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Preliminaries

Let X = (X , ‖·‖) be a Banach space and let (Am)m∈Z be a

sequence of bounded linear operators on X . We consider the

associated linear nonautonomous difference equation given by

xm+1 = Amxm, m ∈ Z. (1)

Furthermore, let A(m, n), m ≥ n be a linear cocycle defined by

A(m, n) =

Am−1 · · ·An, m > n,

Id m = n.

If (xm)m∈Z ⊂ X solves (1), then xm = A(m, n)xn for m ≥ n.
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(Non)uniform exponential dichotomy

We say that (1) admits a uniform exponential dichotomy if:

1 there exist projections Pn : X → X for each n ∈ Z satisfying

AnPn = Pn+1An for n ∈ Z (2)

and each map An| kerPn : kerPn → kerPn+1 is invertible;

2 there exist λ,D > 0 such that

‖A(m, n)Pn‖ ≤ De−λ(m−n) for m ≥ n

and

‖A(m, n)Qn‖ ≤ De−λ(n−m) for m ≤ n,

where Qn = Id− Pn and A(m, n) = (A(n,m)| kerPm)−1 for

m < n.
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(Non)uniform exponential dichotomy

We say that (1) admits a nonuniform exponential dichotomy if:

1 there exist projections Pn : X → X for each n ∈ Z

satisfying (2) and each map An| kerPn : kerPn → kerPn+1 is

invertible;

2 there exist a constant λ > 0 and for each ε > 0 a constant

D = D(ε) > 0 such that

‖A(m, n)Pn‖ ≤ De−λ(m−n)+ε|n| for m ≥ n

and

‖A(m, n)Qn‖ ≤ De−λ(n−m)+ε|n| for m ≤ n,

where Qn = Id− Pn and A(m, n) = (A(n,m)| kerPm)−1 for

m < n.
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Proposition

Assume that the equation (1) admits a nonuniform exponential

dichotomy. For each n ∈ Z, we have

ImPn =

{
v ∈ X : sup

m≥n
‖A(m, n)v‖ < +∞

}
and ImQn consists of all v ∈ X for which there exists a sequence

(xm)m≤n ⊂ X such that xn = v, xm = Am−1xm−1 for m ≤ n and

supm≤n‖xm‖ < +∞.
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Ubiquity of nonuniform behaviour

Let (Ω,B, µ) be a probability space and let f : Ω→ Ω be an

invertible transformation that preserves µ, i.e. µ(B) = µ(f −1(B))

for B ∈ B. Furthermore, assume that µ is ergodic, i.e. for every

B ∈ B such that f −1(B) = B we have that µ(B) ∈ {0, 1}. Let Md

denote the space of all matrices of order d and consider a

measurable map A : X → Md . We consider

A(n)(ω) = A(f n−1(ω)) · · ·A(f (ω)) · A(ω), for n ∈ N and ω ∈ Ω.
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Ubiquity of nonuniform behaviour

Theorem (Froyland-Lloyd-Quas, 2010)

Assume that

log+‖A(·)‖ ∈ L1(X ,B, µ).

Then, there exist numbers ∞ > λ1 > . . . > λk ≥ −∞ and for

µ-a.e. ω ∈ Ω an decomposition

Rd = E1(ω)⊕ . . .⊕ Ek(ω)

such that A(ω)Ei (ω) ⊂ Ei (f (ω)) and

lim
n→∞

1

n
log‖A(n)(ω)v‖ = λi , for v ∈ Ei (ω) \ {0} and i = 1, . . . , k.
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Ubiquity of nonuniform behaviour

Theorem (D.-Froyland, 2016)

Assume that λi 6= 0 for each i ∈ {1, . . . , k}. Then, for µ-a.e.

ω ∈ Ω the sequence (An)n∈Z given by An = A(f n(ω)), n ∈ Z

admits a nonuniform dichotomy.

Similar statements can be obtained in an infinite-dimensional

setting where the versions of MET have been obtained by: Ruelle,

Mañé, Thieullen, Lian and Lu, Froyland, Lloyd and Quas,

González-Tokman and Quas, Blumenthal.
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Nonuniform spectrum

Let us consider equation (1) and define Σ to be the set of all

λ ∈ R with the property that the equation

xm+1 = e−λAmxm, m ∈ Z

doesn’t admit a nonuniform exponential dichotomy. We say that Σ

is a nonuniform spectrum associated to (1). Our main goals:

1 describe all possible structures of Σ;

2 discuss relationship between Σ and Lyapunov exponents

associated to (1).

These questions where first studied by Sacker and Sell for the case

of uniform spectrum.
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Structure of the spectrum

Let D ⊂ X be the closed unit ball centered at 0. Given a linear

operator A : X → X , we denote by |A|α the infimum of all r > 0

with the property that A(D) has a finite cover by balls of radius at

most r . It is easy to verify that |A|α ≤ ‖A‖ for A bounded.

Moreover, if A is compact, then |A|α = 0. We will assume that

lα := lim sup
n→+∞

1

n
log|A(n, 0)|α <∞.

For each a ∈ R and n ∈ Z, let

Sa(n) =

{
v ∈ X : sup

m≥n

(
e−a(m−n)‖A(m, n)v‖

)
< +∞

}
and
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let Ua(n) be the set of all vectors v ∈ X for which there exists a

sequence (xm)m≤n ⊂ X such that xn = v , xm = Am−1xm−1 for

m ≤ n and

sup
m≤n

(
e−a(m−n)‖xm‖

)
< +∞.

