Nonuniform spectrum on Banach spaces

Davor Dragičević University of New South Wales, Sydney (joint work with Luis Barreira and Claudia Valls)

July 25, 2017

D.D. was supported by an Australian Research Council Discovery Project DP150100017 and Croatian Science Foundation under the project IP-2014-09-2285

Let $X = (X, \|\cdot\|)$ be a Banach space and let $(A_m)_{m \in \mathbb{Z}}$ be a sequence of bounded linear operators on X. We consider the associated *linear nonautonomous difference equation* given by

$$x_{m+1} = A_m x_m, \quad m \in \mathbb{Z}.$$
 (1)

Furthermore, let $\mathcal{A}(m, n)$, $m \ge n$ be a *linear cocycle* defined by

$$\mathcal{A}(m,n) = \begin{cases} A_{m-1} \cdots A_n, & m > n, \\ \text{Id} & m = n. \end{cases}$$

If $(x_m)_{m\in\mathbb{Z}}\subset X$ solves (1), then $x_m=\mathcal{A}(m,n)x_n$ for $m\geq n$.

We say that (1) admits a *uniform exponential dichotomy* if:

1 there exist projections $P_n: X \to X$ for each $n \in \mathbb{Z}$ satisfying

$$A_n P_n = P_{n+1} A_n \quad \text{for } n \in \mathbb{Z}$$
 (2)

and each map $A_n | \ker P_n$: $\ker P_n \to \ker P_{n+1}$ is invertible;

2 there exist $\lambda, D > 0$ such that

$$\|\mathcal{A}(m,n)P_n\| \leq De^{-\lambda(m-n)}$$
 for $m \geq n$

and

$$\|\mathcal{A}(m,n)Q_n\| \leq De^{-\lambda(n-m)}$$
 for $m \leq n$,

where $Q_n = \text{Id} - P_n$ and $\mathcal{A}(m, n) = (\mathcal{A}(n, m) | \ker P_m)^{-1}$ for

m < *n*.

We say that (1) admits a nonuniform exponential dichotomy if:

- there exist projections P_n: X → X for each n ∈ Z satisfying (2) and each map A_n | ker P_n: ker P_n → ker P_{n+1} is invertible;
- 2 there exist a constant $\lambda > 0$ and for each $\varepsilon > 0$ a constant $D = D(\varepsilon) > 0$ such that

$$\|\mathcal{A}(m,n)P_n\| \leq De^{-\lambda(m-n)+\varepsilon|n|}$$
 for $m \geq n$

and

$$\|\mathcal{A}(m,n)Q_n\| \leq De^{-\lambda(n-m)+\varepsilon|n|}$$
 for $m \leq n$,

where $Q_n = \mathrm{Id} - P_n$ and $\mathcal{A}(m, n) = (\mathcal{A}(n, m) | \ker P_m)^{-1}$ for

m	<	n	

Proposition

Assume that the equation (1) admits a nonuniform exponential dichotomy. For each $n \in \mathbb{Z}$, we have

$$\operatorname{Im} P_n = \left\{ v \in X : \sup_{m \ge n} \|\mathcal{A}(m, n)v\| < +\infty \right\}$$

and Im Q_n consists of all $v \in X$ for which there exists a sequence $(x_m)_{m \leq n} \subset X$ such that $x_n = v$, $x_m = A_{m-1}x_{m-1}$ for $m \leq n$ and $\sup_{m \leq n} ||x_m|| < +\infty$.

Let $(\Omega, \mathcal{B}, \mu)$ be a probability space and let $f : \Omega \to \Omega$ be an invertible transformation that preserves μ , i.e. $\mu(B) = \mu(f^{-1}(B))$ for $B \in \mathcal{B}$. Furthermore, assume that μ is ergodic, i.e. for every $B \in \mathcal{B}$ such that $f^{-1}(B) = B$ we have that $\mu(B) \in \{0, 1\}$. Let M_d denote the space of all matrices of order d and consider a measurable map $A : X \to M_d$. We consider

$${\mathcal A}^{(n)}(\omega)={\mathcal A}(f^{n-1}(\omega))\cdots {\mathcal A}(f(\omega))\cdot {\mathcal A}(\omega), \quad ext{for } n\in {\mathbb N} ext{ and } \omega\in \Omega.$$

Theorem (Froyland-Lloyd-Quas, 2010)

Assume that

$$\log^+ ||A(\cdot)|| \in L^1(X, \mathcal{B}, \mu).$$

Then, there exist numbers $\infty > \lambda_1 > \ldots > \lambda_k \ge -\infty$ and for μ -a.e. $\omega \in \Omega$ an decomposition

$$\mathbb{R}^d = E_1(\omega) \oplus \ldots \oplus E_k(\omega)$$

such that $A(\omega)E_i(\omega) \subset E_i(f(\omega))$ and

$$\lim_{n\to\infty}\frac{1}{n}\log\|A^{(n)}(\omega)v\|=\lambda_i, \text{ for } v\in E_i(\omega)\setminus\{0\} \text{ and } i=1,\ldots,k.$$

Theorem (D.-Froyland, 2016)

Assume that $\lambda_i \neq 0$ for each $i \in \{1, ..., k\}$. Then, for μ -a.e. $\omega \in \Omega$ the sequence $(A_n)_{n \in \mathbb{Z}}$ given by $A_n = A(f^n(\omega))$, $n \in \mathbb{Z}$ admits a nonuniform dichotomy.

