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Abstract

Odometry is the most widely used method for esti-
mation of the momentary position of mobile robots. It
provides easily accessible real-time positioning infor-
mation. However, with time, odometric localization
accumulates errors in an unbounded fashion. This pa-
per describes a way to decrease the odometry error by
using a neutral network as a soft sensor. It makes
a correction to the estimated orientation of the mo-
bile robot, which is the most influenced on accumulated
odometry errors. Trained neural network can be used
instead of a gyro or a compass in some mobile robot
applications.

1 Introduction

One of the major tasks of autonomous robots nav-
igation is the mobile robot localization [1]. In a typ-
ical indoor environment with a flat floor plan, local-
ization becomes a matter of estimating the Cartesian
coordinates (z,y) and the orientation 6. Odometry
is one of the most important means of achieving this
task. This method uses encoder data and is a sim-
ple, inexpensive and easy way to determine the offset
from a known start position in real time. The encoder
data are proceeded to the central processor that in
turns continually updates the mobile robot’s position
using geometric equations. The disadvantage is its
unbounded accumulation of errors due to wheel slip-
page, floor roughness, discretised sampling of wheel
speed data, inaccessibility to the angular velocities of
the wheels in some mobile robots etc. But improved
odometry can significantly reduce the cost for installa-
tion of mobile robot systems because it simplifies the
position estimation problem.

A lot of research works have been undergone in or-

der to improve the reliability of odometry. The reli-
ability of odometry can be improved using methods
for correction of mobile robot position estimation er-
rors [2, 3] and using better odometry or error mod-
els [4]. Systematic errors can be decreased using these
methods. Sensor fusion using a Kalman Filter and
calibration [5] is an another method to improve the
position estimation of a mobile robot. Calibration to
correct the systematic errors can be made with vari-
ous experiments before and during the actual use of
the mobile robot [6].

However, these methods use additional sensors to
improve the odometry or they can take into account
only systematic errors. Non-systematic errors are un-
predictable and calibration techniques can’t take them
into account. The sources are uneven floors, unex-
pected objects on the floor, wheel slippage due to slip-
pery floors etc. Work done at the theoretical level nor-
mally involves non-systematic errors quantification via
modelling, so that some kind of mathematic treatment
would be possible. For instance, many robust stochas-
tic based techniques such as the Kalman Filter [5, 6]
require that the odometry errors are statistically quan-
tified in the form of an error covariance matriz, so that
it can be fused with the information provided by the
external reference to produce a linear minimum mean
square estimate of the position and orientation. Values
of the error covariance matrixes are obtained empir-
ically from the sensor specifications or from different
sets of experimental data.

Robot orientation © is the most significant of the
localization parameters (z,y, ©) in terms of its influ-
ence on accumulated dead-reckoning errors. For this
reason, sensors that provide a measure of absolute ori-
entation or relative angular velocity are extremely im-
portant in solving the real world navigation needs of
an autonomous platform. The most commonly used



sensors of this type are probably the magnetic com-
pass and the gyro. Fusion of the odometry and com-
pass or gyro information by using Kalman Filter can
provide substantial increase of robot localization accu-
racy, e.g. [5]. However, the price of the system is a lim-
iting factor in many commercial applications. Thus,
in such applications it can be beneficial to avoid the
use of compass/gyro, but at the same time to keep
the accuracy of the robot pose estimation as high as
possible.

In this paper we propose a system of odometry er-
rors corrections based on a neural network. Actually
the neural network is used as a soft sensor [7]. We have
assumed that the robot manufacturer has a testing
room for navigation systems that enables online mea-
surement of robot actual location. The values of the
localization parameters from such a system can then
be used as reference value for neural network train-
ing. In our case reference values of the localization
parameters are obtained by the fusion of odometry
and compass signals using Kalman Filter.

The paper is organized as follows. In section 2 the
robot model is given with short description of calibra-
tion procedure. Then, section 3 presents the fusion of
calibrated odometry with compass using Kalman Fil-
ter. The description of the proposed neural network
based odometry errors correction system is given in
section 4. The section 5 contains the simulation re-
sults with all three systems.

2 The Robot Model and Odometry
Calibration

Mobile robot used in our experiments is a three-
wheeled robot (Pioneer 2DX of ActivMedia Robotics).
Two front wheels are drive wheels with encoders
mounted on them and the third wheel is a castor wheel
to ensure stability. Drive wheels can be controlled in-
dependently from each other. The encoders can mea-
sure the speed or the travelled distance of the wheel.
We are using the encoders to measure the speed of the
wheel. The kinematics of the robot are given by the
following relations (Figure 1):
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where: zj and y; denote the position of the center of
axle [m]; vy, the total translational speed [m/s]; T
the sampling time step [s]; @ [°] the angle between
the vehicle and the x axis; vy, and vg, denote the
velocities of the left and right wheel, respectively [m/s]
and b the vehicle axle length [m].

