
CryptoBench: Benchmarking Evolutionary Algorithms with
Cryptographic Problems

Stjepan Picek

MIT, CSAIL

32 Vassar St

Cambridge, MA, USA

stjepan@computer.org

Domagoj Jakobovic

University of Zagreb, Faculty of El.

Engineering and Computing

Unska 3, Zagreb, Croatia

domagoj.jakobovic@fer.hr

Una-May O’Reilly

MIT, CSAIL

32 Vassar St

Cambridge, MA, USA

unamay@csail.mit.edu

ABSTRACT
We propose a new set of benchmark problems that come from the

�eld of cryptography. �ese problems are o�en easy to de�ne, they

are relevant in practice, and some of them have a known optimal

value. �e solutions from these problems can be used as crypto-

graphic primitives and consequently function as components of

cryptographic algorithms. �ey can be compared not only with

other evolutionary computation techniques but with a broad spec-

trum of techniques. Finally, due to the fact that many of the optimal

solutions are not known (although we know they must exist), �nd-

ing such solutions would also have a signi�cant practical impact.

KEYWORDS
Evolutionary computation, Benchmark, Boolean functions, Vecto-

rial Boolean functions, Physically Unclonable Functions

ACM Reference format:
Stjepan Picek, Domagoj Jakobovic, and Una-May O’Reilly. 2017. Crypto-

Bench: Benchmarking Evolutionary Algorithms with Cryptographic Prob-

lems. In Proceedings of GECCO ’17 Companion, Berlin, Germany, July 15-19,
2017, 8 pages.

DOI: h�p://dx.doi.org/10.1145/3067695.3082535

1 INTRODUCTION
We propose a benchmark suite based on several well-known prob-

lems from the domain of cryptography. �at approach o�ers several

advantages such as:

(1) Problems that are well-understood, yet di�cult.

(2) Problems that have practical signi�cance and where new

results can also a�ract a�ention from the cryptographic

community.

(3) Problems that are well investigated and where one o�en

has a signi�cant amount of knowledge a�ainable bounds

and trade-o�s.

(4) Problems where it is possible to compare the solutions

not only with EC techniques but also with solutions ob-

tained by deterministic techniques or other domain speci�c

heuristics.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’17 Companion, Berlin, Germany
© 2017 ACM. 978-1-4503-4939-0/17/07. . . $15.00

DOI: h�p://dx.doi.org/10.1145/3067695.3082535

We present three classes of cryptographic problems that o�er

tunability with respect to problem size, number of relevant crypto-

graphic properties, and possible representations of solutions includ-

ing discrete and continuous �xed-length vectors as well as genetic

programming expressions. �e problems considered here are based

on:

(1) �nding Boolean functions with a certain set of properties –

Section 4,

(2) �nding vectorial Boolean functions with a certain set of

properties – Section 5,

(3) �nding the delay vectors describing Physically Unclonable

Functions (PUFs) – Section 6.

Our presentation takes a solution representation perspective. All

problems herein can be fundamentally represented by a bitstring,

however there are more practical mappings to conventional evolu-

tionary computation (EC) representations. �e problems presented

here are already well explored and have plethora of results for

comparison. One can easily �nd a number of sources and publicly

available tools that o�er the needed functionalities for testing cryp-

tographic primitives [17, 31, 39]. Finally, we refer interested readers

for further details on applications of evolutionary computation to

cryptographic problems to [29, 30].

�e rest of this paper is organized as follows. In Section 2 we

give details about our framework. Section 3 introduces the nota-

tion and gives a general introduction to cryptographic problems

we consider here. Sections 4, 5, and 6 present the three classes

of problems: Boolean functions, vectorial Boolean functions, and

PUFs, respectively. Finally, Section 7 gives a brief conclusion.

2 CRYPTOBENCH FRAMEWORK
�e code for all considered problems is o�ered as a part of the

Evolutionary Computation Framework (ECF) [15] wri�en in C++

and also as a standalone set of functions [16]. �ere, we give not

only the implementations for properties presented here, but also

prede�ned �tness functions that cover all the speci�c problem

instances given here (as well as other problem instances). For each

class of the problems presented here, there is a separate project

to avoid confusion around which properties align with a class.

In [16] we also give, for each problem, state-of-the-art solutions

for a number of di�erent sizes and techniques (both heuristic and

deterministic). Finally, it is possible to submit new solutions to

enter a “Hall of Fame” as well as to provide the reference to work.

To facilitate a be�er understanding of the problems, but also

to potentially improve the system performance, our framework

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Stjepan Picek, Domagoj Jakobovic, and Una-May O’Reilly

(see Figure 1) o�ers several properties and representations of cryp-

tographic primitives wri�en in di�erent ways. For example, the

balancedness property of a Boolean function can be determined

from truth table and the Walsh-Hadamard transformation. We pro-

vide the code for all such options for �exibility. We also provide

the source code for both naive and optimized implementations for

various properties and representations of cryptographic primitives.

In Figure 1 we depict our framework for Boolean functions. We

show several possible representations of a Boolean function and

how it is translated into truth table form. From there, the property

checker can be regarded as a black box where for each input it

outputs the property value. If desired, this black box can be easily

examined in order to learn additional information about a speci�c

problem.

3 BACKGROUND AND NOTATION
One standard division of cryptography is into symmetric key cryp-

tography and public key cryptography [11, 28]. Going one step

further, symmetric key cryptography can be divided into block

ciphers and stream ciphers. Two out of three problems we pro-

pose belong to symmetric key cryptography where one has more

importance in stream ciphers and the other in block ciphers.

