
Directory Based Multi-tier Internet Architectures
Sinisa Srbljic, Dalibor F. Vrsalovic*, and Andro Milanovic 1

University of Zagreb, Zagreb, Croatia
http://www.zemris.fer.hr/{~sinisa, ~andro}

* Intel Corporation, New Business Group, Santa Clara, CA, USA
dalibor.f.vrsalovic@intel.com

ABSTRACT

Traditional two-tier client/server architectures are sometimes replaced
by more scalable multi-tier architectures based on caches. However, the
effectiveness of these caches, proxy caches, is often not very high. One
of the possible ways to improve their effectiveness is to connect them
together to create a distributed cache system. A Distributed Cache
Management (DCM) protocol provides the communication
infrastructure for such a distributed cache system.

A version of a DCM protocol was introduced in Harvest, and improved
in Squid. After that, the Berkeley protocol further attempted to improve
the performance of DCM protocols. We introduce a directory-based
DCM protocol that attempts to provide additional improvements. We
compare the performance of Squid, Berkeley, and the directory-based
DCM protocol, with measurements from real operational systems and
analytical performance prediction for large-scale distributed caches.

Keywords: World Wide Web proxy cache, distributed cache,
distributed cache management protocol, performance measurement,
analytical performance prediction, performance comparison.

1. INTRODUCTION

The rapid growth of the Internet has brought about the problems
of maintaining low latency and avoiding congestion in networks
and server machines. One possible solution is rather simple and
consists of extending the capacity of networks and server
machines. However, this solution is not always practical,
because it introduces large costs. Another solution was
proposed in the form of the Internet proxy cache. The purpose
of the proxy cache is to a certain extent similar to the purpose of
a processor cache. Client software contacts the proxy cache and
requests an object from the cache, instead of sending the request
to the server. The proxy cache will service the request from its
local storage for both possible cases that may occur. For the first
case, the proxy cache examines its local storage and does not
find the object there. The proxy cache then contacts the origin
server and fetches the object from the server. For the other case,
the object is found in the proxy cache’s local storage and is
served to the client without any communication with the server.
The latter case presents the improvement that results from the
use of a proxy cache.

Unlike a processor cache, the Internet proxy cache has a low
effectiveness. This is caused by a low hit rate. The hit rate is the
probability that the object that the client requests is stored in the
proxy cache. There are two major reasons that make this
probability low for Internet systems. The first reason is that
there exist a large number of different Web pages and
documents on the Internet today, while the local storage of
proxy caches is limited. The second reason is that users usually
look for diverse information. One way to increase the hit rate is
to connect more users to the proxy cache. If a larger number of
users are connected to the proxy cache, the probability they will
request the same document increases. However, this solution is

not realistic, because a larger number of users will also increase
congestion on the proxy machine.

Another possible solution to this problem is to connect multiple
proxies together and thus create a distributed cache. This
solution is viable if two requirements are satisfied. The first
requirement is that the network connections between the proxy
cache machines have lower latency than the connections to the
servers. The second requirement is that the proxy machines
have a low response time. What makes this solution viable is the
fact that while the total number of clients connecting to the
distributed cache grows, the number of clients per proxy cache
remains constant. In order to control such distributed cache
systems, a distributed cache management (DCM) protocol is
introduced.

The DCM protocol controls the communication between proxy
caches. One of the first proxy caches that introduced a DCM
protocol was Harvest [1] as well as its successor Squid [2]. A
new problem arises as the number of proxy caches in a
distributed cache grows. With the growth of the distributed
cache, the network traffic and proxy machine load rise as well,
due to the communication overhead introduced by the DCM
protocol. This problem limits the scalability of the distributed
cache. The cache system proposed by Malpani, Lorch, and
Berger [3] (referred to hereafter as the Berkeley protocol), was
introduced to solve this problem. Since the Berkeley protocol
only partially solves the problem of large traffic, we developed
the directory-based DCM (dbDCM) protocol that attempts to
address both the problem of traffic and proxy load of a
large-scale distributed cache1.

We run tests and compare measurement results for both the
Squid DCM protocol and our dbDCM protocol. Implementation
of the support for complete Squid cache in an open IP platform
makes these tests and comparison possible. In addition, we
develop an analytical performance prediction model to evaluate
DCM protocols for large-scale distributed caches, because it
was difficult to perform measurements on more than fifty proxy
machines. In Section 2, we describe the DCM protocols and
make a simple comparison of the Squid and Berkeley protocols.
Section 3 describes the dbDCM protocol, the main design issues
in designing a large-scale directory, and the implementation of
the dbDCM protocol. The results of performance measurement
and analytical performance prediction for Squid, Berkeley, and
the dbDCM protocols, are presented in Sections 4 and 5,
respectively. Final comments on the scalability of these DCM
protocols are given in Section 6.