A

Figure 1: The Mobile Robot Kinematics.

The robot specifications give the value of axle
length b, but during the turns the wheels don’t pivot
at their center. This changes of the effective axle
length produce a systematic error. To compensate this
systematic error connected with the axle length, the
Equation 5 of robot model is expanded with a correc-
tion parameter 5:

180 UR,, — VL,
.k kL dt.
R (6)

The correction parameter 3 is obtained empirically in
various turn experiments.

AOy =

3 Odometry and Compass Fusion

Kalman filtering is a well known technique for state
and parameter estimation. It is a recursive proce-
dure that uses sequential sets of measurements. Prior
knowledge of the state is expressed by the covariance
matrix and it is improved at each step by taking prior
estimates and new data for the subsequent state esti-
mation. Kalman Filter based localization is a common
practice in mobile robotics [5, 6].



To improve the estimate of orientation in the x-
y plane a compass was used (TCM2-20 from Preci-
sion Navigation, Inc.). Before using it for estimating
orientation its measurement noise covariance and sys-
tem noise covariance matrices were determined using
sensor observations and empirical observations. The
equal procedure was repeated for the encoders.

In the experiments reported here the measurement
vector used in the localization is composed of the
translational speeds of left and right wheels vy, vg and
the mobile robot orientation ¢ measured by the com-

. A .
pass. The state estimate X, the measurement estimate

A .
z, the measurement vector z and the residual vector r
are defined as:

Kalman Filter consists of two different steps: prop-
agation and update. The equations for the propa-
gation step are:
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The equations for the update step are:
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In the above equations @ is the system matrix, P
is the error covariance matrix, ) is the system noise
covariance matrix, K is the Kalman gain matrix and
R is the measurement noise covariance matrix.

From the equations 1-4 and equation 6, the system
matrix @ is obtained:
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4 Structure of the Neural Network
Based Odometry Errors Correction

The structure of the neural network based odome-
try errors correction is shown in Figure 2. The pro-
posed system consists of a odometry block and a neu-
ral network. The odometry block calculates the mo-
bile robot position using the robot model described

in section 2. The neural network calculates the mo-
bile robot orientation change and compensates the sys-
tematic and non-systematic odometry errors. Thus,
neural network is used in robot modelling instead of
Equation 6. The benefit of using neural network is
possibility to establish nonlinear relation between the
wheel velocities and the change in the robot orienta-
tion. We used a Radial Basis Function (RBF) neural
network that can be described as:

ABK) = frn(p(k),w) =
= fn(Av(k),Av(k — 1),

Ok), Ok — 1), AQ(k — 1),w) (14)

where fy () is given by:
v =wg- e*(<P(k)*W1)2'b12 + by (15)

and wherew = [ wy by wy by | is vector of neu-
ral network parameters and ¢ neural network input
regression vector.
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Figure 2: The Neural Network Odometry Error
Correction-Operational Structure.

As shown in Figure 2 the neural network has five
inputs and one output. The inputs are the current
mobile robot orientation and the orientation from the
previous time frame, the current wheel speed differ-
ence and the wheel speed difference from the previous
time frame and mobile robot orientation change from
the previous time frame. The calculated orientation

change Aé i is passed to the mobile robot model given
with Equations 1 - 4 to calculate the new mobile robot
position (z, y) and orientation 6.

The training of neural network is performed off-line.
The neural network is trained to capture the errors
coupled with the mobile robot orientation. We used
a compass to measure the actual mobile robot orien-
tation and the change in orientation. During the net-
work training, the structure from Figure 2 becomes



like shown in Figure 3, and Equation 15 becomes:
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Oc(k),0c(k —1),ABc(k),w) .(16)
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Figure 3: The Neural Network Odometry Error
Correction-Training Structure.

The performance index that is minimized by neural
network training is:

J= ﬁ: (20.0) - A(:)(u))2 (17)

where N is the number of training data.

To design the neural network we used the Neu-
ral Network Toolbox for Matlab [8]. Using the
Matlab-Simulink two Band Limited White Noise Sig-
nals (BLWNS) were generated to randomly and inde-
pendently change the left and right wheel speeds. It
is essential that the mobile robot orientation cover the
whole range from 0 to 360 degrees in the experiment.
The wheel speed difference must also cover the whole
assumed range. The learning data directly influence
the quality of the mobile robot orientation correction
so special attention should be paid to the preparation
of the experiments and collected data processing.

