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Abstract: This paper presents an analysis of vibration-induced fatigue in a generalized, two degree-of-freedom 

vibration isolation system. The system consists of a source body and a receiving body, coupled 

through a passive isolator. The isolator consists of a spring, a damper, and an inerter. A broad fre-

quency band excitation of the source body is assumed. Optimized system, in which the kinetic energy 

of the receiving body is minimized, is contrasted to two sub-optimal systems. This is done by compar-

ing fatigue life of a helical spring in the system for four cases. The optimization is based on minimiz-

ing vibrations, but it also increases the number of cycles to failure of the considered spring. A signifi-

cant portion of this improvement is due to the inclusion of an optimally tuned inerter in the isolator. 
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1. Introduction 

Mechanical systems e.g. car suspension systems [1] are often subjected to high dynamic loading dur-

ing their lifetime. Such service loadings can cause unwanted vibration and premature failure resulting 

from destructive fatigue mechanisms. These are especially evident in case of resonant harmonic exci-

tations. Heavy-duty springs used in car suspension systems [1] are an example where a crack may 

initiate at a stress concentration location and propagate, leading to a potentially catastrophic fatigue 

failure, especially due to vibration-induced fatigue [2]-[7]. Beneficiary vibration-based optimizations 

with goal of targeted vibration reduction by using the minimization of kinetic energy were already 

performed and can be found in literature [8], [9]. Considering vibration fatigue, both stiffness and 

strength parameters of system should be determined, where broad literature considering helical springs 

can be found [10]-[20], also including exclusively numerical analysis - particularly finite element me-

thod (FEM) [21]. Both older seminal works on strength of materials [22], and modern mechanical 

engineering textbooks [23], [24] touch on the subject of spring fatigue. Considering springs as ma-

chine elements that need to withstand exceptionally long life, appropriate high-cycle fatigue (HCF) 

calculation method [25], [26] can be utilized for calculation [24], [27]. Broad literature on analyzing 

the fatigue life, particularly for helical springs can be observed [27]-[33]. Problem with unambiguous-

ly defining the stress field and corresponding fatigue life is that in literature, multiple versions of pro-

posed stress correction factors for spring can be found [10]-[15], even by same authors. One of the 

most popular ones originate from Wahl [10], [11], [14], [15], [18]-[20], [22]-[24], Bergsträsser [14], 

[15], [18], [20], [23] and Göhner [11]-[13], [18], [20]. All three authors seem to be favorable choice in 

German literature [20]. It is interesting to note that German DIN standard used Göhner as a reference 

[12], [13], but then changed to Bergsträsser and Wahl [14], [15] in contemporary times. Discrepancy 

in using the appropriate correction factor can also be observed in dedicated spring fatigue literature, 

where Wahl himself in his seminal work [11] recommends that using his stress correction factor may 

result in overly-conservative fatigue prediction, while [19], [24] recommend using Wahl’s stress cor-

rection factor especially for fatigue. Shigley [23] for instance recommends Bergsträsser for simplicity 

reasons. In the present study, investigations are conducted to model the fatigue load of a helical spring 

acting as an elastic element in a simple and physically transparent two degree-of-freedom (2-DOF) 

vibration isolation system. Both analytical/empirical and numerical methods are employed with help 

of specialized software packages like FEM based Abaqus [34] and Fe-Safe [35]. 
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2. Analytical and finite element vibration and fatigue analysis 

The problem studied is represented by a lumped parameter model as shown in Fig. 1.a). It is assumed 

that the critical component concerning fatigue is a helical spring k3, also shown in Fig. 1.b) where E is 

(Young) modulus of elasticity, ν is Poisson’s factor, S'f is fatigue strength coefficient, while b is Bas-

quin’s exponent, i.e. fatigue strength exponent [25], [26]. Angle α represents pitch angle and l is the 

pitch. Number of active coils is denoted as i (i = 2 on Fig. 1.b) and h is spring length where h = li. D 

and d are large and small spring diameters respectively, and C = D/d is defined as spring index [11], 

[23], [24]. D can also be designated as the mean coil diameter and d as the wire diameter [23]. Rec-

ommended values of spring index C for industrial purposes lie in between C = 4…12 [23]. 

a) b)  

Fig. 1. a) The 2-DOF linear discrete vibration isolation system, b) helical spring k3  