1 The directory-based DCM protocol was designed in 1995 while the
authors were with AT&T Labs, San Mateo, CA. It was coded and
integrated into the Harvest cache [1] at the end of 1995. The Harvest
cache was replaced with the Squid cache [2] in 1999. The work on the
patents started at the beginning of 1996, resulting in patents issued in
1999 [4] and 2000 [5].

Admission algorithm:
Choose master cache.

Send request.

Search algorithm:
Find copy in

neighbor caches.

Decision algorithm:
Choose one of

neighbors or server

Return requested
copy from master

cache

Send request to
origin server.

Stop the execution of
request and send

negative response to client.

Return requested
copy to client.

Return requested
copy to client and

master cache.

Copy in master
cache?

Replication
algorithm:

Make copy in
master cache?

Termination
algorithm:

Send request to
origin server?

Copy found?

Yes

Yes

Yes

Yes

No

No

No

Time function

No

Figure 1: Distributed cache management (DCM) protocol

2. DCM PROTOCOLS

A distributed cache management protocol unifies cooperating
caches to serve as a single cache that is distributed over multiple
proxy machines. It can be understood as having five major
algorithms: admission, search, decision, termination, and
replication. The general flow diagram of DCM protocol is
presented in Figure 1. The admission algorithm determines to
which cache a client issues its request. The selected cache is
known as the master cache. The search algorithm locates a
valid copy in one or more of the other cooperating caches (the
neighbors of the master cache) if the master cache does not
have a copy of the object requested by the client. The decision
algorithm selects, from among the neighbors holding a copy of
the requested object, which neighbor should deliver the object.
The termination algorithm halts the searching and preemptively
forwards the request to the origin server. The replication
algorithm decides if the master cache should retain a copy of
the object.

We discuss several cache systems that implement DCM
protocols, while the performance of two of them, Squid [2] and
Berkeley [3], is evaluated and compared to the dbDCM
protocol. These protocols were designed to be simple, stateless
and to perform well in small configurations, where less than ten
proxy machines cooperate.

Squid [2], and its predecessor Harvest [1], are widely deployed
distributed caches whose design exemplifies the framework
outlined above. Since both cache systems use similar
algorithms, we briefly describe only the algorithms of the Squid
DCM protocol. The admission algorithm is determined by the
client and is trivial. For each client the master cache is fixed
until the user manually reconfigures the browser.

If a Squid master cache does not itself contain a copy of the
requested object, then it performs a logical broadcast2 of cache
requests to each of its neighbor caches. A cache request
contains the URL of the desired object and the IP address of the
issuing cache, in this case the IP address of the master cache.
The search algorithm is very simple: the Squid master cache
transmits a cache request to all of its known neighbors (we
ignore the Squid access control mechanisms that can, in an
URL-dependent manner, moderate the behavior of the Squid
search algorithm). Upon receiving a cache request, each
neighbor cache responds with a hit reply if the requested object
resides in its cache and a miss reply otherwise.

Once all of the cache requests are issued, the termination
algorithm is initiated. Squid waits a timeout period for a reply
to a cache request. Within that time window, the Squid decision
algorithm has control - the request is forwarded to the first
neighbor cache that replies with a hit. At the expiration of the
window, when either one or more miss replies were received, or
no replies were received at all, the request is forwarded to the
origin server.

Finally, the Squid replication algorithm is as straightforward as
its companion algorithms - the master cache always retains a
copy of the data object.

The Squid algorithms posses two important virtues: simplicity
(hence easy implementation) and lack of states (hence
scalability in some dimensions). However, the Squid algorithms
were not designed to scale with respect to network traffic or

2 A logical broadcast from host x to N hosts is a sequence of N UDP
transmissions in which x transmits the same information to each of the
N hosts. Note that the logical broadcast differs from the broadcast used
at the network layer. For example, Ethernet broadcast assumes that only
one packet is sent to all participating hosts connected to the same
Ethernet subnet.

proxy load. A client request will generate 2N cache protocol
network messages, where N is the number of neighbors of the
client's master cache. One request message is generated to each
of the N neighbors and one hit or miss reply is generated from
each of the N neighbors. Squid administrators scale their cache
meshes by structuring them hierarchically (as trees) and by
limiting the number of neighbor caches at any one level.
However, increasing the number of levels in the cache hierarchy
also increases cache latency, therefore techniques that allow the
size of any one level to increase gracefully are welcome.