We collected the measured left and right speed
values, the mobile robot orientation and orientation
change measured with a compass. These data were
used to train the neural network using the newrbd func-
tion in Matlab. This function creates a two layer net-
work. It adds one neuron to the neural network at

a learning step until the sum-squared error (Equation
17) falls beneath an error goal or a maximum number
of neurons is reached. The learning method is the or-
thogonal least square algorithm [9]. That is a standard
neural network learning algorithm implemented in the
Matlab Neural Network toolbox. It uses an input vec-
tor and a target class vector to design a new radial ba-
sis neural network. That means that the whole neural
network structure, the input weights values, the layer
weights values and the bias value have been obtained
using this algorithm. A number of 45 neurons with
the radial basis functions (spread = 1.0) in the hid-
den layer was necessary to accomplish the presented
results.

5 Simulation Results

The experiments were carried out in the Saphira
simulation environment for the Pioneer DX2 mobile
robot platform. We performed 5 standard experi-
ments, each with a different trajectory shown in Fig-
ures 4 - 8. The mobile robot initial position in every
experiment is at (0,0,0). All measurements of the mo-
bile robot position estimation are made in millimeters.
The exact final mobile robot position was measured by
the mobile robot simulator itself, but the resolution
was only 0.1 [m]. Each figure shows three different
position estimation algorithms: a) calibrated odome-
try that uses a calibration on the effective wheel axle
length, b) Kalman Filter that uses sensor fusion (wheel
speeds and a compass) for the mobile robot position es-
timation and finally ¢) our neural network position es-
timation algorithm. The results presented by a dashed
line are for calibrated odometry, the results presented
by a dash-dotted line are for Kalman Filter and the
results presented by a solid line are for neural network.
Each figure has also a cross mark for the actual final
mobile robot position and dot marks for the estimated
final mobile robot positions.

The first and second experiments are the cases of
the triangular trajectories. The triangle is rectangular
with 3 [m] sides. In the first experiment the robot
did only left turns and in the second only right turns.
The third and fourth experiments are the cases of the
square trajectories. The square side has a length of 3
[m]. These two tests were also made with only left or
only right turns. The last experiment is the case of a
strait line trajectory. The mobile robot had to travel
in a strait line with a 6 [m] length. In each experiment
the mobile robot had to return to the start position
and in an ideal case the final mobile robot position
would be the same as the start position, i.e. position



Experiment Calibrated Odometry | Neural Network | Kalman Filter
Left Triangle 38 % 2.3 % 0.5%
Right Triangle 0.5 % 0.5 % 0.3 %

Left Square 3% 1.2 % 0.6 %
Right Square 3.7 % 0.8 % 0.8 %

Strait Line 48 % 1.5 % 04 %

Table 1: Error comparison of three different techniques.

(0,0,0). The travelled distance is 12 [m] for the square
and the strait line experiment and 10.2 [m] for the
triangle experiments.

Table 1 summaries the results of five experiments
conducted using three different localization tech-
niques. All errors presented in table 1 are calculated

as:
Posget — PoSest

Dist
where Pos,; is the actual final position, Poss is the
estimated final position and Dist is the total distance
traversed by the mobile robot.

As it is expected the best results are achieved
using the Kalman Filter. But this technique uses
an additional sensor (compass). The neural network
based odometry system gives much better results then
the calibrated odometry, without additional sensors.
When we compare the trajectories in the Figures 4
- 8, we can also see that the neural network tech-
nique estimates much better the real trajectory of the
mobile robot then the calibrated odometry. The pro-
posed mobile robot position estimation technique can
be used to decrease the number of sensors without a
great decrease of the position estimation accuracy.

Error = -100% (18)

6 Conclusion

A neural network based odometry errors correction
system for mobile robots is developed and experimen-
tally compared in simulations to the common used po-
sition estimation methods. It is shown that the pro-
posed system can give an improvement of the position
estimation of a mobile robot. Using this method there
is no need to use additional sensors during the mobile
robot operation. Also the neural network can learn
systematic errors so there is no need for expensive and
time consuming calibration measurement. Before the
actual use of the mobile robot in new environment,
just a simple test to adapt the neural network to the
new environment has to be done. The new environ-
ment can change the value and nature of the system-
atic and non-systematic errors but the neural network
can be easily adapted to this new conditions.
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