A common trait of all such ciphers is that they are designed to

ful�ll a speci�c number of cryptographic criteria. �ese varying

criteria enable ciphers to resist di�erent cryptanalysis a�acks like

di�erential [3], linear [22], and algebraic [8].

For instance, to make a block cipher resilient against linear crypt-

analysis, one option is to use vectorial Boolean functions with as

high as possible nonlinearity property value (we will explain the

meaning of this property and how its value is derived in Section 5).

In stream ciphers, one usual source of nonlinearity are Boolean

functions [5]. Both of these scenarios, while not unique, show the

importance of Boolean functions in cryptography. Finding Boolean

functions with good properties and analyzing the best possible

trade-o�s among these properties are still crucial questions today.

Such functions could then be used in new, be�er designs of ci-

phers. For a detailed discussion on Boolean functions and vectorial

Boolean functions, we refer readers to [5, 6].

Physically Unclonable Functions (PUFs) are embedded or stan-

dalone devices used as a means to generate either a source of ran-

domness or to obtain an instance-speci�c uniqueness for secure

identi�cation. �is is achieved by relying on inherent uncontrol-

lable manufacturing process variations, which results in each chip

having a unique response. Optimization techniques can be used to

�nd a model (“clone”) of a PUF by modeling the delay vector of an

actual PUF in as few measurements as possible. For more details

on PUFs, we refer interested readers to [1, 20].

3.1 Notation
Let n,m be positive integers, i.e., n,m ∈ N+. We denote by Fn

2

the n-dimensional vector over F2 and by F2
n the �nite �eld with

2
n

elements. �e set of all n-tuples of elements in the �eld F2 is

denoted by Fn
2

, where F2 is the Galois �eld with two elements. For

any set S , we denote S\{0} by S∗. �e usual inner product of a and

b equals a · b =
⊕n

i=1
aibi in Fn

2
. �e Hamming weight (HW) of a

Table 1: �e search space size for various input size n.

n 4 6 8 10 12 14 16

2
16

2
64

2
256

2
1 024

2
4 096

2
16 384

2
65 536

vector a, where a ∈ Fn
2

, is the number of non-zero positions in the

vector.

4 PROBLEMS BASED ON BOOLEAN
FUNCTIONS

�e role of Boolean functions is prominent in several areas besides

the cryptography, like sequences and coding theory. �erefore,

various methods for the construction of Boolean functions with

desired properties are of the direct interest. To be clear, we pro-

pose Boolean function problems that will use EC to �nd Boolean

functions with speci�c properties while it is also necessary for ex-

planatory purposes to describe in some detail these properties. For

further details on Boolean functions, we refer interested readers

to [5].

A Boolean function is any mapping from Fn
2

to F2. For a Boolean

function with n inputs, there are in total 2
2
n

possible Boolean

functions. We list several search space sizes for a Boolean function

with n inputs in Table 1 where it can be seen that the number of

functions grows exponentially and there is a variety of search space

sizes one can consider.

In order to be able to calculate di�erent cryptographic properties

of a Boolean function, we need to be able to switch among vari-

ous representations of Boolean functions. We discuss three such

representations in the next section.

4.1 Boolean Function Representations
A Boolean function f on Fn

2
can be uniquely represented by a

truth table (TT), which is a vector (f (0), ..., f (1)) that contains the

function values of f , ordered lexicographically, i.e., a ≤ b.

�e Walsh-Hadamard transformWf is a second unique represen-

tation of a Boolean function that measures the correlation between

f (x) and the linear functions a · x [5]:

Wf (a) =
∑
x ∈Fn

2

(−1)f (x)⊕a ·x . (1)

Finally, one can uniquely represent a Boolean function f on Fn
2

by means of a polynomial in F2 [x0, ...,xn−1] /(x2

0
− x0, ...,x

2

n−1
−

xn−1), i.e., by the Algebraic Normal Form (ANF). ANF is a multi-

variate polynomial de�ned as [24]:

f (x) =
⊕
a∈Fn

2

h(a) · xa , (2)

where h(a) is de�ned by the Möbius inversion principle

h(a) =
⊕
x �a

f (x), for any a ∈ Fn
2
. (3)

4.2 Solution Representation
�e problem of �nding a Boolean function with the desired crypto-

graphic properties is amenable to di�erent solution representations.

CryptoBench Benchmark Suite GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 1: Work�ow of CryptoBench framework. 1) Con�gure �le with function size and cryptographic properties 2) Run
evolutionary algorithm 3) Obtain truth table representation of a solution 4) Run Property checker 5) Use the checker’s output
as a metric of merit with values of desired properties. Note: this work�ow is valid for Boolean functions, vectorial Boolean
functions, and PUFs.

�is is important since many properties can be directly calculated

only from certain representations.

�e selection of the most appropriate representation of a so-

lution depends on di�erent objectives. For instance, one option

would be to use a solution representation that requires the least

number of changes of Boolean function representation in order to

calculate the necessary properties. A second option could be to use

a solution representation that is easier to understand or shorter –

for instance, truth table encoded with a bitstring representation is

easy to understand since each bit represents an output value for

a certain input values. Executable expression encoding could be

much more di�cult to understand but could potentially compactly

encode a Boolean function. What is common for all representations

is that they are unconstrained and it is of no importance for the so-

lution from the cryptographic perspective what encoding has been

used. Any unique encoding of a solution can be used to transform

the solution into any other encoding. Since speci�c cryptographic

properties pose challenges that di�er from one representation to an-

other, we expect the best results for problems of di�erent properties

to also di�er in which representation has been used.