One such approach is explored within the Berkeley protocol [3].
We summarize their approach using the “algorithm framework”
that we applied to Squid. The Berkeley admission algorithm is
more sophisticated than that of Squid, because a Berkeley client
randomly chooses a cache from a set of cooperating proxies and
sends the request to the selected master cache. If the master
cache does not itself contain a copy of the requested object, the
search algorithm multicasts3 the request to other cooperating
caches. Note that, because of IP multicast semantics, the master
cache has no idea which proxy, or how many, will receive its
request for assistance. In sharp distinction to the Squid protocol,
a cooperating cache in the Berkeley protocol responds with a hit
reply if the requested object resides in its cache and remains
silent otherwise.

Once the cache request has been multicast, the termination
algorithm is initiated. The master cache waits for a limited
period for a reply from some cooperating cache. Within that
window, the Berkeley decision algorithm redirects the client to
the first cache that replies. The client, upon receipt of the
redirect, reissues its request directly to a cooperating cache. At
the expiration of the window, the master cache, not having
received a reply from any neighbor, forwards the request to the
origin server, and passes the returned object back to the client.

The Berkeley replication algorithm deals with two cases. If the
master cache redirects the client to another proxy, it will never
see, and consequently not replicate, the requested object for
itself. If there is no redirection, then the master cache will retain
a copy of the object it received from the origin server.

Although the Berkeley protocol potentially reduces network
traffic by using IP multicasts for request dissemination, it does
nothing to reduce the overall number of incoming requests to
which a neighboring proxy cache must respond. In addition, the
master cache must still cope with all of the cache responses.
Since the master cache cannot easily determine the membership
of the multicast group to which it sends the request, it cannot
predict in advance a tight upper bound on the number of
respondents. If nothing else, the caches are condemned, at the
interrupt level, to process all of the requests and the responses
that they receive - a task that consumes resources best put to
other uses. From this perspective, the exploitation of IP
multicasting by the Berkeley protocol is only a partial solution
to the scaling problem, as IP multicasting reduces the amount of
network traffic, but does not reduce proxy load in any way.

In order to reduce network traffic and proxy load, the CARP
(Cache Array Routing Protocol) DCM protocol [7] does not
implement the search algorithm, while the AWC (Adaptive
Web Caching) DCM protocol [8] replaces the hierarchy of the

cache groups with the self-organized cache groups. In the
CARP protocol, each proxy machine is responsible for caching
a determined set of objects, where the set is calculated from the
URLs of the objects. Since the object can be cached only by one
proxy machine determined uniquely by some hash function, this
eliminates need for the search algorithm, which significantly
reduces network traffic and proxy load imposed by this
algorithm. However, this solution is not appropriate for large-
scale distributed caches, because it is almost impossible to
determine in advance an appropriate hash function that will
provide satisfactory load balancing among the proxy machines.
Moreover, the popular objects should be cached by more than
one proxy machine in order to serve large number of requests4.

3 A multicast from host x to a multicast group of N hosts requires that x
issues just one packet which is then replicated as required by
intermediate routers for each of the 1≤D≤N distinct subnets on which N
hosts appear [6]. The total number of UDP packets required for the
multicast is D and, in many cases (depending upon the network
topology), D«N. However, due to deployment issues with multicast
servers, the systems usually use logical multicast that actually sends N
unicast messages.

Although the self-organization proposed by the AWC protocol
is an appropriate way to resolve the scaling problem on coarse
grain structures like cache groups, there still remains the scaling
problem within the cache group. Next section describes our
solutions of scaling problem for large distrusted cache.

3. DIRECTORY-BASED DCM PROTOCOLS

Our principal goal was to design a distributed cache system for
a medium to large Internet service provider with tens of proxy
machines and thousands of clients per proxy machine [9]. Since
other DCM protocols were not designed to scale with respect to
network traffic and proxy load, we decided to design a new
DCM protocol, called the directory-based DCM protocol. In
order to reduce both the network traffic and the proxy load, our
DCM protocol uses a custom-designed distributed directory.
The directory information allows us to build scalable search
algorithms based on a directory-limited unicast. Detailed
description of the dbDCM protocol is given in [4, 5], while in
this paper we provide a brief description of the dbDCM protocol
and describe the performance evaluation results.

Designing Internet-Scale Directories

Since the fundamental design issue is the scalability of a
directory and not its precision, the directory is (1) distributed
across all of the neighbors, (2) it is structured like a cache, (3)
it is never locked, and (4) it never issues acknowledgements.
Since each neighbor maintains a distinct portion of the
directory, the total size of the directory scales linearly with the
number of proxies. Since caches are by definition and design
incomplete, structuring the directory like a cache further
reduces the per neighbor cost of the directory. Forgoing locks
permits simultaneous reads and updates of the directory at the
cost of an occasional cache miss. Eschewing acknowledgements
minimizes the traffic overhead and response time.

