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ABSTRACT 

Traditional two-tier client/server architectures are sometimes replaced 
by more scalable multi-tier architectures based on caches. However, the 
effectiveness of these caches, proxy caches, is often not very high. One 
of the possible ways to improve their effectiveness is to connect them 
together to create a distributed cache system. A Distributed Cache 
Management (DCM) protocol provides the communication 
infrastructure for such a distributed cache system. 

A version of a DCM protocol was introduced in Harvest, and improved 
in Squid. After that, the Berkeley protocol further attempted to improve 
the performance of DCM protocols. We introduce a directory-based 
DCM protocol that attempts to provide additional improvements. We 
compare the performance of Squid, Berkeley, and the directory-based 
DCM protocol, with measurements from real operational systems and 
analytical performance prediction for large-scale distributed caches. 

Keywords: World Wide Web proxy cache, distributed cache, 
distributed cache management protocol, performance measurement, 
analytical performance prediction, performance comparison. 

1. INTRODUCTION 

The rapid growth of the Internet has brought about the problems 
of maintaining low latency and avoiding congestion in networks 
and server machines. One possible solution is rather simple and 
consists of extending the capacity of networks and server 
machines. However, this solution is not always practical, 
because it introduces large costs. Another solution was 
proposed in the form of the Internet proxy cache. The purpose 
of the proxy cache is to a certain extent similar to the purpose of 
a processor cache. Client software contacts the proxy cache and 
requests an object from the cache, instead of sending the request 
to the server. The proxy cache will service the request from its 
local storage for both possible cases that may occur. For the first 
case, the proxy cache examines its local storage and does not 
find the object there. The proxy cache then contacts the origin 
server and fetches the object from the server. For the other case, 
the object is found in the proxy cache’s local storage and is 
served to the client without any communication with the server. 
The latter case presents the improvement that results from the 
use of a proxy cache. 

Unlike a processor cache, the Internet proxy cache has a low 
effectiveness. This is caused by a low hit rate. The hit rate is the 
probability that the object that the client requests is stored in the 
proxy cache. There are two major reasons that make this 
probability low for Internet systems. The first reason is that 
there exist a large number of different Web pages and 
documents on the Internet today, while the local storage of 
proxy caches is limited. The second reason is that users usually 
look for diverse information. One way to increase the hit rate is 
to connect more users to the proxy cache. If a larger number of 
users are connected to the proxy cache, the probability they will 
request the same document increases. However, this solution is 

not realistic, because a larger number of users will also increase 
congestion on the proxy machine. 

Another possible solution to this problem is to connect multiple 
proxies together and thus create a distributed cache. This 
solution is viable if two requirements are satisfied. The first 
requirement is that the network connections between the proxy 
cache machines have lower latency than the connections to the 
servers. The second requirement is that the proxy machines 
have a low response time. What makes this solution viable is the 
fact that while the total number of clients connecting to the 
distributed cache grows, the number of clients per proxy cache 
remains constant. In order to control such distributed cache 
systems, a distributed cache management (DCM) protocol is 
introduced. 

The DCM protocol controls the communication between proxy 
caches. One of the first proxy caches that introduced a DCM 
protocol was Harvest [1] as well as its successor Squid [2]. A 
new problem arises as the number of proxy caches in a 
distributed cache grows. With the growth of the distributed 
cache, the network traffic and proxy machine load rise as well, 
due to the communication overhead introduced by the DCM 
protocol. This problem limits the scalability of the distributed 
cache. The cache system proposed by Malpani, Lorch, and 
Berger [3] (referred to hereafter as the Berkeley protocol), was 
introduced to solve this problem. Since the Berkeley protocol 
only partially solves the problem of large traffic, we developed 
the directory-based DCM (dbDCM) protocol that attempts to 
address both the problem of traffic and proxy load of a 
large-scale distributed cache1. 

We run tests and compare measurement results for both the 
Squid DCM protocol and our dbDCM protocol. Implementation 
of the support for complete Squid cache in an open IP platform 
makes these tests and comparison possible. In addition, we 
develop an analytical performance prediction model to evaluate 
DCM protocols for large-scale distributed caches, because it 
was difficult to perform measurements on more than fifty proxy 
machines. In Section 2, we describe the DCM protocols and 
make a simple comparison of the Squid and Berkeley protocols. 
Section 3 describes the dbDCM protocol, the main design issues 
in designing a large-scale directory, and the implementation of 
the dbDCM protocol. The results of performance measurement 
and analytical performance prediction for Squid, Berkeley, and 
the dbDCM protocols, are presented in Sections 4 and 5, 
respectively. Final comments on the scalability of these DCM 
protocols are given in Section 6. 