Bitstring Representation. An obvious way of representing a Boolean

function is with its truth table, encoded as a sequence of bits. Since

the length of the truth table is 2
n

, where n is the number of Boolean

variables, this representation quickly becomes very large and in-

e�cient. Experiments with bitstring representation have been

conducted for sizes of up to 18 variables [14], but this encoding is

commonly applicable only for small scale problems, see [23, 32, 34].

Integer and Floating-point Representation. In the integer case, the

solution is encoded with an array of integer values, where each

value replaces a certain number of bits from the truth table. For

instance, a truth table of size 256 can also be represented with 32

integer variables in the range [0, 255]; this way, each integer value

is decoded into 8 bits that are concatenated in a complete truth

table.

�e same approach can be simulated with �oating-point values

in the range of [0, 1], where each �oating-point number is �rst

decoded into a corresponding integer value using a linear transfor-

mation, and then copied in the truth table. �is allows the use of

optimization algorithms that search the continuous domain. �ese

representations have been used for instance in [21, 36].

Executable expression representation. Another representation is

based on Genetic programming (GP), where a Boolean function is

represented through a combination of Boolean primitives such as

AND, XOR, NOT, etc. and input variables, and the expression is

evaluated to generate the Boolean truth table for each input com-

bination. �is representation is probably the most versatile one,

and has usually been shown to exhibit much be�er performance

than integer or �oating-point [32, 34]. �ere are many GP vari-

ants, such as Gene expression programming (GEP) or Cartesian

genetic programming (CGP), that can also be used to evolve vec-

torial Boolean functions (see Section 5). Examples of evolution of

Boolean functions with the executable expressions representation

are [14, 35].

4.3 Properties and Bounds
In this section, we list a number of properties of Boolean functions.

We also note con�icting properties, which means a trade-o� needs

to be chosen.

• A Boolean function f is balanced if it takes the value 1

exactly the same number 2
n−1

of times as value 0 when

the input ranges over Fn
2

.

• �e minimum Hamming distance between a Boolean func-

tion f and all a�ne functions (in the same number of

variables as f) is called the nonlinearity of f . �e non-

linearity Nf of a Boolean function f can be expressed in

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Stjepan Picek, Domagoj Jakobovic, and Una-May O’Reilly

terms of the Walsh-Hadamard coe�cients as [5]:

Nf = 2
n−1 − 1

2

max

a∈Fn
2

|Wf (a)|. (4)

�e Parseval’s relation equals:∑
a∈Fn

2

Wf (a)2 = 2
2n , (5)

and it implies that the mean of Wf (a)2 equals 2
n

, and

maxa∈Fn
2

|Wf (a)| is then at least equal to the square root

of this mean. From Eq. (5), it follows that the maximal

value of the Walsh-Hadamard spectrum equals at least 2

n
2 ,

which occurs with equality in the case of bent Boolean

functions. From this equation we see that the nonlinearity

of any Boolean function is less or equal to:

Nf ≤ 2
n−1 − 2

n
2
−1. (6)

• One related notion is of plateaued functions where the

Walsh-Hadamard spectrum takes one nonzero absolute

values and a value 0. If there is only one nonzero value,

we call such functions near-bent functions and if there are

two such values (i.e., both positive and a negative of some

value) then we call such functions semi-bent functions.

• A Boolean function f is correlation immune of order t
(in brief, CI (t)) if the output of the function is statistically

independent of the combination of any t of its inputs. For

the Walsh-Hadamard spectrum it holds equivalently [13]:

Wf (a) = 0, for 1 ≤ HW (a) ≤ t . (7)

• A Boolean function f is t-resilient if it is balanced and

with correlation immunity of order t [38].

• �e algebraic degree deд of a Boolean function f is de-

�ned as the number of variables in the largest product term

of the function’s ANF having a non-zero coe�cient [19]:

deд = max(HW (a) : h(a) = 1). (8)

Here, h(a) is de�ned by the Möbius inversion principle.

• �e algebraic immunity (AI) of a Boolean function f is

the lowest degree of a nonzero function д from Fn
2

into

F2 for which f д = 0 or (f ⊕ 1)д = 0 where f and д are

Boolean functions. Here, f д is the Hadamard product of

f and д, whose support is the intersection of the supports

of f and д. A function д such that f д = 0 is called an

annihilator of f [24].

For a resilient Boolean function where t > 1 and t ,
n − 1, the following Siegenthaler bound holds [38]. �ere-

fore, the correlation immunity and the algebraic degree

properties are con�icting and it is not possible to obtain a

Boolean function with both properties optimal.

t ≤ n − deд − 1. (9)

4.4 Problems
�e variety of solution representations ans properties allows us to

de�ne a number of problems ranging from single-objective to many-

objective. Examples of problems valid for any Boolean function

size are:

(1) Finding bent functions (single-objective optimization). �is

could be stated as a problem of maximizing the nonlin-

earity property since bent functions have maximal possible

nonlinearity:

objective = Nf . (10)

(2) Finding balanced, highly nonlinear functions (single objec-

tive optimization with a constraint).

(3) Finding Boolean functions with a minimum HW and dif-

ferent values for correlation immunity (multi-objective

optimization). �is problem can be de�ned as:

objectiveA = |CI −TARGET CI |; (11)

objectiveB = MAX HW − HW , (12)

where the �rst criterion, objectiveA, is minimized, while

the second criterion, objectiveB , is maximized. CI rep-

resents the current value of correlation immunity and

TARGET CI represents the desired value for correlation

immunity. MAX HW is the maximal Hamming weight for

a Boolean function of n inputs and HW is the current value

of the Hamming weight.

