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Abstract9

Biological feedbacks play a crucial role in determining e�ects of toxicants, radiation, and10

other environmental stressors on organisms. Focusing on reactive oxygen species (ROS) that11

are increasingly recognized as a crucial mediator of many stressor e�ects, we investigate how12

feedback strength a�ects the ability of organisms to control negative e�ects of exposure.13

We do this by developing a general theoretical framework for describing e�ects of a wide14

range of stressors and species. The framework accounts for positive and negative feedbacks15

representing cellular processes: (i) production of ROS due to metabolism and the stressor, (ii)16

ROS reactions with cellular compounds that cause damage, and (iii) cellular control of both17

ROS and damage. We suggest functional forms that capture generic properties of cellular18

control mechanisms constituting the feedbacks, assess stability of equilibrium states in the19

resulting models, and investigate tipping points at which cellular control breaks down causing20

unregulated increase of ROS and damage. Depending on the chosen functional forms, the21
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models can have zero, one, or two positive steady states; except in one singular case, the22

steady state with lowest values of ROS and damage is locally stable. We found two types of23

tipping points: those induced by changes in the parameters (including the stressor intensity),24

and those induced by the history of exposure, i.e. ROS and damage levels. The relatively25

simple models e�ectively describe several patterns of cellular responses to stress, such as the26

covariation of ROS and damage, the break-down of cellular control leading to explosion of27

ROS and/or damage, increase in damage even when ROS is (near)-constant, and the e�ects28

of exposure history on the ability of the cell to handle additional stress. The models quantify29

dynamics of cellular control, and could therefore be used to estimate the metabolic costs30

of stress and help integrate them into models that use energetic considerations to model31

organism's response to the environment. Although developed with unicellular organisms in32

mind, our models can be applied to all multicellular organisms that utilize similar feedbacks33

when dealing with stress.34

0.1 Highlights (max 85 characters)35

� e�ects of exposure to stressors modeled by specifying dynamics of reactive oxygen species36

and damage37

� feedbacks constituting metabolic response to stress quanti�ed38

� ability of organisms to control damage depends on strength of feedbacks39

� the simple new formalism enables relating model variables to measured quantities40

� exposure history can cause runaway dynamics even for otherwise safe exposure levels41

0.2 Keywords42

reactive oxygen species (ROS), cellular damage, organismal response to stress, modeling damage43

repair, stability, runaway ROS and damage.44

2



1 Introduction45

The cell's attempt to reduce deleterious e�ects of ROS such as membrane, DNA, and protein46

damage by regulating levels of both ROS and damage. Exposure to environmental stressors,47

including toxic exposure to transition metal ions and engineered nano-particles (ENPs), results48

in greatly enhanced ROS production rates that, in turn, require increase in control of ROS and49

damage. Accordingly, several empirical studies in eco- and nano-toxicology report simultaneous50

measurements of ROS and of some proxy for cellular damage (e.g. Nel et al. 2006, Priester et al.51

2009, Priester et al. 2012, Ivask et al. 2014, Kaweeteerawat et al. 2015). These studies and others,52

found distinct correlation between ROS, the proxies for damage, and (for bacteria) reduction in53

population growth.54

With toxic e�ect models, we have previously demonstrated that simultaneous measurements55

of ROS and of responses to ROS in bacteria, exposed to cadmium and cadmium-based ENPs, aid56

in elucidating the potential modes of toxicant action at the suborganismal to population levels57

of organization (Klanjscek et al. 2012; Klanjscek et al. 2013). Our previous work was based58

on Dynamic Energy Budget (DEB) theory (Kooijman, 2010), a unifying and relatively abstract59

modelling framework with many applications in ecotoxicology (e.g. Jager and Zimmer 2012, Martin60

et al. 2013, Jager et al. 2014a, Jager et al. 2014b). The resulting models were able to use the61

patterns of ROS and damage accumulation at a constant exposure to predict toxicity, but were of62

limited use for modeling dynamics of repairable damage, and investigating key features of cellular63

control.64

Known cellular control mechanisms instigate negative feedbacks that reduce ROS and damage65

levels. ROS levels are reduced using antioxidant enzymes such as catalases, glutathionperoxidases66

and peroxiredoxins, and non-enzymatic radical scavengers (e.g. Bannister et al. 1987, Jamet et67

al. 2003, Giorgio et al. 2007, Culotta and Daly 2013), while damage is controlled using repair68

pathways ranging from protein (see Chondrogianni et al. (2014) for a review) to DNA repair (e.g.69

Gros et al. 2002, Zahradka et al. 2006). The negative feedbacks are subject to physiological and70

biochemical constraints including energy and materials available to them. The constraints may be71
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the reason why many studies (e.g. Priester et al. 2009, Kri²ko and Radman 2010) note a fairly72

small increase in ROS and/or damage for a range of exposure levels, followed by a large increase73

in both for a relatively small additional increase in exposure: for su�ciently high ROS and/or74

damage production rates, the negative feedbacks may not be able to keep up, the control breaks,75

and ROS and damage experience a runaway, i.e. an accelerated and unbounded increase of ROS76

and damage leading to rapid mortality.77

To account for these biomolecular defense and repair mechanisms, and their breakage, we78

develop simple models to explore the e�ects of positive and negative feedbacks on the dynamics of79

damage and damage-inducing compounds in response to environmental stressors. We investigate80

how particular control mechanisms a�ect the long-term dynamics, and identify contexts that may81

cause a runaway increase in ROS and/or damage that would lead to rapid mortality. We discuss82

potential applications and limitations of the new models, and analyze some of the ways in which83

duration of experiments and combinations of stressor intensities might a�ect results.84
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2 Models85
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Outline of oxidative stress network that inspired the development of our models. Metabolism 
and various environmental stressors give rise to the production of compounds with high 
oxidative potential, such as radicals and hydrogen peroxide. For example, reduced 
metabolites (XH2) donate electrons to components of electron transport chains that, under 
the influence of the environmental stressor, achieve relatively high redox potentials and 
thereby facilitate the production of superoxide radicals. This initiates a cascade of reactions 
involving reactive oxygen species (ROS) that are mediated by enzymes such as superoxide 
dismutase, catalase, glutathion peroxidase and peroxiredoxins, and more haphazardly by 
metalloenzymes (Fenton-like reactions in the figure). These reactions do not directly result in 
cellular damage. However, ROS may spontaneously react with cellular compounds such as  
lipids, DNA and proteins. These reactions can inflict damage. Damage can also be inflicted 
directly by environmental stressors such as ionizing radiation and transition metals. 
Damaged molecular machinery may not be as efficient in controlling ROS production (e.g. 
damaged mitochondria leak more ROS). Intermediate steps in the radical cascade, as well 
as actual damage, can serve as signals for up-regulation of defense and/or repair echanisms
(among other mechanisms not dealt with here, such as degenerative and developmental 
processes). [Needs references in various places]

86

Figure 1: Outline of oxidative stress network that inspired the development of our models.
Metabolism and various environmental stressors give rise to the production of compounds with
high oxidative potential, such as radicals and hydrogen peroxide. For example, reduced metabolites
(XH2) donate electrons to components of electron transport chains that, under the in�uence of the
environmental stressor, achieve relatively high redox potentials and thereby facilitate the produc-
tion of superoxide radicals. This initiates a cascade of reactions involving reactive oxygen species
(ROS) that are mediated by enzymes such as superoxide dismutase, catalase, glutathion peroxidase
and peroxiredoxins, and more haphazardly by metalloenzymes (Fenton-like reactions in the �gure).
These reactions do not directly result in cellular damage. However, ROS may spontaneously react
with cellular compounds such as lipids, DNA and proteins. These reactions can in�ict damage.
Damage can also be in�icted directly by environmental stressors such as ionizing radiation and
transition metals. Intermediate steps in the radical cascade, as well as actual damage, can serve as
signals for up-regulation of defense and/or repair mechanisms (among other mechanisms not dealt
with here, such as degenerative and developmental processes). Damaged molecular machinery may
not be as e�cient in controlling ROS production (e.g. damaged mitochondria leak more ROS).
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Our models aim at generality, but they have been inspired by speci�c mechanisms (see Figure102