Let a set P={p1, p2, ... , pN} of proxies be given, where the
proxies p2, ... , pN are all neighbors of p1. Let O={o1, o2, ...} be
the set of all data objects that are uniquely denoted by their
URLs. A directory is a partial mapping M : O → Pr(P), where
M(u) = {pj1, ... , pjm} is the set of proxies that might have a copy
of data object o denoted by URL u. Hereafter we assume that
object o has URL u. Each proxy p maintains a directory Mp and

, where dom(MOM
Pp

p ⊆
∈

)(domU p) denotes the domain of

function Mp.

Directory scaling is improved by ensuring that for any two
distinct proxies p and q dom(Mp)∩dom(Mq) is small. In other

4 These are not the issues with our dbDCM protocol. The hash function
is not used to distribute Web objects, but to distribute contents of the
directory. Also, Web objects are distributed according to client requests
allowing each Web object to be cached by more than one proxy.

words, two distinct proxies maintain comparatively distinct
portions of the directory. Finally, all of the proxies p∈P share a
common total hash function H : O → P that maps URLs to
proxies. This shared hash function allows us to distribute the
directory entries among multiple proxy hosts. By computing
y=H(u), host x can discover that neighbor proxy y maintains the
directory entry for the object whose URL is u.

Each directory Mp is implemented as a bucket hash of key/value
pairs, where the keys are URLs and the values are finite sets of
proxies. Given an URL u, Mp(u) = {pj1, ... , pjk} signifies to
proxy p that data object u is replicated at proxies pj1, ... , pjk. A
fixed amount of memory is allocated for directory Mp, which
effectively limits the total number of key/value pairs contained
in Mp at any one time. If the memory space for Mp is exhausted,
then one or more key/value pairs will be flushed from the
directory in order to make room for new updates. Any one of
several standard replacement algorithms, such as Least Recently
Used or Least Frequently Used, can be used to select candidate
key/value pairs for flushing.

When a proxy p receives a request, it first consults its own
cache for the requested object u. Failing that, it computes
H(u)=q and passes the directory lookup request for u onto proxy
q, where q could be p itself. At this point, q can update its
directory Mq(u)←Mq(u)∪{p} (the optimistic approach)
assuming that proxy p will obtain a copy of object u. If p fails to
obtain u, it must request q to delete p from Mq(u), that is
Mq(u)←Mq(u)/{p}. In the pessimistic approach, only when p has
u in hand it notifies q, which sets Mq(u)←Mq(u)∪{p}. When the
probability of satisfying a request is high, the optimistic
approach is preferable as it reduces network traffic. If the
probability is low, the pessimistic approach is preferred as it
ensures higher accuracy for directory entries. In either approach,
p will request q to delete p from Mq(u) whenever p ejects u from
its cache and p will request q to add it to Mq(u) if it receives
object u directly from the origin server.

Later on, independently of our work, other authors have also
used a directory to reduce the network traffic and proxy load in
a distributed cache. However, they did not take into the account
all four features listed at the beginning of this section that allow
for the design of the large-scale distributed cache. The
scalability of the RPD-SD protocol [10] is limited by a
centralized directory manager implemented on one server
machine and the scalability of DCM protocols described in [11,
12] is limited by a fully replicated directory at each proxy
machine.

Implementation of Cache Management Protocol

We now revisit the search algorithm, this time incorporating
directories to reduce the network traffic and proxy load. Since
the dbDCM protocol is implemented on top of the Squid
distributed cache, the remaining algorithms are identical to the
algorithms of the Squid DCM protocol.

First, by narrowing the set of candidate proxy caches likely to
possess a fresh copy of a desired data, object directories can
reduce network traffic. Second, requests are directed toward just
those proxy caches most likely to respond positively, thereby
reducing the overall workload for any proxy host. To illustrate
this, assume that the master proxy cache mc receives a request
for a data object o denoted by URL u. Assuming that mc's cache
does not contain o, let x=H(u) be the proxy identified by mc (x
could be mc itself) as the proxy responsible for maintaining a
directory entry for u. That is, x's directory contains a mapping
Dx(u)={nc1, ... , ncm} - the set of all neighbor proxies that
contain a fresh copy of o. At this point in the search algorithm
two variants are possible: (1) x returns the set of neighbor
proxies to mc and mc completes the execution of the search

algorithm or; (2) x executes the remainder of the search
algorithm on mc's behalf. In either case let α, a small positive
integer, be given. Of the set of candidate neighbor proxies {nc1,
... , ncm}, A=min(α, ||Dx(u)||) of them will be selected and each
so selected will be sent a cache request containing u (the URL
of the desired object) and the IP address of the requesting proxy
mc. As in the Squid algorithm, each neighbor proxy nci replies
to mc with a hit if its cache contains o, and a miss otherwise. In
the rest of the paper, we evaluate variant (1).