(4) Finding balanced Boolean functions with a high nonlinear-

ity and a high algebraic degree (multi-objective optimiza-

tion).

(5) Finding balanced Boolean functions with a high nonlinear-

ity, large algebraic degree, large algebraic immunity, large

fast algebraic immunity, and large correlation immunity

(many-objective optimization).

(6) From Eq. (5) we see that the bent Boolean functions have

the Walsh-Hadamard spectrum equal to

���2 n
2

��� and therefore

we can pose the problem as a combinatorial one of �nding

the correct ordering of ±2

n
2 values. �is combinatorial

problem can be also extended for the near-bent and semi-

bent functions.

As an example, Figure 2 contrasts solutions for a number of

algorithms and encodings when looking for balanced, highly non-

linear functions. It compares solutions based on genetic algorithm

(GA), evolution strategy (ES), opt-IA, and CLONALG algorithms.

Each of the algorithms uses binary and �oating-point representa-

tion as denoted with b and f , respectively. When investigating

Boolean functions with 6 variables, seven out of eight algorithms

reach maximal value in 100% of cases (see Eq. (6)) while for the

case with 16 variables the behavior of the investigated algorithms

di�ers signi�cantly.

5 PROBLEMS BASED ON VECTORIAL
BOOLEAN FUNCTIONS

Similarly as the Boolean functions represent a source of nonlinearity

for stream ciphers, vectorial Boolean functions (functions with n
inputs and m outputs, i.e., (n,m)-functions) or S-boxes are a source

of nonlinearity for many block ciphers. We list some occurring S-

box sizes and cryptographic algorithms using them: 3×3 (3Way [9]),

4 × 4 (PRESENT [4]), 5 × 5 (Keccak [2]), 8 × 8 (AES [10]), and 6 × 4

(DES [12]).

An (n,m)-function is any mapping F from Fn
2

to Fm
2

. Such a F
can be de�ned as a vector F = (f1, · · · , fm), where the Boolean

CryptoBench Benchmark Suite GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

(a) Boolean functions with 6 inputs. (b) Boolean functions with 8 inputs.

(c) Boolean functions with 10 inputs. (d) Boolean functions with 12 inputs.

(e) Boolean functions with 14 inputs. (f) Boolean functions with 16 inputs.

Figure 2: Results for balanced, highly nonlinear Boolean functions of various sizes, second problem in Section 4.4

Table 2: Search space size for (n,n)-functions.

n 4 5 6 7 8

2
64

2
160

2
384

2
896

2
2 048

functions fi : Fn
2
→ F2 for i ∈ {1, · · · ,m} are called the coordinate

functions of F. �e component functions of an (n,m)-function F are

all the linear combinations of the coordinate functions with non

all-zero coe�cients.

For S-boxes the search space size is signi�cantly larger than

that of Boolean functions since we need to consider all linear com-

binations of the coordinate functions when calculating a certain

property. In general, the number of possible solutions for an (n,m)-
function equals 2

m ·2n
. In Table 2 we give several search space sizes

for an (n,n)-function.

5.1 S-box Representations
An S-box can be represented in the truth table form as a matrix of

dimension 2
n ×m where each columnm represents one Boolean

function (i.e., one coordinate function).

�e Walsh-Hadamard transform of an S-box equals [6]:

WF (a,v) =
∑
x ∈Fn

2

(−1)v ·F (x)⊕a ·x , (13)

where a ∈ Fn
2

and v ∈ Fm∗
2

.

An (n,m)-function F can be represented as a list of values (lookup

table - LUT), with each value ranging from 0 to 2
m−1. Alternatively

said, an (n,m)-function can be implemented as a lookup table with

2
n

words ofm bits each. When n =m it is usual that the S-box is

bijective, i.e., that each value in the output appears exactly once.

5.2 Solution Representation
All representations listed in Section 4.2 for Boolean functions are

also valid for S-boxes and have particular importance when an

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Stjepan Picek, Domagoj Jakobovic, and Una-May O’Reilly

S-box is not bijective, i.e., when n ,m. Such examples can be found

in S-boxes where the output dimension is strictly smaller than the

input dimension [6]. If an S-box is bijective, then the most natural

representation for it is the permutation encoding as explained in

the next section.

Permutation representation. In the permutation representation,

n × n S-box is de�ned with an array of 2
n

integer numbers with

values between 0 and 2
n − 1 (2

n
distinct values). Each of those

values occurs exactly once in an array and represents one entry for

the S-box lookup table, where inputs are in lexicographical order.

�is type of encoding enforces balancedness (see Section 5.3) and

signi�cantly reduces the search space with respect to a general

case.

Bitstring representation. Besides using bitstring representation

directly, i.e., to represent the values of an S-box, in certain cases it

is also possible to improve the properties of an S-box by utilizing

various linear/a�ne transformations. By using an a�ne transfor-

mation, it is possible to change the values for certain properties

(that are a�ne variant), while other properties stay unchanged

(a�ne invariant properties). Two S-boxes S1 and S2 of dimension

n × n are a�ne equivalent if the following equation holds [18]:

S1(x) = B(S2(A(x) ⊕ a)) ⊕ b, (14)

where A and B are invertible n × n matrices in GF (2) and a,b ∈ Fn
2

.

To evolve an improved S-box with regards to the a�ne variant

properties, we need to �nd appropriate a�ne transformation [37].