                                                 
1 The directory-based DCM protocol was designed in 1995 while the 
authors were with AT&T Labs, San Mateo, CA. It was coded and 
integrated into the Harvest cache [1] at the end of 1995. The Harvest 
cache was replaced with the Squid cache [2] in 1999. The work on the 
patents started at the beginning of 1996, resulting in patents issued in 
1999 [4] and 2000 [5]. 
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Figure 1: Distributed cache management (DCM) protocol 

2. DCM PROTOCOLS 

A distributed cache management protocol unifies cooperating 
caches to serve as a single cache that is distributed over multiple 
proxy machines. It can be understood as having five major 
algorithms: admission, search, decision, termination, and 
replication. The general flow diagram of DCM protocol is 
presented in Figure 1. The admission algorithm determines to 
which cache a client issues its request. The selected cache is 
known as the master cache. The search algorithm locates a 
valid copy in one or more of the other cooperating caches (the 
neighbors of the master cache) if the master cache does not 
have a copy of the object requested by the client. The decision 
algorithm selects, from among the neighbors holding a copy of 
the requested object, which neighbor should deliver the object. 
The termination algorithm halts the searching and preemptively 
forwards the request to the origin server. The replication 
algorithm decides if the master cache should retain a copy of 
the object. 

We discuss several cache systems that implement DCM 
protocols, while the performance of two of them, Squid [2] and 
Berkeley [3], is evaluated and compared to the dbDCM 
protocol. These protocols were designed to be simple, stateless 
and to perform well in small configurations, where less than ten 
proxy machines cooperate.  

Squid [2], and its predecessor Harvest [1], are widely deployed 
distributed caches whose design exemplifies the framework 
outlined above. Since both cache systems use similar 
algorithms, we briefly describe only the algorithms of the Squid 
DCM protocol. The admission algorithm is determined by the 
client and is trivial. For each client the master cache is fixed 
until the user manually reconfigures the browser. 

If a Squid master cache does not itself contain a copy of the 
requested object, then it performs a logical broadcast2 of cache 
requests to each of its neighbor caches. A cache request 
contains the URL of the desired object and the IP address of the 
issuing cache, in this case the IP address of the master cache. 
The search algorithm is very simple: the Squid master cache 
transmits a cache request to all of its known neighbors (we 
ignore the Squid access control mechanisms that can, in an 
URL-dependent manner, moderate the behavior of the Squid 
search algorithm). Upon receiving a cache request, each 
neighbor cache responds with a hit reply if the requested object 
resides in its cache and a miss reply otherwise. 

Once all of the cache requests are issued, the termination 
algorithm is initiated. Squid waits a timeout period for a reply 
to a cache request. Within that time window, the Squid decision 
algorithm has control - the request is forwarded to the first 
neighbor cache that replies with a hit. At the expiration of the 
window, when either one or more miss replies were received, or 
no replies were received at all, the request is forwarded to the 
origin server. 

Finally, the Squid replication algorithm is as straightforward as 
its companion algorithms - the master cache always retains a 
copy of the data object. 

The Squid algorithms posses two important virtues: simplicity 
(hence easy implementation) and lack of states (hence 
scalability in some dimensions). However, the Squid algorithms 
were not designed to scale with respect to network traffic or 

                                                 
2 A logical broadcast from host x to N hosts is a sequence of N UDP 
transmissions in which x transmits the same information to each of the 
N hosts. Note that the logical broadcast differs from the broadcast used 
at the network layer. For example, Ethernet broadcast assumes that only 
one packet is sent to all participating hosts connected to the same 
Ethernet subnet. 

 



proxy load. A client request will generate 2N cache protocol 
network messages, where N is the number of neighbors of the 
client's master cache. One request message is generated to each 
of the N neighbors and one hit or miss reply is generated from 
each of the N neighbors. Squid administrators scale their cache 
meshes by structuring them hierarchically (as trees) and by 
limiting the number of neighbor caches at any one level. 
However, increasing the number of levels in the cache hierarchy 
also increases cache latency, therefore techniques that allow the 
size of any one level to increase gracefully are welcome. 