Variant (1) of the search algorithm requires that an IP packet be
transmitted from x to mc containing the set of candidate proxies
{nc1, ... , ncm}, so that mc can select candidates and issue cache
requests. Variant (2) eliminates the transmittal by having x issue
cache requests to the candidate proxies. Note that in both cases,
the cache requests, whether issued by mc or x, specify mc as the
requesting proxy. Consequently, the replying neighbor proxies
always direct their replies to mc although, in variant (2) proxy x
issues the requests.

Parameter α may be one, equal to ||Dx(u)||, or it may have some
constant value. Whenever α is less than ||Dx(u)||, the proxy must
decide to which of the proxies from the directory list it will send
cache requests. Either the proxy uses a Round Robin method to
advantageously distribute the load among the proxies on the list,
or, the proxy randomly selects α proxies to send the request to.

The parameter α set to one is appropriate for a highly reliable
environment, because it reduces the network traffic and proxy
load. However, if the response is a miss, or the directory is
inaccurate, the repetitions of the cache request may increase the
network latency. Choosing α>1 alleviates these problems for an
unreliable environment. For highly unreliable networks, the best
solution is to have the value of α equal to ||Dx(u)||.

In order to implement the dbDCM protocol [4, 5], we extend the
Internet Cache Protocol (ICP) [13, 14] by adding the following
messages: ICP_DIR_GET to send the directory lookup request
from the requesting proxy to the hashed proxy, ICP_DIR_DATA
to send back the directory information from the hashed proxy to
the requesting proxy, ICP_DIR_DEL to remove the requesting
proxy from a given directory entry, and ICP_DIR_ADD to add
the requesting proxy to a given directory entry. These four
messages comprise the complete mechanism for retrieving
information from the directory and maintaining its accuracy.

4. COMPARISON OF MEASUREMENT RESULTS

For the purpose of measurement, we use three Sun Ultra 10
machines, four Sun SparcStation 20 systems and one personal
computer (PC) based on Intel Pentium III 500. All machines are
connected by a 100 Mb/s Ethernet local area network. We
install the Apache Web server on one of the Ultra 10 machines,
while the remaining six Sun machines run multiple copies of the
proxy caches. We use the PC to run the multithreaded client
software.

The test program runs a configurable number of client threads
and the main, scheduler thread. Each client thread sends a
request to the proxy, waits for the response and measures the
time it took to complete the entire request. The scheduler thread
controls the client threads and distributes the requests among
them. As soon as the client thread finishes the request and
becomes available, it will be assigned new request by the
scheduler thread. A small number of our client threads create
the load that is comparable to the much larger number of Web
clients. For example, 10 client threads might represent as much
as 1,000 Web clients. During the tests, we vary the number of
proxy caches, the number of simultaneous client threads, and
the Web object size. In order to increase the number of proxy

0.2
0.22
0.24
0.26
0.28

0.3
0.32
0.34
0.36
0.38

0 10 20 30
Number of proxy caches

A
ve

ra
ge

 la
te

nc
y

pe
r r

eq
ue

st
 (s

) Squid

dbDCM

40

Number of machines 2 3 4 5 4
Number of proxy caches per machine 1 1 1 1 2
Total number of proxy caches 2 3 4 5 8

Number of machines 5 5 5 5 6
Number of proxy caches per machine 2 3 4 5 6
Total number of proxy caches 10 15 20 25 36

Figure 2: Average latency for an increasing number of proxy
machines and an increasing number of proxy caches per machine

0.2
0.22
0.24
0.26
0.28
0.3

0.32
0.34
0.36
0.38

0 10 20 30 4
Number of proxy caches

A
ve

ra
ge

 la
te

nc
y

pe
r r

eq
ue

st
 (s

)

Squid

dbDCM

0

No. of machines 1 2 3 4 5 6
No. of proxy caches per machine 6 6 6 6 6 6
Total number of proxy caches 6 12 18 24 30 36

Figure 3: Average latency for variable number of proxy machines
and six proxy caches per machine

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10000 20000 30000 40000 50000
Object size (bytes)

A
ve

ra
ge

 la
te

nc
y

pe
r r

eq
ue

st
 (s

) Squid

dbDCM

Figure 5: Average latency for variable Web object size

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 5 10 15 20 25
Number of client threads

A
ve

ra
ge

 la
te

nc
y

pe
r r

eq
ue

st
 (s

) Squid

dbDCM

Figure 4: Average latency for variable number of client threads

caches, multiple copies of the proxy cache processes run on
each machine. We run up to six proxy caches per machine,
giving us total of 36 cooperating proxy caches. As a
performance measure, we choose the average latency per client
request.