1). Metabolism and environmental stressor impact yield a variety of damage-inducing compounds103

with di�erent physicochemical properties and damaging potentials. Given the prevalence of ROS104

as damage-inducing compounds in the literature (see Imlay 2003 for a review on pathways of oxida-105

tive damage), we will use these terms interchangeably. In order to keep our representation of the106
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dynamics of reactive compounds tractable, we assume that each physiological process (metabolism107

and impact of each distinct stressor) generates a set of reactive compounds whose relative pro-108

portions are approximately constant. This enables us to aggregate compounds with signi�cant109

oxidative potential into a single, abstract �generalized� entity, i.e. damage-inducing compounds110

or ROS. Similarly, there are many forms of damage, but for the present work we aggregate these111

forms into a generalized damage compound. We denote concentrations of ROS and damage in a112

cell by Z and D, respectively. We leave the term �concentration� deliberately vague; the actual113

units can be chosen to best �t a particular application.114

In most of what follows, we assume that - given su�cient time, energy, and material resources115

- damage can be repaired. In reality, some damage is irreparable. Examples of irreparable damage116

include permanent loss of information through DNA damage and/or loss of epigenetic information,117

proteins wrongly produced because of permanent loss of information, as well as irreparable organ118

and/or tissue damage in multicellular organisms. We discuss the implication of irreparable damage119

in the Discussion.120
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2.1 Choice of variables and balance equations121
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Figure 2: Model structure. Metabolism and environmental stressor produce ROS. In part, ROS
is ultimately reduced to harmless compounds, such as water, through controlled reactions without
causing damage to the cell. However, ROS also in�icts damage through spontaneous, uncontrolled
reactions with cellular compounds. Damage is reduced by regulated repair mechanisms, while
non-repaired damage may enhance ROS production.
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Figure 2 describes the basic relationships of the processes determining the dynamics of ROS and128

damage: environmental stressors and metabolism produce ROS (of concentration Z) that, unless129

inactivated, can produce damage (of concentration D). Damage may enhance ROS production,130

but can also be repaired. The rate of ROS inactivation, as well as the rate of damage repair, can131

be regulated by the cell. In general terms, the system can be described by the following mass132

balance equations:133

dZ

dt
= jZ,prod − jZ,out − δGZ , (1)

dD

dt
= jD,prod − jD,out − δGD, (2)

where δGZ,D accounts for dilution, i.e. changes in concentrations of Z and D due to growth or134

shrinking of the organism. Fluxes jprod and jout represent, respectively, production and loss rates.135
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For the current presentation, we assume that organismal growth (or shrinking) is a slow process136

relative to the dynamics of ROS and damage and set the dilution terms to zero (δGZ,D = 0), but137

note that growth may need to be considered in some applications (see Klanjscek et al. (2012,138

2013)). The production and loss rates are discussed below.139

The ROS production �ux (jZ,prod) is assumed to be an increasing function of metabolically140

induced ROS, stressor-induced ROS, and ROS production enhanced by cellular damage. We141

compound the �rst two sources of ROS into a production term, PZ :142

PZ = P0 + γZSS, (3)

where P0 and S represent respectively the metabolic ROS production �ux and stressor intensity.143

The relationship between PZ and S will depend on the actual stress mechanism; for this study,144

we assume a linear functional dependence where the coe�cient γZS quanti�es how much ROS is145

produced given some stressor intensity.146

Damage can a�ect ROS production in a myriad of ways. We consider a linear combination of147

multiplicative and additive e�ects:148

jZ,prod = (1 + gZDD)PZ + γZDD, (4)

where gZD is the multiplicative, and γZD the additive damage interaction coe�cient. The multi-149

plicative term (gZDPZD) accounts for increases in ROS production due to metabolic ine�ciencies150

resulting from damage, and the additive term (γZDD) accounts for other damage-related sources151

of ROS.152

The ROS removal �ux (jZ,out) is a consequence of reactions with cellular components. Some153

ROS is removed by controlled reactions without creating damage. ROS not removed by the154

controlled reactions can react with other cellular components and cause damage. Since at any155

given time the number of ROS molecules is minuscule compared to the number of potential target156

sites (Giorgio et al.2007), spontaneous ROS reactions are limited by the concentration of ROS only,157
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and the can be assumed to be proportional to the ROS concentration. The total ROS removal �ux158

is thus the sum of the two, controlled and spontaneous, reaction �uxes:159

jZ,out = kZZ +RZ , (5)

where kZ is a rate coe�cient for the spontaneous �ux, and RZ represents the �ux resulting from160

controlled reactions (see Appendix A for details).161

The damage production �ux (jD,prod) has two components: direct, stress-induced damage162

production, PD, and damage created by spontaneous ROS reactions. The direct stressor-induced163

damage production term is represented by164

PD = γDSS, (6)

where the damage stress coe�cient, γDS, quanti�es the yield of damage due to direct stressor165

action. For simplicity, we assume that the damage yield from oxidative stress is constant, yD; the166

total damage creation �ux is then:167

jD,prod = yDkZZ + PD. (7)

The damage removal �ux (jD,out) accounts for all cellular repair processes, including the168

metabolic turnover of damaged macromolecules. We assume that spontaneous damage repair is169

negligible, and that all damage repair is regulated:170

jD,out = RD, (8)

where RD represents regulated damage repair.171

The regulatory networks exerting the control of damage repair and of ROS are context-speci�c172

and can be extremely complex, so we approximate their dynamics through simple, stylized negative173

feedback loops (see Zhang and Andersen (2007) and Drengstig et al. (2012) for examples). Such174
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general feedback loops have at minimum one controller variable describing the controller compound,175

and one controlled variable describing the controlled compound. The rate of change of each176

controller X controlling a variable Y is governed by a balance equation177

dX

dt
= jX,prod − jX,out. (9)

We assume that:178

� jX,prod can be represented by a Michaelis-Menten type saturating function, jX,prod =
vXY

KX + Y
,179

because we expect:180

� jX,prod is an increasing function of Y : production rates of the controllers increase as ROS181

and damage concentrations increase (for example, cells up-regulate defenses against ROS182

as ROS concentrations increase (Giorgio et al. 2007), e.g. by initiating the SOS gene183

pathway when damage accumulates (Friedman et al. 2005), and184

� jX,prod is a saturating function of Y : the cellular capacity to produce controller com-185

pounds is bounded, i.e. there is an upper limit to the rate of controller production.186

� jX,out is an increasing function ofX: controllers are inactivated due to cellular turnover and to187

interactions with the controlled compounds; we assume a simple linear, passive inactivation:188

jX,out = kXX.189

We introduce two additional variables, E and A, to represent respectively the concentrations190

of the compounds controlling ROS and damage. We consider two types of interaction between191

the controller compounds (E, A) and the controlled compounds (Z, D): bilinear and saturating192

Michaelis-Menten kinetics (see Table 1 and Appendix A for details). Dynamics of Z and D are of193

special importance because there are many experimental contexts where ROS and some measure194

of damage play a role and where data are available. We therefore focus on dynamics of Z and D195

by assuming the transients of controllers are not important (dE/dt = dA/dt = 0), which results in196

implicit representations of control (RZ and RD) listed in Table 1, with details of their derivation in197
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Appendix A. This assumption may not hold if a sudden, acute exposure causes massive increase198

in ROS and/or damage in a time span much shorter than the response time of the controls.199

Table 1: Summary of functional forms of ROS and damage production �uxes, ROS inactivation,
and damage repair. Extremes cases of the production �ux are: additive (gZD = 0, γZD > 0),
and multiplicative (gZD > 0, γZD = 0). Repair of ROS (Z) and damage (D) are regulated by
control variables E and A, respectively; interaction terms and the resulting implicit forms are
listed. Compound control parameters are used for simplicity: vZ = gZvE/kE, and vD = gDvA/kA,
where vE and vA are the maximum production rates of E and A; gZ and gD quantify control
strength, while kE and kA are inactivation rates of the controller. KE and KA are half-saturation
constants for production of E and A; KZ and KD are half-saturation constants for control of Z
and D.