Accordingly, we evolve a�ne transformations where each individ-

ual consists of four units (in a general case). �e �rst two units

represent the matrices A and B while the last two units represent

the constants a and b. Since the values in matrices are bits, the

usage of a bitstring representation is a natural choice.

5.3 Properties and Bounds
Some (but not all) important and common properties of S-boxes

are:

• An (n,m)-function F is called balanced if it takes every

value of Fm
2

the same number 2
n−m

of times. Balanced

(n,n)-functions are permutations on Fn
2

[6].

• �e nonlinearity NF of an (n,m)-function F equals the

minimum nonlinearity of all non-zero linear combinations

b · F of its coordinate functions fi , where b ∈ Fm∗
2

[27]:

NF = 2
n−1 − 1

2

max

a ∈ Fn
2
,v ∈ Fm∗

2

|WF (a,v)|. (15)

�e maximal nonlinearity of any (n,n) S-box is upper

bounded by the following inequality:

NF ≤ 2
n−1 − 2

n−1

2 . (16)

• Let F be a function from Fn
2

into Fn
2

and a,b ∈ Fn
2

. We

denote:

D(a,b) = |
{
x ∈ Fn

2
: F (x + a) + F (x) = b

}
|. (17)

�e entry at the position (a,b) corresponds to the cardinal-

ity of D(a,b) and is denoted as δ (a,b). �e δ-uniformity
δF is then de�ned as [3, 26]:

δF = max

a,0,b
δ (a,b). (18)

Table 3: Nonlinearity value for an 8 × 8 S-box

Technique best obtained nonlinearity

Random search [25] 98

Hill climbing [25] 100

Simulated annealing [7] 102

Genetic algorithm [33] 104

Finite �eld inversion [26] 112

• To de�ne the algebraic degree of an S-box, we use the

algebraic normal form (ANF) representation of a Boolean

function f represented by a polynomial in

F2 [x0, ...,xn−1] /(x2

0
− x0, ...,x

2

n−1
− xn−1) [5]. �e alge-

braic degree deдF of an S-box F is the maximum algebraic

degree of all non-zero linear combinations of the coordi-

nate functions (i.e., component functions) or coordinate

functions of F [6]:

deдF = max

b ∈Fm∗
2

deд(b · F). (19)

5.4 Problems
We emphasize that the list of properties in Section 5.3 is far from

complete. Examples of several problems are:

• Finding bijective S-boxes with as high as possible nonlin-

earity (single-objective optimization).

• Finding bijective S-boxes with as high as possible nonlin-

earity and as low as possible di�erential uniformity (multi-

objective optimization).

• Finding bijective S-boxes with as high as possible nonlin-

earity, as low as possible di�erential uniformity, and as high

as possible algebraic degree (multi-objective optimization).

• Whenm is strictly smaller than n, �nding S-boxes where

each coordinate function is bent (single-objective optimiza-

tion).

As an example of diversity of techniques used here, we list sev-

eral techniques used to �nd 8 × 8 S-box with as high as possible

nonlinearity in Table 3. �e �nite �eld inversion method is an

algebraic construction and we still need to �nd evolutionary algo-

rithm/representation enabling us to reach that value.

6 PROBLEMS BASED ON PHYSICALLY
UNCLONABLE FUNCTIONS

�e basic idea of a Physically Unclonable Function (PUF) is to

provide a function with a unique response (or a measurement)

that can be used as a means of secure identi�cation. �is property

is usually obtained by using a unique physical structure of each

individual PUF. For this approach to be feasible, one commonly

relies on inherent manufacturing di�erences that give each PUF

instance a unique identity [20].

In this case we address the so called arbiter PUFs, which consist

of one or more chains of two 2-bit multiplexers that have identical

layouts (Figure 3). Each multiplexer pair is denoted a stage, with

n stages in a single chain. �ere is a single input signal that is

introduced to the �rst stage to both bo�om and top multiplexer in

the pair (red and blue). �e chain is fed a control signal of n bits

CryptoBench Benchmark Suite GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 3: Depiction of an n-stage arbiter PUF.

called a challenge (bits c1 to cn), where each bit determines whether

the two input signals in that stage would be switched (crossed over)

or not.

In ideal conditions, the input signal would propagate at the same

speed through each stage and both the lower and upper signal

would arrive at the arbiter at the same time. However, due to the

manufacturing inconsistencies, the delay of each multiplexer is

slightly di�erent, and the top and bo�om input signals are not

synchronized. �e arbiter at the end of the chain determines which

signal arrived earlier and thus forms the response (0 or 1). Addi-

tionally, to increase the resistance of PUFs to a�acks, commonly

several arbiter chains are placed on the chip and their outputs are

XORed to build the �nal response bit.

�e response of a PUF is determined by the delay di�erence

between the top and bo�om input signal, which is in turn the

sum of delay di�erences of the individual stages. To e�ciently

model a PUF, one usually tries to determine the delay vector w =
(w1, . . . ,wn+1) which models the delay di�erences in each stage.

�e delay di�erence ∆D at the end of a chain can be calculated as

∆D = wTϕ, (20)

where the feature vector ϕ is derived from the challenge vector as

ϕi =
n∏
l=i

(−1)cl for 1 6 i 6 n, (21)

and where ϕn+1 = 1. �e �nal response is equal to 1 if ∆D < 0 and

0 otherwise.

�e standard optimization approach with this problem would be

to generate the pairs of challenges and corresponding responses

and try to �nd the delay vector that exhibits the same behavior,

e.g. by minimizing the number of wrong responses. While the

real data from the actual PUFs can be used in this process, one can

easily generate challenge and response pairs with a prede�ned or

randomly created target delay vector.