One such approach is explored within the Berkeley protocol [3]. 
We summarize their approach using the “algorithm framework” 
that we applied to Squid. The Berkeley admission algorithm is 
more sophisticated than that of Squid, because a Berkeley client 
randomly chooses a cache from a set of cooperating proxies and 
sends the request to the selected master cache. If the master 
cache does not itself contain a copy of the requested object, the 
search algorithm multicasts3 the request to other cooperating 
caches. Note that, because of IP multicast semantics, the master 
cache has no idea which proxy, or how many, will receive its 
request for assistance. In sharp distinction to the Squid protocol, 
a cooperating cache in the Berkeley protocol responds with a hit 
reply if the requested object resides in its cache and remains 
silent otherwise. 

Once the cache request has been multicast, the termination 
algorithm is initiated. The master cache waits for a limited 
period for a reply from some cooperating cache. Within that 
window, the Berkeley decision algorithm redirects the client to 
the first cache that replies. The client, upon receipt of the 
redirect, reissues its request directly to a cooperating cache. At 
the expiration of the window, the master cache, not having 
received a reply from any neighbor, forwards the request to the 
origin server, and passes the returned object back to the client. 

The Berkeley replication algorithm deals with two cases. If the 
master cache redirects the client to another proxy, it will never 
see, and consequently not replicate, the requested object for 
itself. If there is no redirection, then the master cache will retain 
a copy of the object it received from the origin server. 

Although the Berkeley protocol potentially reduces network 
traffic by using IP multicasts for request dissemination, it does 
nothing to reduce the overall number of incoming requests to 
which a neighboring proxy cache must respond. In addition, the 
master cache must still cope with all of the cache responses. 
Since the master cache cannot easily determine the membership 
of the multicast group to which it sends the request, it cannot 
predict in advance a tight upper bound on the number of 
respondents. If nothing else, the caches are condemned, at the 
interrupt level, to process all of the requests and the responses 
that they receive - a task that consumes resources best put to 
other uses. From this perspective, the exploitation of IP 
multicasting by the Berkeley protocol is only a partial solution 
to the scaling problem, as IP multicasting reduces the amount of 
network traffic, but does not reduce proxy load in any way. 

In order to reduce network traffic and proxy load, the CARP 
(Cache Array Routing Protocol) DCM protocol [7] does not 
implement the search algorithm, while the AWC (Adaptive 
Web Caching) DCM protocol [8] replaces the hierarchy of the 

cache groups with the self-organized cache groups. In the 
CARP protocol, each proxy machine is responsible for caching 
a determined set of objects, where the set is calculated from the 
URLs of the objects. Since the object can be cached only by one 
proxy machine determined uniquely by some hash function, this 
eliminates need for the search algorithm, which significantly 
reduces network traffic and proxy load imposed by this 
algorithm. However, this solution is not appropriate for large-
scale distributed caches, because it is almost impossible to 
determine in advance an appropriate hash function that will 
provide satisfactory load balancing among the proxy machines. 
Moreover, the popular objects should be cached by more than 
one proxy machine in order to serve large number of requests4. 

                                                 

                                                

3 A multicast from host x to a multicast group of N hosts requires that x 
issues just one packet which is then replicated as required by 
intermediate routers for each of the 1≤D≤N distinct subnets on which N 
hosts appear [6]. The total number of UDP packets required for the 
multicast is D and, in many cases (depending upon the network 
topology), D«N. However, due to deployment issues with multicast 
servers, the systems usually use logical multicast that actually sends N 
unicast messages. 

Although the self-organization proposed by the AWC protocol 
is an appropriate way to resolve the scaling problem on coarse 
grain structures like cache groups, there still remains the scaling 
problem within the cache group. Next section describes our 
solutions of scaling problem for large distrusted cache. 

3. DIRECTORY-BASED DCM PROTOCOLS 

Our principal goal was to design a distributed cache system for 
a medium to large Internet service provider with tens of proxy 
machines and thousands of clients per proxy machine [9]. Since 
other DCM protocols were not designed to scale with respect to 
network traffic and proxy load, we decided to design a new 
DCM protocol, called the directory-based DCM protocol. In 
order to reduce both the network traffic and the proxy load, our 
DCM protocol uses a custom-designed distributed directory. 
The directory information allows us to build scalable search 
algorithms based on a directory-limited unicast. Detailed 
description of the dbDCM protocol is given in [4, 5], while in 
this paper we provide a brief description of the dbDCM protocol 
and describe the performance evaluation results. 