200

201

202

203

204

205

206

207

208

ROS production, jZ,prod

additive PZ + γZDD

multiplicative (1 + gZDD)PZ

controlled ROS inactivation, RZ

interaction term implicit form

linear gZEZ
vZZ

2

KE + Z

saturating gZEZ
KZ

KZ + Z

vZZ
2

(KE + Z) (1 + Z/KZ)

Damage repair, RD

interaction term implicit form

linear gDAD
vDD

2

KA +D

saturating gDAD
KD

KD +D

vDD
2

(KA +D) (1 + D/KD)

209

2.2 Steady state analysis210

The steady state analysis, performed using implicit form of ROS and damage control (RZ and211

RD), is greatly facilitated by quanti�cation of feedbacks by their strength. We de�ne the feedback212
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strength, ΦXY , of a state variable Y on dynamics of state variable X as:213

ΦXY =
∂dX/dt

∂Y
. (10)

Our system has two state variables and, therefore, four possible feedbacks with the associated214

strengths: (i) a negative feedback that increases ROS removal in response to ROS concentration215

(Φ−ZZ = − (kZ + ∂RZ/∂Z)), (ii) a positive feedback that increases damage production in response216

to ROS concentration (Φ+
DZ = yDkZ), (iii) a positive feedback that increases ROS production in217

response to damage (Φ+
ZD = ∂jZ,prod/∂D), and (iv) a negative feedback that increases damage repair218

in response to damage (Φ−DD = −∂RD/∂D). Feedbacks (i) and (iii) are considered positive because219

they increase Z and/or D, and feedbacks (ii) and (iv) are negative because they reduce Z and D.220

Seven model variants with di�erent combinations of ROS production, ROS control, and damage221

control were analyzed. Depending on the model variant and the feedback strengths, the system222

may have had zero, one, or two steady states. An overview of the six model variants and results223

for which ROS and/or damage control are linear are included in Table 2. The model variant in224

which both ROS and damage control are saturating does not qualitatively di�er from the models225

with saturating damage control, so was omitted from the overview.226

In Appendix C we show that for each of our six model variants, there is a unique positive stable239

equilibrium (UPSE) if and only if the combined e�ect of the negative feedbacks is stronger than240

those of the positive feedbacks as Z and D approach in�nity:241

lim
Z,D→∞

Φ+
ZDΦ+

DZ < lim
Z,D→∞

Φ−ZZΦ−DD. (11)

The left-hand side of (11) can be interpreted as susceptibility to stress, and the right-hand side242

as resistance to stress; the condition (11) then simply states that there is a UPSE whenever243

resistance is greater than susceptibility to stress. Functional forms of the feedbacks and UPSE244

existence conditions for each of the six model variants are summarized in Table 2.245

When e�ects of damage on ROS are multiplicative and damage repair (RD) is linear, the UPSE246
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condition can always be satis�ed for low enough stressor intensities, i.e. when PZ < PΦ
Z where:247

PΦ
Z =


(kZ+vZ)vD
kZyDgZD

if ROS control is linear,

vD
yDgZD

if ROS control is saturating.

(12)

When e�ects of damage on ROS are additive, the UPSE condition does not depend on stressor248

intensities. For saturating RD, a UPSE is never possible, so the system can never have a UPSE.249

Note that both types of stressor e�ects (PZ and PD) a�ect the equilibrium values of ROS and250

damage, even if they cannot a�ect the conditions for the existence of a UPSE.251

When UPSE condition is satis�ed, the organism's cellular control mechanisms are, in principle,252

able to cope with any amount of ROS and damage. If the condition is not satis�ed, there are two253

possibilities:254

1. The system has two equilibria: one stable with lower Z and D values, and one unstable with255

higher Z and D values. If Z and D are lower than the values for the unstable equilibrium,256

the system approaches the stable equilibrium, and ROS and damage are controlled. If Z and257

D increase above the values for unstable equilibrium, ROS and damage increase inde�nitely.258

Only models with saturating control can have two equilibria.259

2. There are no equilibria. ROS and damage increase inde�nitely at all stressor intensities.260

2.3 Tipping points261

We use the term �tipping point� to characterize a transition from a stable state to runaway dy-262

namics by which we mean continuous, unbounded increase over time of Z and D. We distinguish263

between two types of tipping points.264

Type 1 tipping point (TP1) is caused by changes in parameters and/or forcing (stressor inten-265

sity), and can appear in systems with both linear and saturating control. In systems with linear266

ROS control and damage repair (linear RZ and RD), any changes in parameters or forcing that267

leads to invalidation of the UPSE condition causes a transition from a system with a unique stable268
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equilibrium to a system with runaway dynamics (see the steady state analysis in Section 2.2).269

When the control is saturating, and the system has two equilibria, change in parameters or forcing270

can cause a saddle node bifurcation in which the two equilibria approach each other, combine into271

a single neutral equilibrium, and then disappear causing runaway dynamics (see Appendix C).272

Type 2 tipping point (TP2) only exists in two-equilibria systems. The tipping point is caused273

by high values of Z and D resulting from high initial values or large transients. In two-equilibrium274

systems, the organism is able to control ROS and damage inde�nitely if the initial values of Z275

and D are low enough; if Z and/or D increase above a threshold (see Appendix C), positive276

feedbacks take over, control mechanisms are overwhelmed, and ROS (Z) and damage (D) increase277

inde�nitely at an accelerating rate.278

We illustrate these possibilities using a reduced model that follows what is arguably the most279

important state variable - damage. Recognizing that ROS and control typically operate on much280

shorter time scales than damage, we separate the time scales and set dZ/dt = 0. Expressing RZ in281

terms of Z, and solving (1) for the quasi-equilibrium value of Z, Z∗, gives:282

Z∗ = ξ(D,PZ). (13)

where the function ξ normally has to be evaluated numerically. Inserting Z∗ into (2) gives just283

one - albeit complicated - ODE describing the slow dynamics of a general form:284

dD

dt
= yDkZξ(D,PZ) + PD −RD. (14)

For illustration, we choose a model with PD = 0 (no direct damage production), multiplicative285

jZ,prod, saturating RZ , and linear RD. The choice enables us to investigate the widest range of286

possible dynamics, as well as analyze the tipping points as a function of stress. We calculated a287

�canonical� parameter set (gu)estimated from a number of di�erent studies. These parameters do288

not represent any one system, but their foundation in data suggests that we explored �plausible�289

regions of parameter space. Details and a summary of all state variables and parameter values are290
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in Appendix B.291

Increase in stress can cause two types of bifurcation: from an UPSE to a double equilibrium at292

PZ = PΦ
Z (making TP2 possible), and the transition from a two-equilibria system to a runaway at293

PZ = PC
Z (TP1). The critical stress PΦ

Z was calculated by equating the limits in (11) and solving294

for P , and PC
Z was estimated numerically. Since PΦ

Z is a linear function of yD, γZD, and 1/vD295

(see (12) for saturating ROS control), increasing yD and γZD, or reducing vD can cause the same296

transition to a double-equilibrium dynamics as increasing PZ .297

Three regions delineated by the UPSE condition and the saddle-node bifurcation are illus-298

trated in Figure 3, with further details and trajectories shown in Figure 4. Trajectories D(t) with299

PZ < PΦ
Z , as expected for a unique positive stable equilibrium (UPSE), eventually attain a �nite300

equilibrium value of D for all considered values of initial damage D(0); if an additional stressor301

temporarily increases D, the organism will be able to repair the excess damage once the additional302

stress stops. The exact value of the equilibrium in our example depends on the stress intensity,303

but is always less than DΦ, the equilibrium value of D for PΦ
Z (DΦ = 0.248 in Figure 4).304

As exposure (PZ) increases, non-linear e�ects become increasingly important, and the system305

has two equilibria. The lower equilibrium is stable; the higher one (DU) is unstable. The organism306

will still able to control additional short-term stress, but not as e�ectively as for PZ < PΦ
Z : if307

damage due to the additional stressor increases above DU , the organism will not be able to return308

to any equilibria even if the additional stressor disappears. The higher the value of PZ , the309

lower the range of damage for which the organism can successfully accommodate additional stress:310

the stable equilibrium increases, while DU decreases. Eventually, the two equilibria overlap for311