�is problem represents an excellent example of continuous

optimization where the input data can be easily generated and

accommodated for di�erent problem sizes. For instance, a small

scale instance is an example of a single-chain arbiter PUF with

64 stages, which is modeled with a �oating-point vector of size

65. Larger instances can include multiple chains (e.g. 4) with as

many as 256 stages in each chain, giving a search space of 4 × 257

variables. At the same time, by varying the number of challenges,

the problem hardness can be modi�ed; e.g. the desired responses for

several tens of challenges are relatively easy to model, but �nding

a model for several thousand challenges is much more demanding,

since it requires a greater precision in delay variables.

Table 4: Problem hardness for PUF modeling.

chains×stages/challenges 4x64/128 6x64/256 4x64/1 000

GA 0 1 221

GA/hybrid 0 1 102

CMA-ES 0 0 112

ClonAlg 0 19 218

OptIA 0 11 179

Table 5: Problem parameters in�uencing the search space
size and complexity.

Problem type Search space size Complexity tunability

Boolean functions # of inputs (2
2
n

) # of properties

S-boxes # of inputs and outputs (2
m2

n
) # of properties

PUFs # of chains and stages # of challenges

Table 6: Problem properties and objective type.

Problem type Properties Range Goal

Boolean functions Balanced [yes, no] constraint

Nonlinearity [0, 2
n−1 −2

n/2−1] maximization

Algebraic degree [0, n − 1] maximization

Correlation immunity [0, n − deд − 1] maximization

Algebraic immunity [0, dn/2e] maximization

S-boxes Balanced [yes, no] constraint

Nonlinearity [0, 2
n−1 − 2

n−1

2] maximization

Algebraic degree [0, n − 1] maximization

Di�erential uniformity [2, 2
n] minimization

PUFs error of the model [0, 1] minimization

Finally, since real-world PUFs incorporate noisy output, one

can easily generate data with appropriate noise levels and try to

minimize the error. �is problem can also be addressed in the

context of machine learning, where we use training and testing

challenge/response pairs, and try to optimize the model to predict

the unseen challenge data.

Table 4 illustrates the problem hardness for several algorithms

and problem sizes, where the results are given as the number of

incorrect responses; we report only the best result obtained by each

algorithm. Since we do not conduct an algorithm comparison at

this stage, we omit the algorithms’ parameters and note we used the

same number of evaluations as the stopping criteria. �e algorithm

denoted “GA/hybrid” is a combination of a classic genetic algorithm

in which a local search strategy of Hooke-Jeeves is used to �nd a

local minimum solution before each genetic operator.

7 CONCLUSION
In this paper, we present several realistic classes of problems from

the cryptographic domain that could be used as a source of bench-

mark problems in the evolutionary computation �eld. Table 5

describes how the size of the search space and problem complexity

can be tuned using the parameters of each presented benchmark

example. With these problem classes, one can investigate vari-

ous problem sizes, the number of cryptographic properties to be

optimized, as well as the solution representations.

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Stjepan Picek, Domagoj Jakobovic, and Una-May O’Reilly

�e results obtained from such tests can be used to �ll the gaps

in the current benchmarking but also to compare with other types

of heuristics or even to propose new solutions that are be�er from

the currently known ones. Such a scenario would o�er additional

bene�t of increasing the level of con�dence in evolutionary com-

putation from di�erent communities. Finally, although we present

here only three problem classes to form the benchmark set, one can

easily �nd several more interesting problems in the cryptographic

domain.

ACKNOWLEDGMENTS
�is work has been supported in part by Cybersecurity@CSAIL

initiative. Additionally, this work has been supported in part by

Croatian Science Foundation under the project IP-2014-09-4882.

REFERENCES
[1] Georg T. Becker. 2015. �e Gap Between Promise and Reality: On the Insecurity

of XOR Arbiter PUFs. In Cryptographic Hardware and Embedded Systems –
CHES 2015: 17th International Workshop, Saint-Malo, France, September 13-16,
2015, Proceedings, Tim Güneysu and Helena Handschuh (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 535–555.

[2] Guido Bertoni, Joan Daemen, Michäel Peeters, and Gilles Van Assche. 2011. �e

Keccak reference. (January 2011). h�p://keccak.noekeon.org/.

[3] Eli Biham and Adi Shamir. 1991. Di�erential Cryptanalysis of DES-like Cryp-

tosystems. In Proceedings of the 10th Annual International Cryptology Conference
on Advances in Cryptology (CRYPTO ’90). Springer-Verlag, London, UK, UK, 2–21.

[4] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw,

Y. Seurin, and C. Vikkelsoe. 2007. PRESENT: An Ultra-Lightweight Block Cipher.

In Proceedings of the 9th International Workshop on Cryptographic Hardware and
Embedded Systems (CHES ’07). Springer-Verlag, Berlin, Heidelberg, 450–466.

[5] Claude Carlet. 2010. Boolean Functions for Cryptography and Error Correct-

ing Codes. In Boolean Models and Methods in Mathematics, Computer Science,
and Engineering (1st ed.), Yves Crama and Peter L. Hammer (Eds.). Cambridge

University Press, New York, NY, USA, 257–397.

[6] Claude Carlet. 2010. Vectorial Boolean Functions for Cryptography. In Boolean
Models and Methods in Mathematics, Computer Science, and Engineering (1st ed.),

Yves Crama and Peter L. Hammer (Eds.). Cambridge University Press, New York,

NY, USA, 398–469.