Designing Internet-Scale Directories 

Since the fundamental design issue is the scalability of a 
directory and not its precision, the directory is (1) distributed 
across all of the neighbors, (2) it is structured like a cache, (3) 
it is never locked, and (4) it never issues acknowledgements. 
Since each neighbor maintains a distinct portion of the 
directory, the total size of the directory scales linearly with the 
number of proxies. Since caches are by definition and design 
incomplete, structuring the directory like a cache further 
reduces the per neighbor cost of the directory. Forgoing locks 
permits simultaneous reads and updates of the directory at the 
cost of an occasional cache miss. Eschewing acknowledgements 
minimizes the traffic overhead and response time. 

Let a set P={p1, p2, ... , pN} of proxies be given, where the 
proxies p2, ... , pN are all neighbors of p1. Let O={o1, o2, ...} be 
the set of all data objects that are uniquely denoted by their 
URLs. A directory is a partial mapping M : O → Pr(P), where 
M(u) = {pj1, ... , pjm} is the set of proxies that might have a copy 
of data object o denoted by URL u. Hereafter we assume that 
object o has URL u. Each proxy p maintains a directory Mp and 

, where dom(MOM
Pp

p ⊆
∈

)(domU p) denotes the domain of 

function Mp. 

Directory scaling is improved by ensuring that for any two 
distinct proxies p and q dom(Mp)∩dom(Mq) is small. In other 

 
4 These are not the issues with our dbDCM protocol. The hash function 
is not used to distribute Web objects, but to distribute contents of the 
directory. Also, Web objects are distributed according to client requests 
allowing each Web object to be cached by more than one proxy. 

 



words, two distinct proxies maintain comparatively distinct 
portions of the directory. Finally, all of the proxies p∈P share a 
common total hash function H : O → P that maps URLs to 
proxies. This shared hash function allows us to distribute the 
directory entries among multiple proxy hosts. By computing 
y=H(u), host x can discover that neighbor proxy y maintains the 
directory entry for the object whose URL is u. 

Each directory Mp is implemented as a bucket hash of key/value 
pairs, where the keys are URLs and the values are finite sets of 
proxies. Given an URL u, Mp(u) = {pj1, ... , pjk} signifies to 
proxy p that data object u is replicated at proxies pj1, ... , pjk. A 
fixed amount of memory is allocated for directory Mp, which 
effectively limits the total number of key/value pairs contained 
in Mp at any one time. If the memory space for Mp is exhausted, 
then one or more key/value pairs will be flushed from the 
directory in order to make room for new updates. Any one of 
several standard replacement algorithms, such as Least Recently 
Used or Least Frequently Used, can be used to select candidate 
key/value pairs for flushing. 

When a proxy p receives a request, it first consults its own 
cache for the requested object u. Failing that, it computes 
H(u)=q and passes the directory lookup request for u onto proxy 
q, where q could be p itself. At this point, q can update its 
directory Mq(u)←Mq(u)∪{p} (the optimistic approach) 
assuming that proxy p will obtain a copy of object u. If p fails to 
obtain u, it must request q to delete p from Mq(u), that is 
Mq(u)←Mq(u)/{p}. In the pessimistic approach, only when p has 
u in hand it notifies q, which sets Mq(u)←Mq(u)∪{p}. When the 
probability of satisfying a request is high, the optimistic 
approach is preferable as it reduces network traffic. If the 
probability is low, the pessimistic approach is preferred as it 
ensures higher accuracy for directory entries. In either approach, 
p will request q to delete p from Mq(u) whenever p ejects u from 
its cache and p will request q to add it to Mq(u) if it receives 
object u directly from the origin server. 

Later on, independently of our work, other authors have also 
used a directory to reduce the network traffic and proxy load in 
a distributed cache. However, they did not take into the account 
all four features listed at the beginning of this section that allow 
for the design of the large-scale distributed cache. The 
scalability of the RPD-SD protocol [10] is limited by a 
centralized directory manager implemented on one server 
machine and the scalability of DCM protocols described in [11, 
12] is limited by a fully replicated directory at each proxy 
machine. 

Implementation of Cache Management Protocol 

We now revisit the search algorithm, this time incorporating 
directories to reduce the network traffic and proxy load. Since 
the dbDCM protocol is implemented on top of the Squid 
distributed cache, the remaining algorithms are identical to the 
algorithms of the Squid DCM protocol. 