Figure 2 presents the results of measurements for increasing
number of proxy machines and increasing number of proxy
caches per machine. The Web object size is 10 kB and ten client
threads simultaneously request the objects. For a small number
of proxy caches, the dbDCM protocol shows slightly higher
latency than the Squid DCM protocol, which is imposed by the
directory lookup request that is sent from one proxy machine to
another5. In addition, the directory-limited unicast does not
significantly reduce the network traffic and proxy load for small
number of proxy machines. However, if the number of proxy
caches increases over ten, the dbDCM protocol shows lower
latency than the Squid protocol. The directory-limited unicast

reduces the network traffic and proxy load in comparison to the
logical broadcast performed by the Squid protocol. The
difference between the Squid protocol and the dbDCM protocol
increases, reaching the value of 25% for 36 proxy caches. As
we can see from Figure 2, the slope of the curve for the dbDCM
protocol is lower than the slope of the curve for the Squid
protocol. Moreover, if the number of proxy machines increases
over 30, the latency for the dbDCM protocol does not increase
any more, because of directory-limited unicast.

5 As we expect, the average latency per request decreases if the same
amount of requests is distributed among larger number of proxy
machines (for example, if the number of proxy caches increases from
two to five, the number of proxy machines increases from two to five,
and the average latency decreases). However, the average latency per
request increases if the same amount of requests is performed by a
lower number of proxy machines (for example, if the number of proxy
caches increases from five to eight, the number of proxy machines is
reduced from five to four, and the average latency increases).

As Figure 3 shows, similar results are obtained with a constant
number of proxy caches per machine. Each test machine runs
six proxy caches. As previously discussed, the slope of the
curve for the Squid protocol is higher than for the dbDCM
protocol, while the directory-limited unicast straightens the
slope for the number of machines greater than 30.

If we increase the number of client threads, the difference
between the Squid protocol and the dbDCM protocol
significantly increases. Figure 4 shows the measurement results
achieved with 36 proxy caches and an object size of 20 kB.
While the slope of the curve for the Squid protocol significantly
increases with the number of client threads, the slope of the
curve for the dbDCM protocol shows a very slow increase. For
20 simultaneous client threads, the average latency of the
dbDCM protocol is 40% lower than the latency of the Squid
protocol.

Figure 5 shows the results of measurements with variable Web
object size. Since we can use the artificial load as well, it is
possible to change the Web object size in a simple way. The
measurement results in Figure 5 are achieved with 36 proxy
caches and 20 client threads that simultaneously request the
objects.

As expected, the right portion of both curves shows the constant
growth due to the increasing size of the object. The latency is
mostly affected by the data transfer of large objects. However,
the latency in the left portion of the graph in Figure 5 is
significantly affected by the small communication packets
incurred by the proxy-to-proxy communication. Since the
requests for smaller objects increase the number of small
communication packets and the communication with small
packets cannot utilize the full bandwidth of the network [15,
16], the latency in the left portion decreases as the objects
become larger.

As presented in Figure 5, the dbDCM protocol shows better
results than Squid DCM protocol for all object sizes. Both the
Squid and the dbDCM protocols have the same rate of increase
of the average latency per request for large objects. However, as
the object size becomes smaller, the latency of Squid grows
faster than the latency of the dbDCM protocol. Since the

minimum latency of the dbDCM protocol is located more to the
right than the minimum latency of Squid DCM protocol, the
optimum object size for the dbDCM protocol is larger than the
optimum size for Squid.

5. COMPARISON OF ANALYTICAL RESULTS

We developed sophisticated analytical models for comparing
competing DCM protocols [17]. Our models are intended to
capture first-order differences among these protocols for large-
scale distributed caches. The average latency per request for
each of the three DCM protocols is calculated based on the
analytical expressions for the following parameters: network
traffic, average host load, average client load, average network
latency, average host latency, and average client latency. The
analytical expression for the average latency per request is
derived in three main steps. In the first step, we precisely
analyze the communication on the IP packet level for the master
cache hit, the neighbor cache hit, and the distributed cache miss.
Based on this analysis, we derive the analytical expressions for
network traffic, average host load, and average client load for
each of the three DCM protocols. In the second step, we
incorporate the analytical expressions for the network traffic,