[7] John A. Clark, Jeremy L. Jacob, and Susan Stepney. 2005. �e design of S-boxes

by simulated annealing. New Generation Computing 23, 3 (Sept. 2005), 219–231.

DOI:h�p://dx.doi.org/10.1007/BF03037656

[8] NicolasT. Courtois and Willi Meier. 2003. Algebraic A�acks on Stream Ciphers

with Linear Feedback. In Advances in Cryptology - EUROCRYPT 2003, Eli Biham

(Ed.). Lecture Notes in Computer Science, Vol. 2656. Springer Berlin Heidelberg,

345–359. DOI:h�p://dx.doi.org/10.1007/3-540-39200-9 21

[9] Joan Daemen, René Govaerts, and Joos Vandewalle. 1994. A new approach

to block cipher design. In Fast So�ware Encryption: Cambridge Security Work-
shop Cambridge, U. K.,1993 Proceedings, Ross Anderson (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 18–32.

[10] Joan Daemen and Vincent Rijmen. 2002. �e Design of Rijndael. Springer-Verlag

New York, Inc., Secaucus, NJ, USA.

[11] W. Di�e and M. Hellman. 1976. New directions in cryptography. IEEE Transac-
tions on Information �eory 22, 6 (1976), 644–654.

[12] FIPS 1999. FIPS 46-3, Data Encryption Standard (DES). National Institute for

Standards and Technology (NIST), Gaithersburg, MD, USA. (1999).

[13] Xiao Guo-Zhen and J.L. Massey. 1988. A spectral characterization of correlation-

immune combining functions. IEEE Transactions on Information �eory 34, 3

(May 1988), 569–571.

[14] Radek Hrbacek and Vaclav Dvorak. 2014. Bent Function Synthesis by Means of

Cartesian Genetic Programming. In Parallel Problem Solving from Nature - PPSN
XIII, �omas Bartz-Beielstein, Jürgen Branke, Bogdan Filipič, and Jim Smith

(Eds.). Lecture Notes in Computer Science, Vol. 8672. Springer International

Publishing, 414–423. DOI:h�p://dx.doi.org/10.1007/978-3-319-10762-2 41

[15] Domagoj Jakobovic. 2014. Evolutionary Computation Framework. h�p://ecf.

zemris.fer.hr/. (Jan. 2014). h�p://ecf.zemris.fer.hr/ Framework available for

download.

[16] Domagoj Jakobovic. 2017. Heuristic optimization in cryptology EvoCrypt. h�p:

//evocrypt.zemris.fer.hr/. (May 2017). h�p://evocrypt.zemris.fer.hr/ Problem

de�nitions available for download.

[17] Frédéric La��e, Dirk Van Heule, and Julien Van Hamme. 2011. Cryptographic

Boolean Functions with R . �e R Journal 3, 1 (jun 2011), 44–47. h�p://journal.

r-project.org/archive/2011-1/RJournal 2011-1 La��e∼et∼al.pdf

[18] G. Leander and A. Poschmann. 2007. On the Classi�cation of 4 Bit S-Boxes. In

Arithmetic of Finite Fields, Claude Carlet and Berk Sunar (Eds.). Lecture Notes in

Computer Science, Vol. 4547. Springer Berlin Heidelberg, 159–176.

[19] F. Jessie MacWilliams and Neil J. A. Sloane. 1977. �e �eory of Error-Correcting
Codes. Elsevier, Amsterdam, North Holland. 782 pages. ISBN: 978-0-444-85193-2.

[20] Roel Maes and Ingrid Verbauwhede. 2010. Physically Unclonable Functions:

A Study on the State of the Art and Future Research Directions. In Towards
Hardware-Intrinsic Security: Foundations and Practice, Ahmad-Reza Sadeghi and

David Naccache (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 3–37.

[21] Luca Mariot and Alberto Leporati. 2015. Heuristic Search by Particle Swarm

Optimization of Boolean Functions for Cryptographic Applications. In Genetic
and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July
11-15, 2015, Companion Material Proceedings. 1425–1426.

[22] Mitsuru Matsui and Atsuhiro Yamagishi. 1993. A new method for known plaintext

a�ack of FEAL cipher. In Proceedings of the 11th annual international conference
on �eory and application of cryptographic techniques (EUROCRYPT’92). Springer-

Verlag, Berlin, Heidelberg, 81–91.

[23] James McLaughlin and John A. Clark. 2013. Evolving balanced Boolean functions

with optimal resistance to algebraic and fast algebraic a�acks, maximal algebraic

degree, and very high nonlinearity. Cryptology ePrint Archive, Report 2013/011.

(2013).

[24] Willi Meier, Enes Pasalic, and Claude Carlet. 2004. Algebraic A�acks and

Decomposition of Boolean Functions. In Advances in Cryptology - EURO-
CRYPT 2004, Christian Cachin and JanL. Camenisch (Eds.). Lecture Notes

in Computer Science, Vol. 3027. Springer Berlin Heidelberg, 474–491. DOI:
h�p://dx.doi.org/10.1007/978-3-540-24676-3 28

[25] W. Millan, L. Burne�, G. Carter, A. Clark, and E. Dawson. 1999. Evolutionary

Heuristics for Finding Cryptographically Strong S-Boxes. In Information and
Communication Security, Vijay Varadharajan and Yi Mu (Eds.). Lecture Notes

in Computer Science, Vol. 1726. Springer Berlin Heidelberg, 263–274. DOI:
h�p://dx.doi.org/10.1007/978-3-540-47942-0 22

[26] Kaisa Nyberg. 1991. Perfect Nonlinear S-Boxes. InAdvances in Cryptology - EURO-
CRYPT ’91, Workshop on the�eory and Application of of Cryptographic Techniques,
Brighton, UK, April 8-11, 1991, Proceedings (Lecture Notes in Computer Science),
Vol. 547. Springer, 378–386. DOI:h�p://dx.doi.org/10.1007/3-540-46416-6 32

[27] Kaisa Nyberg. 1993. On the construction of highly nonlinear permutations. In

Advances in Cryptology - EUROCRYPT’ 92, RainerA. Rueppel (Ed.). Lecture Notes

in Computer Science, Vol. 658. Springer Berlin Heidelberg, 92–98.

