	Measured val	ue	Certified values	Recovery (%)	
NIST 1568b	0.085±0.007	(4)	0.092±0.01	93 (90 - 99)	
Rice Flour					
IMEP-112	0.161±0.006	(2)	0.165 ±0.021	98 (95 - 100)	
Wheat					
IAEA 359	0.084±0.029	(5)	0.091±0.016	92 (88 – 101)	
Cabbage					
IMEP 107	0.098±0.002	(2)	0.108±0.011	91 (89 - 93)	
Rice Flour					
ERM-CE278k	0.098±0.004	(4)	0.0863±0.008	114(109 – 119)	
Mussels					

AND PACETY OF YORKER

CONCLUSIONS

The method does not imply the use of sophisticated /expensive instrumentation and can be implemented, even in challenging matrices;

Pre-treatment uses basic analytical chemistry;

The methodology provides a very good performance for the analysis of a wide range of food commodities with low detection levels, good precision, accuracy and recoveries;

- Fish matrices were particularly challenging. The filtration step is complicated for some samples (with lipids);
- The main drawback of the method is that it implies the use of such an organic solvent as chloroform.

FACULTY OF SCIENCE

THANK YOU FOR YOUR ATTENTION !!!!!!!!!!

Anica Benutić,¹ Jasminka Pongračić,¹ Ivan Nemet,² Ružica Vazdar³

¹Croatian National Institute of Public Health, Zagreb, Croatia ²Faculty of Science, University of Zagreb, Croatia ³Ministry of Health, Zagreb, Croatia