Distributed Cache Parameters Value Communication Protocol Parameter Value

Total number of proxy hosts in the distributed cache N = 30 Size of a small IP packet 40 B

Average cross-sectional bandwidth of the network 1 Gb/s Size of a medium IP packet 180 B

Average bandwidth of proxy host 100 Mb/s Size of a large IP packet L = 1024 B

Application Parameters Value DCM Protocol Parameter Value

Total number of client hosts 9100 Number of subnets that connect the proxy hosts max(1, 0.20 N)

Average number of requests per client per second 0.53 Number of the positive responses from neighbor proxies max(1, 0.30(N-1))

Average bandwidth of client 10 Mb/s

Master cache hit rate 0.25
Maximum number of dbDCM neighbor caches to which a
master cache will broadcast a request for a Web object min(5, N)

Neighbor cache hit rate 0.30 Probability that a dbDCM directory entry is accurate 0.75

Average size of Web object O = 10 kB Probability that a dbDCM master cache does not hold the
particular directory entry (N-1) / N

Total number of acknowledgement packets to IP
data packets

max(1,
0.75(O/L))

Timeout period used by termination algorithm 40 ms

Percentage of data packets that cause the TCP
window to fill 10%

Total number of server hosts per distributed cache 3

Average bandwidth of a server host 100 Mb/s

Table 1: Analytical model parameters

2 22 42 62 82 102
0.004

0.005

0.006

0.007

0.008

0.009

0.01

9100 1.11 104 1.31 104
0.004

0.005

0.006

0.007

0.008

0.009

0.01

10 11 12 13 14
0.004

0.005

0.006

0.007

0.008

0.009

0.01

A
v.

 la
te

nc
y

pe
r r

eq
ue

st
 (s

)

A
v.

 la
te

nc
y

pe
r r

eq
ue

st
 (s

)

A
v.

 la
te

nc
y

pe
r r

eq
ue

st
 (s

)

B
er

ke
le

y

Sq
ui

d

Sq
ui

d

B
er

ke
le

y

db
D

C
M

Sq
ui

d

B
er

ke
le

y

db
D

C
M

dbDCM

Number of proxies

(a) Distributed cache size

Figure 6: Analytical performance comparison of DCM protocols for large-scale distributed caches

Number of clients

(b) Clients

Object size (kB)

(c) Object

average host load, and average client load, into the M/G/1
queuing model [18] in order to obtain the analytical expressions
for average network latency, average host latency, and average
client latency. In the third step, we analyze timing diagrams that
describe the propagation of the IP packets during the master
cache hit, the neighbor cache hit, and the distributed cache miss.
Finally, based on the timing analysis and on the analytical
expressions for average network latency, average host latency,
and average client latency, we derive the analytical expressions
for the average latency per request.

The parameters included in the model are listed in Table 1.
Table 1 also presents the values of the parameters we use to
generate the results presented in this paper, except the
parameters we explicitly vary in a given diagram.

Figures 6a-c show how the average latency per request varies
with three parameters: distributed cache size, number of clients,
and Web object size. The graph in Figure 6a shows the average
latency per request for a variable number of proxy hosts, while
all other parameters have fixed values that are given in Table 1.
At lower numbers of proxy machines (see Figure 6a), the DCM
protocols saturate because of the overloaded proxy hosts. At
higher numbers of proxy machines, the Berkeley and Squid
protocols saturate because of network congestion, while the
dbDCM protocol does not saturate due to the directory-limited
unicast.

The other graphs show the average latency per request for
variable values of two other parameters, while keeping the
number of proxy host machines fixed (N=30). From the graphs,
it is clear that the dbDCM protocol contributes to the slowest
increase in latency per request for both parameters: increasing
number of clients and increasing Web object size. Additionally,
the dbDCM protocol performs adequately (does not saturate)
over a wider range of parameter values than either of the other
two DCM protocols.

6. CONCLUSION

The results in this paper indicate that the dbDCM protocol
scales more gracefully than the Berkeley and the Squid
protocol. If either the number of proxy caches, the number of
clients, or the object size is increased, the dbDCM protocol has
a lower increase of average latency per request. We show by
measurement that the difference between the DCM protocols
can be over 40%. Moreover, the directory-limited unicast limits
the amount of generated network traffic and proxy load. This
keeps the average latency per request constant regardless of the
number of clients and regardless of the number of proxy caches.
In contrast, the Squid and Berkeley protocols saturate if the
number of proxy machines or the number of clients becomes
large; this extremely increases the average latency per request
and prevents the distributed cache from operating normally. In
addition, our comparison of analytical results shows that the
dbDCM protocol scales better than the two other protocols over
a broader range of parameter values.