PZ = PC
Z (saddle node bifurcation point).312

The reduced ability to recover from signi�cant damage is especially important when the or-313

ganism is exposed to multiple and/or time-varying stressors (Figure 5). For example, even small314

(potentially unknown) additional stress can completely reverse the outcome of an experiment (Fig-315

ure 5, left plot). The outcome can likewise be a�ected by small changes in timing of a time-varying316

(e.g. pulsed) stressor. For example, small changes in the duration of the stress pulses can com-317
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pletely reverse the outcome: even if stress is greater than PC
Z , the organism can repair damage if318

the pulse is short. If, on the other hand, the duration of the pulse is long enough that damage319

increases past the unstable equilibrium (D > DU), the organism cannot repair damage even after320

the pulsed stress stops (Figure 5, right plot).321

The duration of a hypothetical experiment can also a�ect the perceived critical stress intensity322

(Figure 6). The model predicts that large increases of damage in short experiments will appear only323

for stress intensities that are signi�cantly higher than the critical intensity, leading to a signi�cant324

overestimate of the critical stress intensity and, therefore, potential overestimate of the safe levels325

of exposure.326

The e�ects of stressors that directly produce damage (PD) can be understood from the analysis327

in Appendix C. The analysis shows that PD can cause saddle node bifurcations only. Consequently,328

stress increasing directly both ROS and damage (PZ , PD > 0) in two-steady state systems causes329

qualitatively the same e�ects as the stress directly a�ecting ROS only (PZ > 0, PD = 0); the330

addition of direct damage production (PD) only reduces the range of exposure levels for which the331

two steady states exist, and reduces the ability of the organism to recover from additional damage332

(reduces the damage and/or ROS necessary for TP2).333
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Figure 3: Three types of qualitative dynamics for e�ects of stress on damage production. Rate
of change of damage (dD/dt) as a function of damage (D) for PΦ

Z and PC
Z (solid lines), and an

intermediate value of PZ (dashed line). Intersections of the lines with y = 0 (dotted line) represent
equilibria (dD/dt = 0). If the line crosses from positive to negative dD/dt as D increases, the
equilibrium is stable; otherwise, it is unstable. Stressor intensities PΦ

Z are characterized by an
UPSE with low equilibrium values of D (and, therefore, Z). As PZ increases above PΦ

Z , the stable
equilibrium moves to the right (attained for larger D), the line curves up, and the second, unstable
equilibrium is reached for high values of D. For PZ = PC

Z , TP1 is reached (second solid line) with
only one neutral equilibrium (at D = DC = 1.86). All stressor intensities higher than PZ result in
a runaway. Parameter values listed in Table B.1 used, only PZ varied.
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Figure 4: Tipping points and typical trajectories. Top left: rate of change of damage (dD/dt)
as a function of damage (D). Consecutive lines represent increasing stressor intensities: PZ =
PΦ
Z , 3.5PΦ

Z , P
C
Z , 4PΦ

Z , and 4.5PΦ
Z . Unstable equilibrium DU = 5.11 appears for PZ = 3.5PΦ

Z . Note
that the rate of accumulation of damage for stressor intensities only slightly higher than PC still
have a minimum, hence a proximate reduction in the damage increase rate does not necessarily
imply successful damage regulation. Other plots: trajectories corresponding to PZ used in the top
left plot with di�erent initial values of D. Top right: D(t) for D(0) = 0. Trajectories for PZ < PC

Z

eventually equilibrate. Bottom left: D(t) for D(0) = 2. Since D(0) > DC , the trajectory for
P = PC

Z diverges; since D(0) < DU , the trajectory for intermediate stressor intensities equilibrates.
Bottom right: D(t) for D(0) = 5.3. Since D(0) > DC , all trajectories with PZ > PΦ

Z diverge.
Parameter values listed in Table B.1 used, only PZ varied.
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Figure 5: Interpretation of transient dynamics. Left plot: Simulation of an experiment with a
target stressor intensity P 0

Z = 0.95PC
Z (dashed line), and an additional stress resulting from the

details of the experimental setup. Additional stress is 7% of target (solid line). Although the
organism manages to control damage when exposed to target stressor intensity, D experiences
a runaway when the stressors are combined. The closer to PC

Z the target stressor intensity is,
the smaller the additional stress needed to cause the runaway. Therefore, even small additional
stress can completely change the dynamics, especially if target experimental stress (P 0

Z) is close
to the critical stress (PC

Z ). Right plot: Simulations of an experiment with a stress pulse in
addition to the background stress. Background stress: 1.1PΦ

Z ; additional stress: P
C
Z starting at

t=5. Damage levels equilibrate if the additional stress ends at t1 = 8.5 minutes. If the stress
lasts just half a minute more (ending at t2 = 9), D crosses the initial value-related tipping point
(TP2), and the damage levels spiral out of control. Therefore, duration of pulsed studies matters,
especially if multiple pulses are investigated: in case the time between pulses does not allow for a
full recovery, the organism may experience a ratcheting mechanism: each cycle leaves more damage
in the organism, eventually tipping the system. Parameter values listed in Table B.1 used, only
PZ varied.
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Figure 6: Transients a�ect perceived e�ects of stress depending on duration of observation, t.
Damage at time t (log scale) shown for a range of stressor intensity (PZ). Critical stress (PC

Z =
16370) can be estimated by looking at the pattern of damage accumulation: once P > PC

Z , damage
accumulates inde�nitely, thus if given enough time to accumulate resulting in a marked increase
in accumulated damage (a 'kink' in the damage vs. exposure curve). Short observation periods
do not leave enough time for ROS and damage to spiral out of control even when P > PC

Z , so
the transition (from slow to fast accumulation of damage) seems to happen for larger stress. As
a result, PC

Z could be signi�cantly overestimated; in this example, the estimate would be 22000,
18000, and 17000 for t = 1, 5, and 10, respectively). A longer observation period (t=30), however,
correctly estimates PC

Z ≈ 16400. Parameter values listed in Table B.1 used, only PZ varied.
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3 Discussion385

We developed simple models for two generic types of indicators of cellular stress: proxies for386

damage (e.g. carbonylation, membrane permeability, electron transport function), and proxies387

for damage-inducing compounds (notably ROS). The models o�er a minimal representation of388
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currently accepted understanding of dominant processes in the cell to describe ROS creation due389

to metabolism and exposure to environmental stressors, regulation of ROS, damage in�icted by390

ROS and directly by environmental stressors, and regulation of damage. The complexity of cellular391

regulatory networks is condensed into simple negative feedback loops requiring one 'controller' for392

each controlled variable. The full model has four state variables (ROS, ROS control, damage, and393

damage control/repair), but model reduction is possible by recognizing that the damage dynamics394

are slow relative to other processes.395

Although damage is the true �slow� variable, we focused much of our analysis on two state396

variables (ROS and damage) because these (or proxies) relate to quantities frequently measured397

in ecotoxicological studies. The analysis showed the possibility of: (i) tight regulation of ROS and398

damage in some conditions, and (ii) unbounded (runaway) increase of ROS and damage in others.399

The relationship between susceptibility and resistance to exposure de�ned by (11) inform about400

the conditions in which stable equilibrium can be achieved.401

Runaway dynamics are a consequence of a positive feedback between ROS and damage resulting402

in uncontrolled increase in both: more ROS begets more damage, and more damage begets more403

ROS. Transitions from a stable, controlled state to runaway dynamics involve one of two types of404

tipping points:405

� Type 1: parameter or forcing-induced tipping point. Type 1 tipping point can be reached406

by either bifurcation of a unique positive stable equilibrium (UPSE) into runaway dynamics407

(interpretable as a saddle node bifurcation at D = ±∞ or D−1 = 0), or a saddle-node408

bifurcation as two equilibria approach and annihilate each other. The tipping point can be409

caused by changes in stressor intensity, but only if the e�ects of damage on ROS production410

are multiplicative or if the stressor directly a�ects ROS production or cell damage.411