[28] Christof Paar and Jan Pelzl. 2010. Understanding Cryptography - A Textbook for
Students and Practitioners. Springer. I–XVIII, 1–372 pages.

[29] Stjepan Picek. 2015. Applications of evolutionary computation to cryptology. Ph.D.

Dissertation. Radboud University Nijmegen, �e Netherlands. h�p://repository.

ubn.ru.nl/bitstream/handle/2066/141872/141872.pdf

[30] Stjepan Picek. 2016. Evolutionary Computation and Cryptology. In Proceedings of
the 2016 on Genetic and Evolutionary Computation Conference Companion. ACM,

883–909.

[31] Stjepan Picek, Lejla Batina, Domagoj Jakobovic, Bars Ege, and Marin Golub.

2014. S-box, SET, Match: A Toolbox for S-box Analysis. In Information Security
�eory and Practice. Securing the Internet of �ings, David Naccache and Damien

Sauveron (Eds.). Lecture Notes in Computer Science, Vol. 8501. Springer Berlin

Heidelberg, 140–149. DOI:h�p://dx.doi.org/10.1007/978-3-662-43826-8 10

[32] Stjepan Picek, Claude Carlet, Sylvain Guilley, Julian F Miller, and Domagoj

Jakobovic. 2016. Evolutionary Algorithms for Boolean Functions in Diverse

Domains of Cryptography. Evolutionary computation 24, 4 (2016), 667–694.

[33] Stjepan Picek, Marko Cupic, and Leon Rotim. 2016. A New Cost Function for

Evolution of S-Boxes. Evolutionary Computation 24, 4 (2016), 695–718.

[34] Stjepan Picek, Domagoj Jakobovic, Julian F. Miller, Lejla Batina, and Marko Cupic.

2016. Cryptographic Boolean functions: One output, many design criteria. Appl.
So� Comput. 40 (2016), 635–653.

[35] Stjepan Picek, Domagoj Jakobovic, Julian F. Miller, Elena Marchiori, and Lejla

Batina. 2015. Evolutionary Methods for the Construction of Cryptographic

Boolean Functions. In Genetic Programming - 18th European Conference, EuroGP
2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings. 192–204.

[36] Stjepan Picek, Dominik Sisejkovic, and Domagoj Jakobovic. 2016. Immunological

algorithms paradigm for construction of Boolean functions with good crypto-

graphic properties. Engineering Applications of Arti�cial Intelligence (2016).

[37] Stjepan Picek, Bohan Yang, and Nele Mentens. 2016. A Search Strategy to

Optimize the A�ne Variant Properties of S-Boxes. In Arithmetic of Finite Fields:
6th International Workshop, WAIFI 2016, Ghent, Belgium, July 13-15, 2016, Revised
Selected Papers, Sylvain Duquesne and Svetla Petkova-Nikova (Eds.). Springer

International Publishing, Cham, 208–223.

[38] T. Siegenthaler. 2006. Correlation-immunity of Nonlinear Combining Functions

for Cryptographic Applications (Corresp.). IEEE Transactions on Information
�eory 30, 5 (Sept. 2006), 776–780.

[39] William A. Stein and others. 2013. Sage Mathematics So�ware (Version 5.10). �e

Sage Development Team. http://www.sagemath.org.

http://keccak.noekeon.org/
http://dx.doi.org/10.1007/BF03037656
http://dx.doi.org/10.1007/3-540-39200-9_21
http://dx.doi.org/10.1007/978-3-319-10762-2_41
http://ecf.zemris.fer.hr/
http://ecf.zemris.fer.hr/
http://ecf.zemris.fer.hr/
http://evocrypt.zemris.fer.hr/
http://evocrypt.zemris.fer.hr/
http://evocrypt.zemris.fer.hr/
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Lafitte~et~al.pdf
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_Lafitte~et~al.pdf
http://dx.doi.org/10.1007/978-3-540-24676-3_28
http://dx.doi.org/10.1007/978-3-540-47942-0_22
http://dx.doi.org/10.1007/3-540-46416-6_32
http://repository.ubn.ru.nl/bitstream/handle/2066/141872/141872.pdf
http://repository.ubn.ru.nl/bitstream/handle/2066/141872/141872.pdf
http://dx.doi.org/10.1007/978-3-662-43826-8_10

	Abstract
	1 Introduction
	2 CryptoBench Framework
	3 Background and Notation
	3.1 Notation

	4 Problems Based on Boolean Functions
	4.1 Boolean Function Representations
	4.2 Solution Representation
	4.3 Properties and Bounds
	4.4 Problems

	5 Problems Based on Vectorial Boolean Functions
	5.1 S-box Representations
	5.2 Solution Representation
	5.3 Properties and Bounds
	5.4 Problems

	6 Problems Based on Physically Unclonable Functions
	7 Conclusion
	References