We note that if a < b, then

Sa(n) ⊂ Sb(n) and Ub(n) ⊂ Ua(n)

for n ∈ Z. In addition, if a ∈ R \ Σ, then

X = Sa(n)⊕ Ua(n) for n ∈ Z

and the projections Pn and Qn associated to the equation

xm+1 = e−aAmxm satisfy

ImPn = Sa(n) and ImQn = Ua(n).
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One can show that:

1 for a ∈ (lα,∞) \ Σ we have that dimUa(n) <∞;

2 Σ ∩ (lα,∞) is closed in (lα,∞). Moreover, for each

a ∈ (lα,∞) \Σ we have Sa(n) = Sb(n) and Ua(n) = Ub(n) for

all n ∈ Z and all b in some open neighborhood of a;

3 for a1, a2 ∈ (lα,∞) \ Σ with a1 < a2 we have that

[a1, a2] ∩ Σ 6= ∅ if and only if dimUa1 > dimUa2 ;

4 for c ∈ (lα,∞) \ Σ, the set Σ ∩ [c ,+∞) is the union of

finitely many closed intervals.
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Theorem

Set Σα := Σ ∩ (lα,∞). One of the following alternatives holds:

• Σα = ∅;

• Σα = (lα,∞);

• Σα = I1 ∪
⋃k

n=2[an, bn], where I1 = [a1, b1] or I1 = [a1,+∞),

for some numbers

b1 ≥ a1 > b2 ≥ a2 > · · · > bk ≥ ak > lα (3)

for some integer k ∈ N;

• Σα = I1 ∪
⋃k−1

n=2[an, bn] ∪ (lα, bk ], where I1 = [a1, b1] or

I1 = [a1,∞), for some numbers an and bn as in (3) for some

integer k ∈ N (when k = 1 we have Σ = (lα, b1]);
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Theorem (continued)

• Σα = I1 ∪
⋃∞

n=2[an, bn], where I1 = [a1, b1] or I1 = [a1,+∞),

for some numbers

b1 ≥ a1 > b2 ≥ a2 > · · · > lα (4)

with limn→+∞ an = lα;

• Σα = I1 ∪
⋃∞

n=2[an, bn] ∪ (lα, b∞], where I1 = [a1, b1] or

I1 = [a1,+∞), for some numbers an and bn as in (4) with

b∞ := limn→+∞ an > lα.
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Example

Take X = l2 and numbers an and bn as in (4) such that

limn→+∞ an = −∞. Consider (1) with An given by

Anx = (A1
nx1,A

2
nx2,A

3
nx3, . . .),

where

Aj
n =

ebj+
√
n+1 cos(n+1)−

√
n cos n, n ≥ 0,

eaj+
√
|n+1| cos(n+1)−

√
|n| cos n, n < 0

for j ∈ N. One can show that An is a compact operator for each

n ∈ Z and that

Σ =
∞⋃
n=1

[an, bn].
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Nonuniform spectrum and asymptotic behaviour

Consider the case when Σα =
⋃k

n=1[an, bn], for some numbers an

and bn as in (3). Take any ci ∈ (bi+1, ai ) for each i = 1, . . . , k − 1,

c0 > b1 and ck ∈ (lα, ak). Set

E0(n) = Uc0(n), Ek+1(n) = Sck (n) and Ei (n) = Sci−1(n)∩Uci (n),

for i ∈ {1, . . . , k}. Then, we have that

• X = ⊕k+1
i=1 Ei (n) for n ∈ Z;

• limm→∞
1
m log‖A(m, n)v‖ =∞ for v ∈ E0(n) \ {0};

• lim infm→∞
1
m log‖A(m, n)v‖, lim supm→∞

1
m log‖A(m, n)v‖

belong to [ai , bi ] for v ∈ Ei (n) \ {0} and i ∈ {1, . . . , k};

• lim supm→∞
1
m log‖A(m, n)v‖ ≤ lα for v ∈ Ek+1(n) \ {0}.

Davor Dragičević, UNSW Nonuniform spectrum on Banach spaces



Consider now a nonlinear dynamics

xk+1 = Akxk + fk(xk) (5)

For a class of nonlinear perturbations (fk)k we have that for all

solutions (xk)k of (5) such that

ak ≤ lim inf
n→∞

1

n
log‖xn‖ ≤ lim sup

n→∞

1

n
log‖xn‖ ≤ b1,

there exists i ∈ {1, . . . , k} such that

lim inf
n→∞

1

n
log‖xn‖, lim sup

n→∞

1

n
log‖xn‖ ∈ [ai , bi ].

Most interesting in the case of so-called Lyapunov regular

sequences (An)n.
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Further developments

There are analogous results in the case of continuous time, i.e. for

evolution families T (t, s). J. Hale, Asymptotic Behavior of

Dissipative Systems, Mathematical Surveys and Monographs 25,

American Mathematical Society, Providence, RI, 1988.

D. Henry, Geometric Theory of Semilinear Parabolic Equations,

Lecture Notes in Mathematics 840, Springer-Verlag, Berlin-New

York, 1981.
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