� Type 2: related mathematically to initial condition dependence or biologically to the history412

of the system under study: accumulation of damage and/or ROS above a critical level can413

cause a runaway of an otherwise controllable system. The transition can be induced by414

�uctuating stressors, for example a long and/or intense stress pulse, or by a ratchet-like415
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response to periodic stress if damage from one cycle is not fully repaired before another cycle416

starts. This tipping point is of particular importance because it can occur in all investigated417

(non-linear) models whenever two steady states exist (see Table 2), and because it depicts418

long-term sensitivity to multiple and recurring stressors.419

Our models were motivated by the large, and growing body of literature reporting simultaneously420

enhanced levels of ROS and of some measure of damage in response to environmental stress. Each421

of our models predicts that increase in direct stressor e�ects on ROS (PZ) or damage (PD) can422

cause long-term increase in both ROS and damage, irrespective of whether there are runaway423

dynamics or a stable steady state (Appendix D). Strong correlation between observed ROS and424

cellular damage may be caused by either direct contribution to ROS production, or direct damage425

production. Distinguishing between the two possibilities is possible in principle by comparing426

transients, but this requires time series rather than just endpoints. We know of no experimental427

study where this has been attempted. Note that lack of observable correlation between changes428

in ROS and cellular damage does not preclude direct stressor contribution to ROS production.429

Depending on the parameter values, the ratio of ROS and damage can increase, decrease, or430

remain constant with time and/or exposure (Appendix D). Also, the type of control mechanism431

might in�uence these results; although only one family of control mechanisms was considered here,432

others are possible and can be substituted in place of RZ and RD (e.g. integral control (Drengstig433

et al. 2012) or rein control (Saunders et al., 1998; Saunders et al., 2000), which could cause ROS434

to remain constant under stress).435

Indeed, our analysis (Appendix C) highlights dynamic features that might be most susceptible436

to the choice of type of control. While all investigated types of control permit at least one steady437

state, details of the control determine the number and character of steady states. Interestingly,438

the analysis (Appendix C.2.2) shows that qualitative dynamics of a model with saturating damage439

control does not depend on whether ROS control is saturating or not. Since our analysis largely440

relied on generic properties common to many regulatory mechanisms (e.g. increase of regulation441

with stress, and possibility of overwhelming regulation), we expect that alternative functional442
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forms based on the same consideration follow similar qualitative patterns. Choices of the details443

in any particular application are best informed by the prior knowledge of the modeled system, and444

experimental data.445

The key to using our models to interpret experimental data is to have time resolved measure-446

ments of ROS and damage. Damage creation and repair are dynamical processes; even when ROS447

and control dynamics equilibrate rapidly, transients can still have signi�cant consequences. For448

example, critical exposure can be overestimated due to transients (Figure 6); time-resolved mea-449

surements would show whether ROS and damage levels equilibrated, thus preventing masking of450

runaway dynamics by slow transients. That said, we appreciate the practical di�culty in obtaining451

the time resolved measurements, as the relevant procedures are commonly destructive.452

Our model analyses used a time-scale separation argument to focus on the relatively slow dy-453

namics of damage, so our conclusions only relate to the slow (long time scale) dynamics. Therefore,454

when modeling acute exposures, the validity of the time separation argument has to be scrutinized.455

The full four-dimensional model can exhibit very large transients in the 'fast dynamics' resulting456

from inclusion of all four state variables, but these are almost certainly biologically unrealistic as457

a wide range of mechanisms not included in the model may be implicated in ROS regulation over458

very short times. Therefore, a more detailed, context-speci�c characterization of ROS dynamics is459

necessary if aiming to model the fast dynamics.460

Even in this minimal representation, all our models have at least one tipping point and could461

be used in conjunction with other process-based models, such as those of Dynamic Energy Budget462

(DEB) theory (see Leeuwen et al. 2010 for an example). With such combinations, ecologically463

relevant but experimentally elusive stressor impacts can be assessed. For example, a toxicokinetic464

model may require energy �uxes de�ned by a DEBmodel to properly account for e�ects of exposure.465

Since our models specify control and repair �uxes, the required energetic costs could be calculated466

and included in a DEB model to calculate sub-lethal stressor impacts such as those on growth and467

reproduction and, subsequently, on population dynamics.468

The latter requires a model relating environmental stress to mortality, for which the concept469
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of hazard in the DEB theory might be used. Hazard represents the instantaneous probability of470

dying caused by accumulation of irreversible damage, whose accumulation is essentially a mech-471

anism of physiological aging. Adapting the model presented here to track irreversible damage is472

straightforward. Mathematically, it amounts to setting damage repair to zero (gD = 0), but the473

interpretation of damage (D) and damage yield (yD) subtly changes: only irreparably damaged474

cellular components are considered damage (e.g. irreparably damaged DNA, and reduced function475

of proteins produced by such DNA). The de�nition of yield changes accordingly to include only476

the production of newly created irreparable damage. Our model can track both repairable and477

irreparable damage using a di�erent state variable for each type of damage, but special attention478

should be given to interaction between the two types of damage.479

Although state variables were de�ned with distinct cellular processes in mind, simpli�cation480

required a signi�cant level of abstraction that comes with a cost in ability to relate state variables481

to measurable quantities. For example, damage produced by ROS is a�ected both by the species482

and the location of the ROS. The model framework set up here could easily be adapted to include483

some heterogeneity in ROS and account for various types of proxies for damage without a�ecting484

the qualitative dynamics leading to tipping points.485

Although abstraction of state variables and cellular control processes creates challenges in486

applying the model to particular systems, it increases generality of the approach. All organisms487

have developed strategies to mitigate consequences of environmental stress and stress created488

by their own metabolism. These strategies more often than not rely on negative and positive489

feedbacks that impact the dynamics of damage and damage-inducing compounds. Therefore, with490

reinterpretation of the state variables, the model (or similar models) - as well as the concepts491

of susceptibility and resistance to exposure - becomes applicable to more complex, multicellular492

organisms.493
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6 APPENDICES578

A Dynamics of controller compounds579

In our model, ROS inactivation and damage repair function as controls of ROS and damage. The580

control is mediated by controller compounds (controllers) that are produced by the cell, interact581

with the controlled compounds (inactivate ROS and/or repair damage), and decay (see Table582

A.1). We considered two types of mechanisms for the control, depending on the type of interaction583

between controllers and ROS/damage: linear and saturating. The ROS controller dynamics and584

control of ROS is detailed below; the rationale of damage control is similar.585

Table A.1: ROS and damage dynamics, complete with the dynamics of their respective controllers,
E and A.

586

587

dynamics �uxes

dZ

dt
= jZ,prod − kZZ − jZE

jZ,prod ROS production due to metabolism and stress
kZZ spontaneous ROS reaction �ux (causing damage)
jZE controlled ROS removal �ux (mediated by E)

dE

dt
= jE,prod − jE,out

jE,prod saturating production �ux of E in response to ROS
jE,out inactivation �ux of the controller compound E

dA

dt
= jA,prod − jA,out

jA,prod saturating production �ux of A in response to damage
jA,out inactivation �ux of the controller compound A

dD

dt
= jD,prod − jDA

jD,prod damage production due to spontaneous ROS reactions
jDA damage repair (mediated by A)

588

We assume that the production of E, the ROS controller, is induced in the presence of ROS.589

Therefore, the production of E increases as ROS levels increase but, recognizing that the upregu-590
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lation potential of a cell is �nite, we assume a Michaelis-Menten type of saturating dynamics:591

jE,prod =
vEZ

KE + Z
, (A.1)

where vE is the maximum production rate of E, and KE is the induction saturation constant.592

Controller compounds are inactivated due to cellular turnover, interactions with controlled593

compounds, and/or targeted degradation mechanisms. We choose simple, linear dynamics:594

jE,out = kEE, (A.2)

where kE is the controller inactivation rate.595

In the case of linear control of ROS inactivation, we assumed that controlled ROS inactivation596

depends on the contact rate between the controller, E, and ROS, Z, resulting in a simple bilinear597

collision term:598

jlinearZE = gZEZ, (A.3)

with gZ signifying the ROS control strength coe�cient.599

For the saturating control of ROS inactivation, we considered that there may be an appreciable600