Similar statements can be obtained in an infinite-dimensional setting where the versions of MET have been obtained by: *Ruelle*, *Mañé*, *Thieullen*, *Lian and Lu*, *Froyland*, *Lloyd and Quas*, *González-Tokman and Quas*, *Blumenthal*. Let us consider equation (1) and define Σ to be the set of all $\lambda\in\mathbb{R}$ with the property that the equation

$$x_{m+1} = e^{-\lambda} A_m x_m, \quad m \in \mathbb{Z}$$

doesn't admit a nonuniform exponential dichotomy. We say that Σ is a *nonuniform spectrum* associated to (1). Our main goals:

- 1 describe all possible structures of Σ ;
- discuss relationship between Σ and Lyapunov exponents associated to (1).

These questions where first studied by *Sacker and Sell* for the case of uniform spectrum.

Let $D \subset X$ be the closed unit ball centered at 0. Given a linear operator $A: X \to X$, we denote by $|A|_{\alpha}$ the infimum of all r > 0with the property that A(D) has a finite cover by balls of radius at most r. It is easy to verify that $|A|_{\alpha} \leq ||A||$ for A bounded. Moreover, if A is compact, then $|A|_{\alpha} = 0$. We will assume that

$$I_{\alpha} := \limsup_{n \to +\infty} \frac{1}{n} \log |\mathcal{A}(n,0)|_{\alpha} < \infty.$$

For each $a \in \mathbb{R}$ and $n \in \mathbb{Z}$, let

$$S_a(n) = \left\{ v \in X : \sup_{m \ge n} \left(e^{-a(m-n)} \| \mathcal{A}(m,n)v \| \right) < +\infty \right\}$$

and

let $U_a(n)$ be the set of all vectors $v \in X$ for which there exists a sequence $(x_m)_{m \leq n} \subset X$ such that $x_n = v$, $x_m = A_{m-1}x_{m-1}$ for $m \leq n$ and

$$\sup_{m\leq n}\left(e^{-a(m-n)}\|x_m\|\right)<+\infty.$$

We note that if a < b, then

$$S_a(n) \subset S_b(n)$$
 and $U_b(n) \subset U_a(n)$

for $n \in \mathbb{Z}$. In addition, if $a \in \mathbb{R} \setminus \Sigma$, then

$$X=S_{\mathsf{a}}(n)\oplus U_{\mathsf{a}}(n)$$
 for $n\in\mathbb{Z}$

and the projections P_n and Q_n associated to the equation $x_{m+1} = e^{-a}A_m x_m$ satisfy

$$\operatorname{Im} P_n = S_a(n)$$
 and $\operatorname{Im} Q_n = U_a(n)$.

One can show that:

1 for
$$a \in (I_{\alpha}, \infty) \setminus \Sigma$$
 we have that dim $U_a(n) < \infty$;

∑ ∩ (l_α, ∞) is closed in (l_α, ∞). Moreover, for each
a ∈ (l_α, ∞) \ ∑ we have S_a(n) = S_b(n) and U_a(n) = U_b(n) for all n ∈ Z and all b in some open neighborhood of a;

8 for
$$a_1, a_2 \in (I_\alpha, \infty) \setminus \Sigma$$
 with $a_1 < a_2$ we have that
 $[a_1, a_2] \cap \Sigma \neq \emptyset$ if and only if dim $U_{a_1} > \dim U_{a_2}$;

4 for c ∈ (l_α,∞) \ Σ, the set Σ ∩ [c, +∞) is the union of finitely many closed intervals.