7. ACKNOWLEDGMENT

The authors wish to thank AT&T Corporation for supporting
this work, and Z. G. Vranesic, A. Grbic, I. Skuliber and K.
Kelley for providing valuable comments and editorial help.

8. REFERENCES

[1] “Harvest: A Scalable, Customizable Discovery and Access
System”, Technical Report CU-CS-732-94, Department of

Computer Science, University of Colorado - Boulder, Revised
March 1995.

[2] D. Wessels: “The Squid Internet Object Cache”, National
Laboratory for Applied Network Research,
http://squid.nlanr.net/Squid

[3] R. Malpani, J. Lorch and D. Berger: “Making World Wide Web
Caching Servers Cooperate”, World Wide Web Journal, Vol. I,
Issue 1, Winter 1996.

[4] S. Srbljic, P.P. Dutta, T.B. London, D.F. Vrsalovic, and J.J.
Chiang: ”Scalable Distributed Caching System and Method”,
United States Patent 5,933,849, issued August 3rd, 1999, filed
April 10th, 1997, App. No. US1997000827763,
http://www.uspto.gov; also submitted to European Patent Office
and Mexico Patent Office

[5] S. Srbljic, P.P. Dutta, T.B. London, D.F. Vrsalovic, and J.J.
Chiang: ” Scalable network object caching”, United States
Patent 6,154,811, issued November 28th, 2000, filed December 4th,
1998, App. No. US1998000204343, http://www.uspto.gov

[6] S. Deering: “RFC 1054: host extensions for IP multicasting”,
May 1988.

[7] V. Vallopillil and K. W. Ross: "Internet Draft: Cache Array
Routing Protocol v1.0", February 1998. (http://www.web-cache.
com/Writings/Internet-Drafts/draft-vinod-carp-v1-03.txt)

[8] L. Zhang, S. Michel, K. Nguyen, A. Rosenstein, S. Floyd, and V.
Jacobson: "Adaptive Web Caching: Towards a New Global
Caching Architecture", 3rd International WWW Caching
Workshop, June 1998.

[9] G. Vanecek, N. Mihai, N. Vidovic, and D. Vrsalovic: “Enabling
Hybrid Services in Emerging Data Networks”, IEEE
Communication Magazine, July 1999, pp. 102-109.

[10] S. Gadde, J. Chase, and M. Rabinovich: "Directory Structures
for Scalable Internet Caches", Technical Report CS-1997-18,
Department of Computer Science, Duke University, November
1997. (http://www.research.att.com/~misha/crisp/distrProxy/
lazyCrisp.ps.gz)

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder: "Summary Cache:
A Scalable Wide-Area Web Cache Sharing Protocol",
Proceedings of the ACM SIGCOMM ’98, Vancouver – Canada,
September 1998.

[12] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay: "Design
Considerations for Distributed Caching on the Internet",
Proceedings of International Conference on Distributed
Computing Systems, Austin - Texas, May 1999.

[13] D. Wessels and K. Claffy: “Internet Cache Protocol (ICP),
version 2”, RFC-2186, September 1997.

[14] D. Wessels and K. Claffy: “Application of Internet Cache
Protocol (ICP), version 2”, RFC-2187, September 1997.

[15] A. Milanovic, S. Srbljic and J. Radej: “Performance of
Distributed Systems Based on Ethernet and Personal
Computers”, Proceedings of the IEEE International Symposium
on Industrial Electronics, Bled - Slovenia, 1999, vol. 1, pp. 79-83

[16] A. Milanovic, S. Srbljic and V. Sruk: “Performance of UDP and
TCP Communication on Personal Computers”, Proceedings of
the 10th Mediterranean Electrotechnical Conference, Volume I,
Regional Communication and Information Technology, Lemesos,
Cyprus, May 29-31, 2000, pp. 286-289

[17] S. Srbljic and A. Milanovic, “Analytical Prediction of
Performance for Distributed Cache Management Protocols”,
Technical Report, School of Electrical Engineering and
Computing, Department of Electronics, Microelectronics,
Computer and Intelligent Systems, Zagreb, Croatia, May 1998.

[18] L. Kleinrock: “Queuing Systems; Volume I: Theory”, John
Wiley & Sons, Inc, 1975.

	INTRODUCTION
	DCM PROTOCOLS
	DIRECTORY-BASED DCM PROTOCOLS
	Designing Internet-Scale Directories
	Implementation of Cache Management Protocol

	COMPARISON OF MEASUREMENT RESULTS
	COMPARISON OF ANALYTICAL RESULTS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