'handling time' for inactivation of ROS by E and, consequently, assumed that:601

jsaturatingZE = gZEZ
KZ

KZ + Z
, (A.4)

where KZ is the relative saturation coe�cient.602

If stress intensities change slowly relative to the dynamics of controllers, e.g. because the603

bioaccumulation of toxic stressors is gradual, and if stress intensities do not exceed a value that604

would cause rapid unbounded increase in ROS and damage, we can set dE/dt = 0 and solve the605

corresponding equation in Table A.1 for a quasi-equilibrium value of E:606

E∗ =
vE
kE

Z

KE + Z
. (A.5)
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Inserting A.5 into the equation for dZ/dt in Table A.1 gives607

RZ =


vZZ

2

KE+Z
for jlinearZE

vZZ
2

(KE+Z)(1+Z/KZ)
for jsaturatingZE

, (A.6)

where vZ = gZvE/kE. Equivalently, with vD = gDvA/kA,608

RD =


vDD

2

KA+D
for jlinearDA

vDD
2

(KA+D)(1+D/KD)
for jsaturatingDA

. (A.7)
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B Parameter values609

Table B.1: Symbols, state variables, parameters, and reference values. The reference values were
used in simulations unless otherwise noted. The acronym �u.of� stands for �units of�.

610

611

symbol meaning reference values

State variables and �ux symbols
Z damage-inducing compounds (ROS) -
D cellular damage -
E controller variable - ROS control -
A controller variable - damage repair -
S stressor intensity -
P0 metabolic ROS production �ux -
PZ stress-related ROS production �ux -
PD stress-related damage production �ux -
RZ regulated ROS clearance -
RD regulated damage repair -

parameters (alphabetical order)
gD damage repair coe�cient 0.001 minute−1

gZ ROS control strength coe�cient 25 minute−1

gZD multiplicative damage interaction coe�. 0.1 (u.of D)−1

γDS stress-related damage production coe�. 0
γZD additive damage interaction coe�cient 0
γZS stress-related ROS production coe�cient included in PZ
KA half-saturation constant for production of A 1 u.of A
KD relative saturation coe�cient of damage repair 1 u.of D
KE half-saturation constant for production of E 1 u.of E
KZ relative saturation coe�cient of ROS control 1 u.of Z
kA clearance/turnover rate of A 0.012 minute−1

kE clearance/turnover rate of E 0.012 minute−1

kZ passive ROS clearance rate coe�cient 50 minute−1

vA maximum production rate of A 5 u.of A/minute
vD damage control rate coe�cient gDvA/kA
vE maximum production rate of E 5 u.of E/minute
vZ ROS control rate coe�cient gZvE/kE
yD damage yield from passive ROS reactions 0.001

612

Although we aimed at characterizing the dynamics of our model variants qualitatively, we used613

plausible parameter values whenever possible. All parameter values, and state variables are listed614

in Table B.1.615

Here we show our reasoning for choosing particular values for clearance rates (kZ , kE, and kA),616
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and maximum production/collision rates: (vE, vA, gZ , and gD). For this purpose, we take the617

SOS DNA repair network in Escherichia coli as a paradigm for our system and assume that the618

dynamics of the RecA protein of this repair network, as quanti�ed by Friedman et al. (2005), are619

representative for those of the controller compounds in our system.620

Friedman et al. (2005) used UV radiation as a stressor to induce the promoter activity of621

a fusion product of the RecA promoter and a �uorescent protein. At saturating levels of UV622

radiation, the expression rate of this fusion product is about 5 arbitrary unites (au) per minute623

(see Figure 1C in Friedman). Accordingly, we take vE = vA = 5au/min.624

Nath and Koch (1971) estimated the half-life of proteins in starved E. coli at about 60 minutes.625

Assuming a similar half-life for the controllers in our system,626

kA = kE =
ln(2)

60
= 0.012 per minute. (B.1)

This rate is consistent with RecA decay measured after a peak in expression in Deinococcus radio-627

durans (Vla²i¢ et al. 2008).628

Panel F from Friedman's et al. (2005) Figure 1 shows that - for low exposures - promoter629

activity starts to decline within 35 minutes, consistent with the estimate of 40 minutes for the630

repair response of the SOS gene cascade (Michel 2005). If the decline in promoter activity results631

from successful damage repair (i.e. no need for the expression of repair mechanism proteins once632

the damage is repaired), we can use the time of decline as a proxy for time to successful repair.633

Assuming double the exposure creates double the damage, we can then use panels D and G to634

estimate the repair rate at maximum expression. Following a 20 J/m2 exposure (Panel D), it takes635

about 70 minutes for the reduction in promoter activity to start; following a 50 J/m2 exposure,636

the time to reduction is approximately 130 minutes. Hence, the half-life of damage is about 60637

minutes *when regulation is at the maximum*, i.e. when638
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Amax =
vA
kA

≈ 420, and (B.2)

gD = ln(2)
τ0.5Amax

=
0.70

60 · 500
= 3 · 10−5. (B.3)

Such a low value of made the equilibrium hard to attain, so we used a larger value of 0.001639

per minute. The ROS clearance rate (kZ) and interaction coe�cient (gZ) should be signi�cantly640

higher because ROS dynamics is extremely fast; we arbitrarily set them to 25 per minute and 50641

per minute, respectively. The following values were used for other parameters: yield coe�cient642

yD = 0.001, strength of e�ect of damage on ROS production gZD = 0.1. All saturation constants643

were set to unity.644
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C Equilibrium states and stability656

The models in Table 2 can be written in a general form:657

dZ

dt
= PZ +D(γZD + gZDPZ)− kZZ −RZ ,

dD

dt
= yDkZZ + PD −RD,

(C.1)

where RZ and RD have one of the implicit forms shown in Table 1 (see also Appendix A). The658

feedbacks de�ned by (10) form a Jacobian:659

J =

 Φ−ZZ Φ+
ZD

Φ+
DZ Φ−DD

 (C.2)

=

 − (kZ + ∂RZ/∂Z) gZDPZ + γZD

yDkZ −∂RD/∂D

 , (C.3)

where the matrix

elements have signs
=

 < 0 > 0

> 0 ≤ 0

 . (C.4)

Since each of the functions RZ and RD in Table (1) is a monotonic increasing function of its660

argument, the respective partial derivatives are positive, and both Φ−ZZ and Φ−DD are negative for661

any combination of parameters (with kZ , vZ , vD > 0), i.e. Φ−ZZ + Φ−DD < 0. From the Bendixson662

criterion (McCluskey and Muldowney 1998), there can therefore never be periodic solutions of the663

equations. Thus, the only possible attractors are �xed points (equilibria).664

An equilibrium (Z∗, D∗) is stable if the trace of the Jacobian evaluated at the equilibrium is665

negative and the determinant is positive, i.e.666

Φ−ZZ + Φ−DD < 0, and Φ−ZZΦ−DD − Φ+
ZDΦ+

DZ > 0 (C.5)

when evaluated at (Z∗, D∗). Since the �rst inequality is always satis�ed, the stability is determined667

by the second inequality, which has a simple graphical interpretation in the Z-D plane. First, let668
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us consider the two isoclines:669

D(Z) =
1

gZDPZ + γZD
(kZZ +RZ − PZ) , the "Z-isocline" (in Z-D space) (C.6)

and Z(D) =
1

yDkZ
(RD − PD) , the "D-isocline" (in D-Z space), (C.7)

whose slopes (in Z-D plane) are670

aZ =
∂D(Z)

∂Z
=

kZ + ∂RZ/∂Z

gZDPZ + γZD
=
−Φ−ZZ
Φ+
ZD

, (C.8)

a−1
D =

∂Z(D)

∂D
=

∂RD/∂Z

yDkZ
=
−Φ−DD
Φ+
DZ

, (C.9)

where aD in Z-D plane is an inverse of the slope calculated in D-Z plane. Reorganizing the second671

inequality in (C.5), while taking the known signs from (C.4) into the account, gives:672