First, by narrowing the set of candidate proxy caches likely to 
possess a fresh copy of a desired data, object directories can 
reduce network traffic. Second, requests are directed toward just 
those proxy caches most likely to respond positively, thereby 
reducing the overall workload for any proxy host. To illustrate 
this, assume that the master proxy cache mc receives a request 
for a data object o denoted by URL u. Assuming that mc's cache 
does not contain o, let x=H(u) be the proxy identified by mc (x 
could be mc itself) as the proxy responsible for maintaining a 
directory entry for u. That is, x's directory contains a mapping 
Dx(u)={nc1, ... , ncm} - the set of all neighbor proxies that 
contain a fresh copy of o. At this point in the search algorithm 
two variants are possible: (1) x returns the set of neighbor 
proxies to mc and mc completes the execution of the search 

algorithm or; (2) x executes the remainder of the search 
algorithm on mc's behalf. In either case let α, a small positive 
integer, be given. Of the set of candidate neighbor proxies {nc1, 
... , ncm}, A=min(α, ||Dx(u)||) of them will be selected and each 
so selected will be sent a cache request containing u (the URL 
of the desired object) and the IP address of the requesting proxy 
mc. As in the Squid algorithm, each neighbor proxy nci replies 
to mc with a hit if its cache contains o, and a miss otherwise. In 
the rest of the paper, we evaluate variant (1). 

Variant (1) of the search algorithm requires that an IP packet be 
transmitted from x to mc containing the set of candidate proxies 
{nc1, ... , ncm}, so that mc can select candidates and issue cache 
requests. Variant (2) eliminates the transmittal by having x issue 
cache requests to the candidate proxies. Note that in both cases, 
the cache requests, whether issued by mc or x, specify mc as the 
requesting proxy. Consequently, the replying neighbor proxies 
always direct their replies to mc although, in variant (2) proxy x 
issues the requests. 

Parameter α may be one, equal to ||Dx(u)||, or it may have some 
constant value. Whenever α is less than ||Dx(u)||, the proxy must 
decide to which of the proxies from the directory list it will send 
cache requests. Either the proxy uses a Round Robin method to 
advantageously distribute the load among the proxies on the list, 
or, the proxy randomly selects α proxies to send the request to. 

The parameter α set to one is appropriate for a highly reliable 
environment, because it reduces the network traffic and proxy 
load. However, if the response is a miss, or the directory is 
inaccurate, the repetitions of the cache request may increase the 
network latency. Choosing α>1 alleviates these problems for an 
unreliable environment. For highly unreliable networks, the best 
solution is to have the value of α equal to ||Dx(u)||.  

In order to implement the dbDCM protocol [4, 5], we extend the 
Internet Cache Protocol (ICP) [13, 14] by adding the following 
messages: ICP_DIR_GET to send the directory lookup request 
from the requesting proxy to the hashed proxy, ICP_DIR_DATA 
to send back the directory information from the hashed proxy to 
the requesting proxy, ICP_DIR_DEL to remove the requesting 
proxy from a given directory entry, and ICP_DIR_ADD to add 
the requesting proxy to a given directory entry. These four 
messages comprise the complete mechanism for retrieving 
information from the directory and maintaining its accuracy. 

4. COMPARISON OF MEASUREMENT RESULTS 

For the purpose of measurement, we use three Sun Ultra 10 
machines, four Sun SparcStation 20 systems and one personal 
computer (PC) based on Intel Pentium III 500. All machines are 
connected by a 100 Mb/s Ethernet local area network. We 
install the Apache Web server on one of the Ultra 10 machines, 
while the remaining six Sun machines run multiple copies of the 
proxy caches. We use the PC to run the multithreaded client 
software. 

The test program runs a configurable number of client threads 
and the main, scheduler thread. Each client thread sends a 
request to the proxy, waits for the response and measures the 
time it took to complete the entire request. The scheduler thread 
controls the client threads and distributes the requests among 
them. As soon as the client thread finishes the request and 
becomes available, it will be assigned  new request by the 
scheduler thread. A small number of our client threads create 
the load that is comparable to the much larger number of Web 
clients. For example, 10 client threads might represent as much 
as 1,000 Web clients. During the tests, we vary the number of 
proxy caches, the number of simultaneous client threads, and 
the Web object size. In order to increase the number of proxy 
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Figure 2: Average latency for an increasing number of proxy 
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Figure 5: Average latency for variable Web object size 
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Figure 4: Average latency for variable number of client threads 

caches, multiple copies of the proxy cache processes run on 
each machine. We run up to six proxy caches per machine, 
giving us total of 36 cooperating proxy caches. As a 
performance measure, we choose the average latency per client 
request. 