Theorem

Set $\Sigma_{\alpha} := \Sigma \cap (I_{\alpha}, \infty)$. One of the following alternatives holds:

•
$$\Sigma_{\alpha} = \emptyset;$$

•
$$\Sigma_{\alpha} = (I_{\alpha}, \infty);$$

•
$$\Sigma_{\alpha} = I_1 \cup \bigcup_{n=2}^{k} [a_n, b_n]$$
, where $I_1 = [a_1, b_1]$ or $I_1 = [a_1, +\infty)$, for some numbers

$$b_1 \ge a_1 > b_2 \ge a_2 > \cdots > b_k \ge a_k > l_\alpha \tag{3}$$

for some integer $k \in \mathbb{N}$;

• $\Sigma_{\alpha} = l_1 \cup \bigcup_{n=2}^{k-1} [a_n, b_n] \cup (l_{\alpha}, b_k]$, where $l_1 = [a_1, b_1]$ or $l_1 = [a_1, \infty)$, for some numbers a_n and b_n as in (3) for some integer $k \in \mathbb{N}$ (when k = 1 we have $\Sigma = (l_{\alpha}, b_1]$);

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (continued)

• $\Sigma_{\alpha} = I_1 \cup \bigcup_{n=2}^{\infty} [a_n, b_n]$, where $I_1 = [a_1, b_1]$ or $I_1 = [a_1, +\infty)$, for some numbers

$$b_1 \ge a_1 > b_2 \ge a_2 > \cdots > l_\alpha \tag{4}$$

with
$$\lim_{n\to+\infty} a_n = I_{\alpha}$$
;

• $\Sigma_{\alpha} = I_1 \cup \bigcup_{n=2}^{\infty} [a_n, b_n] \cup (I_{\alpha}, b_{\infty}]$, where $I_1 = [a_1, b_1]$ or $I_1 = [a_1, +\infty)$, for some numbers a_n and b_n as in (4) with $b_{\infty} := \lim_{n \to +\infty} a_n > I_{\alpha}$.

Example

Take $X = l^2$ and numbers a_n and b_n as in (4) such that $\lim_{n \to +\infty} a_n = -\infty$. Consider (1) with A_n given by

$$A_n x = (A_n^1 x_1, A_n^2 x_2, A_n^3 x_3, \ldots),$$

where

$$A_{n}^{j} = \begin{cases} e^{b_{j} + \sqrt{n+1}\cos(n+1) - \sqrt{n}\cos n}, & n \ge 0, \\ e^{a_{j} + \sqrt{|n+1|}\cos(n+1) - \sqrt{|n|}\cos n}, & n < 0 \end{cases}$$

for $j \in \mathbb{N}$. One can show that A_n is a compact operator for each $n \in \mathbb{Z}$ and that ∞

$$\Sigma = \bigcup_{n=1}^{\infty} [a_n, b_n].$$

Nonuniform spectrum and asymptotic behaviour

Consider the case when $\Sigma_{\alpha} = \bigcup_{n=1}^{k} [a_n, b_n]$, for some numbers a_n and b_n as in (3). Take any $c_i \in (b_{i+1}, a_i)$ for each $i = 1, \ldots, k-1$, $c_0 > b_1$ and $c_k \in (l_{\alpha}, a_k)$. Set

 $E_0(n) = U_{c_0}(n), \quad E_{k+1}(n) = S_{c_k}(n) \text{ and } E_i(n) = S_{c_{i-1}}(n) \cap U_{c_i}(n),$

for $i \in \{1, \ldots, k\}$. Then, we have that

•
$$X = \bigoplus_{i=1}^{k+1} E_i(n)$$
 for $n \in \mathbb{Z}$;

- $\lim_{m\to\infty} \frac{1}{m} \log \|\mathcal{A}(m,n)v\| = \infty$ for $v \in E_0(n) \setminus \{0\}$;
- $\liminf_{m\to\infty} \frac{1}{m} \log \|\mathcal{A}(m,n)v\|$, $\limsup_{m\to\infty} \frac{1}{m} \log \|\mathcal{A}(m,n)v\|$ belong to $[a_i, b_i]$ for $v \in E_i(n) \setminus \{0\}$ and $i \in \{1, \dots, k\}$;

•
$$\limsup_{m\to\infty} \frac{1}{m} \log \|\mathcal{A}(m,n)v\| \leq l_{\alpha} \text{ for } v \in E_{k+1}(n) \setminus \{0\}.$$

Consider now a nonlinear dynamics

$$x_{k+1} = A_k x_k + f_k(x_k) \tag{5}$$

For a class of nonlinear perturbations $(f_k)_k$ we have that for all solutions $(x_k)_k$ of (5) such that

$$a_k \leq \liminf_{n \to \infty} \frac{1}{n} \log \|x_n\| \leq \limsup_{n \to \infty} \frac{1}{n} \log \|x_n\| \leq b_1,$$

there exists $i \in \{1, \ldots, k\}$ such that

$$\liminf_{n\to\infty}\frac{1}{n}\log\|x_n\|,\ \limsup_{n\to\infty}\frac{1}{n}\log\|x_n\|\in[a_i,b_i].$$

Most interesting in the case of so-called Lyapunov regular sequences $(A_n)_n$.

There are analogous results in the case of *continuous time*, i.e. for evolution families T(t, s). J. Hale, *Asymptotic Behavior of Dissipative Systems*, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, RI, 1988. D. Henry, *Geometric Theory of Semilinear Parabolic Equations*, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin-New York, 1981.