∣∣Φ−ZZ∣∣∣∣Φ+
ZD

∣∣ >

∣∣Φ+
DZ

∣∣∣∣Φ−DD∣∣ , (C.10)

aZ > aD, (C.11)

i.e. when evaluated in the Z-D plane at the equilibrium, the slope of the Z-isocline must be greater673

than the slope of the D-isocline.674

Note that RZ(0) = RD(0) = 0, implying that for any PZ > 0 and PD ≥ 0, D(0) < 0 and675

Z(0) ≤ 0. Hence, the intercepts of the D-isocline on the D axis and of the Z-isocline on the Z axis676

are both positive. Furthermore, if (C.11) holds in the limit as Z,D →∞, then for su�ciently large677

values of Z, the value of D on the Z-isocline always exceeds its value on the D-isocline. Since the678

opposite holds when Z = 0, there must be at least one intersection. Thus, a su�cient condition679

for the existence of at least one steady state is680

lim
D,Z→∞

(
Φ−ZZΦ−DD − Φ+

ZDΦ+
DZ

)
> 0, (C.12)

i.e. equation (11) in the text. To determine the number of possible equilibria, we continue to use681
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the isoclines in the positive quadrant of the Z-D plane, but further analysis requires speci�cation682

of RZ and RD.683

C.1 Linear interaction terms684

When the interaction terms de�ning ROS inactivation and damage repair are linear in Z and D685

respectively, the functions RZ and RD from Table 1 are686

RZ =
vZZ

2

KE + Z
; RD =

vDD
2

KA +D
. (C.13)

Starting with the Z-isocline in the Z-D plane687

∂2D(Z)

∂Z2
∝ ∂2RZ

∂Z2
> 0, (C.14)

thus the Z-isocline is concave upward (convex) in the Z-D plane. Similarly, the D-isocline is concave688

upward in the D-Z plane:689

∂2Z(D)

∂D2
∝ ∂2RD

∂D2
> 0, (C.15)

i.e. concave downward in the Z-D plane. Since i) both isoclines increase with Z (equations (C.8)690

and (C.9)), ii) the Z-isocline is concave upward while the D-isocline is concave downward, and iii)691

the Z-isocline has a positive intercept on the D-axis, and the D-isocline has a positive intercept692

on the Z-axis, the isoclines can only intersect once in the positive quadrant of the Z-D plane.693

Therefore, at most one (unique) positive steady state exists, provided that for su�ciently large Z694

inequality (C.11) is satis�ed, i.e. aZ > aD. This unique steady state also must be stable because695

the concavity of both isoclines remains the same, so if (C.11) is true for any Z > 0, the UPSE696

condition (11) is also necessarily true. Note that the proof of this result relies only on the concavity697

of the isoclines, not on our speci�c choice of functional forms (C.13).698
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C.2 Saturating interaction terms699

In this section, we investigate steady states and stability of models with one or both saturating700

terms. First, we investigate the double-saturating model (saturating control of both ROS and701

damage). In addition to the equations above, we will need:702

1. �rst derivatives of the isoclines with respect to the independent variable:703

gZD
∂D

∂Z
= kZ +

vZZ(Z(KE +K−1
Z ) + 2KEK

−1
Z )

(KE + Z)2 (K−1
Z + Z

)2 > 0 for Z>0. (C.16)

yDkZ
∂Z

∂D
=

vDD(D(KA +K−1
D ) + 2KAK

−1
D )

(KA +D)2 (K−1
D +D

)2 > 0 for D>0 (C.17)

2. second derivatives of the isoclines with respect to the independent variable:704

gZD
∂2D

∂Z2
=

2vZ(2K2
EK

−2
Z − 3K−1

Z KEZ
2 − (KE +K−1

Z )Z3)

(KE + Z)3 (K−1
Z + Z

)3 (C.18)

yDkZ
∂2Z

∂D2
=

2vD(2K2
AK

−2
D − 3K−1

D KAD
2 − (KA +K−1

D )D3)

(KA +D)3 (KD +D)3 (C.19)

3. more convenient de�nitions of the isoclines:705

(a) we re-de�ne the Z-isocline (C.6) as D1(Z) = D(Z), and706

(b) since the D-isocline in D-Z plane (C.7) is monotonic and therefore has an inverse, we707

can de�ne it in Z-D plane as D2(Z).708

During the analysis, we utilize the following statements regarding the Z-isocline (ZISO) and709

D-isocline (DISO):710

1. Except in a singular case of a touching intersection, models with saturating damage repair711

can only have an even number of steady states (0, 2, 4...) for Z,D > 0. Proof: for Z = 0,712

D1(Z) < D2(Z). Furthermore, note that D2 diverges at ZC = limD→∞ Z(D), so the domain713

of D2 in the �rst quadrant is [0, ZC ]. Also, ∃εC > 0|D1(ZC− ε) < D2(ZC− ε)∀ε < εC . Hence,714
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on the both ends of the domain (0, ZC)), D1(Z) < D2(Z). This is only possible if isoclines715

intersect an even number of times, or if D1(Z) ≤ D2(Z)∀Z ∈ [0, ZC ]. The latter is satis�ed716

when there are no intersections, or in the singular case of a touching intersection (aZ = aD717

at the intersection).718

2. The positive steady state at (for Z∗1) closest to the origin is stable. Proof: since D1(Z) <719

D2(Z)∀Z ∈ [0, Z∗1), dD1/dZ|Z∗1 >
dD2/dZ|Z∗1 . Therefore, unless the slopes are exactly equal, the720

condition (C.11) is satis�ed, and the �rst equilibrium in the �rst quadrant (i.e. the721

equilibrium for the smallest Z > 0) is stable.722

3. In the �rst quadrant (Z,D > 0), the second derivatives of the isoclines are decreasing func-723

tions of their respective independent variables. This is readily discernible from equations724

(C.18) and (C.19): the greater the independent variable, the smaller the nominator, and725

the larger the denominator. Note that this means that d2D1/dZ2 can only decrease, and that726

d2D2/dZ2 can only increase.727

4. Isoclines with saturating control can have only one in�ection point. Proof: since, when728

evaluated at 0, both second derivatives ((C.18) and (C.19)) are greater than zero, statement729

3 guarantees that, as Z and D increase, (C.18) and (C.19) can intersect the x-axis only once.730

Hence, the second derivatives have only one positive root and, therefore, the isoclines have731

only one in�ection point.732

C.2.1 Model with saturating control of both ROS and damage733

We start the analysis by noting that for Z = 0, D1 < D2 and 0 = dD1/dZ < dD2/dZ. For the isoclines734

to intersect, dD1/dZ has to increase, and dD2/dZ has to decrease. Since (at Z = 0) d2D1/dZ2 > 0735

and d2D2/dZ2 < 0, the intersection is possible. As Z increases, d2D1/dZ2 decreases, while d2D2/dZ2
736

increases until at least one isocline reaches the in�ection point (second derivative equal to zero).737

If the isoclines intersect once, the second intersection (at Z∗2) is only possible if at least one of738

the isoclines switches concavity for Z < Z∗2 (otherwise the isoclines would continue to diverge).739
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Note that, at the second intersection, dD1/dZ|Z∗2 <
dD2/dZ|Z∗2 . For the third intersection to exist, the740

reverse would have to be true; hence, either dD1/dZ would have to increase, and/or dD2/dZ would741

have to decrease.742

Depending on which isocline(s) reached the in�ection point, we distinguish three possibilities:743

� P1: OnlyD2 reached the in�ection point: both isoclines are concave upwards (d2D1/dZ2, d2D2/dZ2 > 0).744

Since D2 has to remain concave upwards (statement 4), dD2/dZ can only increase further.745

Hence, only a su�cient increase in dD1/dZ could cause a third intersection. Such an increase746

is, however, impossible (statement 3).747

� P2: OnlyD1 reached the in�ection point: both isoclines are concave downwards (d2D1/dZ2, d2D2/dZ2 < 0).748

Since D1 has to remain concave downwards (statement 4), only a su�cient decrease in dD2/dZ749

could cause a third intersection; such an increase is impossible (statement 3).750