Figure 2 presents the results of measurements for increasing 
number of proxy machines and increasing number of proxy 
caches per machine. The Web object size is 10 kB and ten client 
threads simultaneously request the objects. For a small number 
of proxy caches, the dbDCM protocol shows slightly higher 
latency than the Squid DCM protocol, which is imposed by the 
directory lookup request that is sent from one proxy machine to 
another5. In addition, the directory-limited unicast does not 
significantly reduce the network traffic and proxy load for small 
number of proxy machines. However, if the number of proxy 
caches increases over ten, the dbDCM protocol shows lower 
latency than the Squid protocol. The directory-limited unicast 

reduces the network traffic and proxy load in comparison to the 
logical broadcast performed by the Squid protocol. The 
difference between the Squid protocol and the dbDCM protocol 
increases, reaching the value of 25% for 36 proxy caches. As 
we can see from Figure 2, the slope of the curve for the dbDCM 
protocol is lower than the slope of the curve for the Squid 
protocol. Moreover, if the number of proxy machines increases 
over 30, the latency for the dbDCM protocol does not increase 
any more, because of directory-limited unicast.  

                                                 
5 As we expect, the average latency per request decreases if the same 
amount of requests is distributed among larger number of proxy 
machines (for example, if the number of proxy caches increases from 
two to five, the number of proxy machines increases from two to five, 
and the average latency decreases). However, the average latency per 
request increases if the same amount of requests is performed by a 
lower number of proxy machines (for example, if the number of proxy 
caches increases from five to eight, the number of proxy machines is 
reduced from five to four, and the average latency increases). 

As Figure 3 shows, similar results are obtained with a constant 
number of proxy caches per machine. Each test machine runs 
six proxy caches. As previously discussed, the slope of the 
curve for the Squid protocol is higher than for the dbDCM 
protocol, while the directory-limited unicast straightens the 
slope for the number of machines greater than 30. 

If we increase the number of client threads, the difference 
between the Squid protocol and the dbDCM protocol 
significantly increases. Figure 4 shows the measurement results 
achieved with 36 proxy caches and an object size of 20 kB. 
While the slope of the curve for the Squid protocol significantly 
increases with the number of client threads, the slope of the 
curve for the dbDCM protocol shows a very slow increase. For 
20 simultaneous client threads, the average latency of the 
dbDCM protocol is 40% lower than the latency of the Squid 
protocol. 

 



Figure 5 shows the results of measurements with variable Web 
object size. Since we can use the artificial load as well, it is 
possible to change the Web object size in a simple way. The 
measurement results in Figure 5 are achieved with 36 proxy 
caches and 20 client threads that simultaneously request the 
objects. 

As expected, the right portion of both curves shows the constant 
growth due to the increasing size of the object. The latency is 
mostly affected by the data transfer of large objects. However, 
the latency in the left portion of the graph in Figure 5 is 
significantly affected by the small communication packets 
incurred by the proxy-to-proxy communication. Since the 
requests for smaller objects increase the number of small 
communication packets and the communication with small 
packets cannot utilize the full bandwidth of the network [15, 
16], the latency in the left portion decreases as the objects 
become larger. 

As presented in Figure 5, the dbDCM protocol shows better 
results than Squid DCM protocol for all object sizes. Both the 
Squid and the dbDCM protocols have the same rate of increase 
of the average latency per request for large objects. However, as 
the object size becomes smaller, the latency of Squid grows 
faster than the latency of the dbDCM protocol. Since the 

minimum latency of the dbDCM protocol is located more to the 
right than the minimum latency of Squid DCM protocol, the 
optimum object size for the dbDCM protocol is larger than the 
optimum size for Squid. 