� P3: Both isoclines reached the in�ection point, soD1 is concave downwards andD2 is concave751

upwards. Since there are no additional in�ection points, the isoclines will continue to diverge,752

making a third intersection impossible.753

Therefore, the third intersection is impossible, i.e. there is a maximum of two intersections. State-754

ment 1 then guarantees that (baring the singular case), there are either zero or two intersections;755

if two states exist, the one closer to the origin is stable (statement 2).756

C.2.2 Model with linear control of ROS and saturating control of damage757

Here, only D2 can have an in�ection point; D1 remains concave upwards. However, all statements758

and steps in the analysis of the double-saturating model apply, with the exception that P2 and P3759

need not be considered. Therefore, the results are the same: ignoring the singular case, this model760

can have either zero or two steady states, and the steady state closest to the origin is stable.761

Note that models with saturating control of damage have a similar qualitative dynamics (in762

terms of existence of steady states) regardless of whether ROS control saturates or not. This is763

because, even when ROS control is saturated, ROS continues to be inactivated in the process of764
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damage creation: mathematically, the inactivation (∼ Z) is (in terms of dynamics) indistinguish-765

able from linear control for large Z (limZ→∞RZ ∼ Z). Hence, even when the ROS control is766

saturated for large Z, the inactivation term assumes the dynamical role equivalent to that of linear767

ROS control. Clearly, the actual dynamics will di�er due to the positive feedback loop between768

ROS and damage.769

C.2.3 Model with saturating control of ROS and linear control of damage770

Here, D1 can have an in�ection point, but D2 cannot. Therefore, statement 1 is not applicable,771

and condition (11) needs to be considered. Two cases are possible:772

1. Condition (11) is satis�ed. Then, D1 < D2 for small and D1 > D2 for large values of Z.773

This is only possible if there is an odd number of intersections (1, 3, 5...). Since more than774

two intersection are not possible, there is one and only one intersection whenever condition775

(11) is satis�ed.776

2. Condition (11) is not satis�ed. Then,D1 < D2 for both small and large values of Z. Therefore777

(ignoring the singular case and recognizing that the third steady state is impossible), either778

zero or two intersections exist. Statement 2 holds, so the steady state closer to the origin is779

stable.780

C.3 REFERENCES781

McCluskey, C.C. and Muldowney, J.S. 1998. Stability Implications of Bendixson's Criterion. SIAM782

Review 40(4):931-934783

D Correlations between ROS and damage784

Here we look at how Z changes relative to D by a qualitative analysis of 1) equilibrium values of785

Z and D as forcing (PZ or PD) increases, and 2) the ratio of Z and D in a runaway.786
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D.1 Changes in the equilibrium as forcing increases787

Let a = ∂D(Z)/∂Z |∗ be the rate of change of Z-isocline (C.6) with respect to Z, and b = ∂Z(D)/∂(D) |∗788

the rate of change of D isocline (C.7) with respect to D at the stable equilibrium. For the789

equilibrium to exist, the two isoclines need to intersect, and for the equilibrium to be stable, the790

Z-isocline has to be steeper than the D-isocline (a > b−1).791

We start by linearizing the isoclines at the steady state, Z∗ andD∗, and consider an in�nitesimal792

increase in PZ resulting in changes of the equilibrium, δZ∗ and δD∗. Since PZ a�ects only the Z793

isocline, it is appropriate to observe the shift of the equilibrium along the D isocline,794

δZ∗ = bδD∗. (D.1)

The ratio of δD∗ and δZ∗is, therefore, equal to b−1:795

b−1 =

(
∂Z(D)

∂D

)−1

∗
= yDkZ

(
∂RD

∂D

)−1

∗
= yDkZ


(KA+D∗)2

D∗vD(D∗+2KA)
for jlinearDA

(KA+D∗)2(KD+D∗)2

D∗KDvD(D∗(KD+KA)+2KDKA)
for jsaturatingDA

.

(D.2)

For linear control (linear jDA), b
−1 starts very high and approaches a constant as D∗ increases.796

We can therefore expect, as stress increases, supra-linear correlation between D∗ and Z∗ for small797

stressor intensities, and a constant ratio for D∗ signi�cantly higher than 2KA.798

For saturating jDA, b
−1 is again extremely large when D∗ is small (small PZ), reduces for799

intermediate D∗, and approaches in�nity as D∗ increases further. We could, therefore, expect800

that the correlation between Z∗ and D∗, as stress intensity increases, is �rst supra-linear, then801

sub-linear, and then supra-linear again. Consequently, the type of correlation between Z∗ and D∗802

will depend on parameter values.803

Next, let us consider changes in e�ects of increase in PD. Since PD only a�ects the D isocline,804

it is opportune to look at the shift of the equilibrium along the Z-isocline:805

δD∗ = aδZ∗. (D.3)
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Consequently,806

a =
∂D(Z)

∂Z
=

1

Φ+
ZD

(
kZ +

∂RZ

∂Z

)
=

1

Φ+
ZD


kZ + Z∗vZ(Z∗+2KE)

(KE+Z∗)2
for jlinearZE

kZ + Z∗KZvZ(Z∗(KZ+KE)+2KZKE)

(KE+Z∗)2(KZ+Z∗)2
for jsaturatingZE

.

(D.4)

For linear jZE, the correlation between Z∗ and D∗ increases until it reaches a constant value.807

Therefore, we can expect sub-linear (smaller increase in D∗ than Z∗) correlation for small, and808

linear correlation for large Z∗.809

For non-linear jZE, a increases with Z∗for small values of Z∗, then decreases for intermediate810

Z∗, and �nally approaches a constant for large Z∗. Hence, conditioned on the existence of the811

equilibrium, the type of correlation will depend on the parameters.812

D.2 The ratio of Z and D in a runaway813

Starting from the general dynamics (C.1), we �rst investigate three combinations of control types814

(see also Table 2): (1) linear RZ and RD, (2) saturating RZand linear RD, and (3) linear RZand815

saturating RD. Next, we investigate how dynamics changes when the positive feedback from D to816

Z is negligible (gZD = γZD = 0).817

Since in a runaway Z and D can be expected to be high enough that Z � KE, KZ and818

D � KA, KD, we approximate (C.1) with a non-homogeneous linear system of ODEs and recast819

it into a matrix form:820

d

dt

 Z

D

 = Ai

 Z

D

+ gi, (D.5)

43



where the subscript i = 1, 2, 3 represents one of the three cases, and821

A1 =

 − (kZ + vZ) γZD + gZDPZ

yDkZ −vD

 , g1 =

 PZ

PD

 ;

A2 =

 − (kZ + vZ) γZD + gZDPZ

yDkZ 0

 , g2 =

 PZ

PD − vD

 ;

A3 =

 −kZ γZD + gZDPZ

yDkZ −vD

 , g3 =

 PZ − vZ

PD

 .
(D.6)

Provided the matrix Ai is not singular, and PZ and PD are constants, the particular integral822

of (D.5) is a constant and can be ignored for large enough Z and D. Furthermore, only solutions823

to the homogeneous equation824

d

dt

 Z

D

 = Ai

 Z

D

 (D.7)

are of interest. The solutions for either state variable are a sum of two exponential functions of825

time (aiZ,De
λi1t+biZ,De

λi2t) where λi1,2 are the eigenvalues of Ai, and aZ,D and bZ,D the corresponding826

coe�cients for Z and D. Eventually, the dominant eigenvalue (λi1 by convention) will prevail, and827

the ratio of Z and D will be constant:828

lim
t→∞

Z

D
=
aiZ
aiD
. (D.8)

Analytic solutions are cumbersome, but solutions for speci�c sets of parameters can easily be829

calculated by solving (D.7), and the accuracy increased by taking into the account the complete830

solution of (D.5).831

Removing the positive feedback of D on Z changes the runaway dynamics considerably. When832

gZD = γZD = 0, runaway is impossible for linear RD (the left-hand side of UPSE condition in Table833

2 is zero). When RD is saturating, although Z always has steady state, a runaway is inevitable834

whenever damage production (yDkZZ+PD) is greater than the maximum damage repair (vD), i.e.835
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whenever yDkZZ + PD > vD. Then, ROS remains constant at Z∗ = PZ(kZ + vZ)−1, and damage836

increases linearly with the asymptotic rate of (yDkZZ + PD − vD).837
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