5. COMPARISON OF ANALYTICAL RESULTS 

We developed sophisticated analytical models for comparing 
competing DCM protocols [17]. Our models are intended to 
capture first-order differences among these protocols for large-
scale distributed caches. The average latency per request for 
each of the three DCM protocols is calculated based on the 
analytical expressions for the following parameters: network 
traffic, average host load, average client load, average network 
latency, average host latency, and average client latency. The 
analytical expression for the average latency per request is 
derived in three main steps. In the first step, we precisely 
analyze the communication on the IP packet level for the master 
cache hit, the neighbor cache hit, and the distributed cache miss. 
Based on this analysis, we derive the analytical expressions for 
network traffic, average host load, and average client load for 
each of the three DCM protocols. In the second step, we 
incorporate the analytical expressions for the network traffic, 

Distributed Cache Parameters Value  Communication Protocol Parameter Value 

Total number of proxy hosts in the distributed cache N = 30  Size of a small IP packet 40 B 

Average cross-sectional bandwidth of the network 1 Gb/s  Size of a medium IP packet 180 B 

Average bandwidth of proxy host 100 Mb/s  Size of a large IP packet L = 1024 B 
     

Application Parameters Value  DCM Protocol Parameter Value 

Total number of client hosts 9100  Number of subnets that connect the proxy hosts max(1, 0.20 N) 

Average number of requests per client per second 0.53  Number of the positive responses from neighbor proxies max(1, 0.30(N-1)) 

Average bandwidth of client 10 Mb/s  

Master cache hit rate 0.25  
Maximum number of dbDCM neighbor caches to which a 
master cache will broadcast a request for a Web object min(5, N) 

Neighbor cache hit rate 0.30  Probability that a dbDCM directory entry is accurate 0.75 

Average size of Web object O = 10 kB  Probability that a dbDCM master cache does not hold the 
particular directory entry (N-1) / N 

Total number of acknowledgement packets to IP 
data packets 

max(1, 
0.75(O/L)) 

 
Timeout period used by termination algorithm 40 ms 

Percentage of data packets that cause the TCP 
window to fill 10%    

Total number of server hosts per distributed cache 3    

Average bandwidth of a server host 100 Mb/s    

Table 1: Analytical model parameters 
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average host load, and average client load, into the M/G/1 
queuing model [18] in order to obtain the analytical expressions 
for average network latency, average host latency, and average 
client latency. In the third step, we analyze timing diagrams that 
describe the propagation of the IP packets during the master 
cache hit, the neighbor cache hit, and the distributed cache miss. 
Finally, based on the timing analysis and on the analytical 
expressions for average network latency, average host latency, 
and average client latency, we derive the analytical expressions 
for the average latency per request. 

The parameters included in the model are listed in Table 1. 
Table 1 also presents the values of the parameters we use to 
generate the results presented in this paper, except the 
parameters we explicitly vary in a given diagram.  

Figures 6a-c show how the average latency per request varies 
with three parameters: distributed cache size, number of clients, 
and Web object size. The graph in Figure 6a shows the average 
latency per request for a variable number of proxy hosts, while 
all other parameters have fixed values that are given in Table 1. 
At lower numbers of proxy machines (see Figure 6a), the DCM 
protocols saturate because of the overloaded proxy hosts. At 
higher numbers of proxy machines, the Berkeley and Squid 
protocols saturate because of network congestion, while the 
dbDCM protocol does not saturate due to the directory-limited 
unicast. 

The other graphs show the average latency per request for 
variable values of two other parameters, while keeping the 
number of proxy host machines fixed (N=30). From the graphs, 
it is clear that the dbDCM protocol contributes to the slowest 
increase in latency per request for both parameters: increasing 
number of clients and increasing Web object size. Additionally, 
the dbDCM protocol performs adequately (does not saturate) 
over a wider range of parameter values than either of the other 
two DCM protocols. 

6. CONCLUSION 

The results in this paper indicate that the dbDCM protocol 
scales more gracefully than the Berkeley and the Squid 
protocol. If either the number of proxy caches, the number of 
clients, or the object size is increased, the dbDCM protocol has 
a lower increase of average latency per request. We show by 
measurement that the difference between the DCM protocols 
can be over 40%. Moreover, the directory-limited unicast limits 
the amount of generated network traffic and proxy load. This 
keeps the average latency per request constant regardless of the 
number of clients and regardless of the number of proxy caches. 
In contrast, the Squid and Berkeley protocols saturate if the 
number of proxy machines or the number of clients becomes 
large; this extremely increases the average latency per request 
and prevents the distributed cache from operating normally. In 
addition, our comparison of analytical results shows that the 
dbDCM protocol scales better than the two other protocols over 
a broader range of parameter values. 
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