The goal of the vibration-based optimization is to minimize vibrations of the receiving body i.e. vibra-

tions of mass m2 which come along with the deflections of spring k3 [8]. In this optimization, the exci-

tation of the source body F(t) is assumed to have white noise spectral properties [8], i.e. unit loading 

amplitude F0 = 1 that can be scaled conveniently is adopted. The whole system consists of masses m1 

and m2, springs k1, k2 and k3, a viscous damper c2 and an inerter of inertance b2. The inerter produces a 

force F proportional to the relative acceleration between masses m1 and m2 [1]. Optimized parameters 

c2,opt, c2,opt2 and b2,opt are obtained by minimizing the frequency averaged kinetic energy of the receiv-

ing body [8], [9]. Table 1. shows example parameters used in this isolator optimization process. 
Table 1. The 2-DOF optimization model example parameters 

 

Fig. 2. shows plotted numerical results of optimization process where minimum kinetic energy Ik,min is 

found for the cases without inerter (Fig. 2.a) - c2,opt) and with inerter (Fig. 2.b) - c2,opt2 and b2,opt). Ob-

tained optimized parameters are further used in the fatigue calculation evaluation of spring k3. 

a) b)   

Fig. 2. Mass m2 specific kinetic energy index Ik: a) c2,opt, b) c2,opt2 and b2,opt  
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Obtained velocity/displacement amplitudes in the frequency domain can now be tied to stress ampli-

tudes necessary for performing fatigue analysis. Spring nominal displacement and stress [23] write as 
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where G = E/[2(1+ν)] is the shear modulus. However, Eq. (1a,b) is obtained by viewing spring as a 

thin beam/rod loaded with torsion shear stress, where direct shear, curvature and pitch angle effects are 

ignored. Therefore, additional correction factors need to be applied for displacement and shear stress, 

where relations δmax = Kδδnom and τmax = Kττnom hold. Fig. 3. Shows spring shear stress correction. 

 

Fig. 3. Spring shear stresses: a) torsion shear τM, b) transverse/direct shear τA, 

c) combined torsion and direct shear with curvature effect τmax  

Authors give different correction factors depending on theory used [19]. Table 2. shows these factors. 

Table 2. Expressions for stress and deflection correction factors 
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Since stresses in spring are mostly shear governed [23], [24], by adopting the von Mises criterion with 

relation σeqv(HMH),max = 31/2τmax, stress correction factor now reads as Kσ. In order to compare various 

deflection and stress correction factors from Table 2., referent relations are put to test using an alterna-

tive approach. All results are compared to those obtained using FEM software Abaqus [34]. Abaqus 

computational model consists of 3D second order 20 node hexahedron continuum elements C3D20R, 

which employ reduced integration and show superior performance due to additional nodes on sides of 

finite element [34]. Analysis is performed as linear and quasi-static, i.e. time is dimensionless. Con-

 



vergence study/mesh sensitivity check is performed beforehand and it is found that eight 2nd order 

hexahedron elements per spring thickness give highly accurate results for analyzed deflection/stress 

problem. Boundary conditions are defined through two reference points (RPs), analogue to Fig. 1.b), 

where pinned-pinned conditions are assumed. Full definition of boundary conditions is: B(u,v,w,υy=0), 

A(u,w=0). Reference points A and B are coupled to belonging spring sides through kinematic attach-

ment of type distributing, which allows for deformations of connection [34]. Fig. 4.a) shows computa-

tional model with fully defined reference points A and B, while Fig. 4.b) shows referent FE mesh. 

a) b)   

Fig. 4. Abaqus computational model, i = 1: a) RP(A,B) definition, b) C3D20R undeformed mesh  

For simplicity and computational effectiveness, only one coil is observed, i.e. i = 1. Six parametric 

Abaqus models are defined where spring pitch l = 2d. Fig. 5. shows all results in dimensionless form. 

a) b)  

Fig. 5. Spring correction factors parametric comparison: a) deflection factor Kδ, b) stress factor Kσ  

As shown in Fig. 5.a), Ancker & Goodier (Kδ,A/G) expression [16] shows best agreement with Abaqus 

model, while Shigley, Honegger and especially Dym somewhat overestimate the deflection. As shown 

in Fig. 5.b), Wahl (Kσ,W) expression [10], [11] agrees excellently with Abaqus model, while 

Bergsträsser, Göhner and Ancker & Goodier somewhat underestimate the stress field, but show almost 

identical mutual results. Therefore, Ancker & Goodier model is adopted for deflection, and Wahl 

model is adopted for stress field. As already observed by Timoshenko [22], shear/equivalent stress is 

at maximum at inner side of spring coil, therefore potential crack initiation location is identified. One 

should also notice that stress field is homogenous through entire one coil spring, therefore terminology 

of stress correction is favorable compared to stress concentration. The fatigue analysis of the spring is 

considered next. Analytical and numerical stress results are used to calculate the number of cycles to 

failure according to the von Mises criterion [23], [24] in the context of S-N i.e. Basquin’s curve [25], 

[26]. Type of spring processing and manufacture, e.g. favored shot-peening described by Shigley [23], 

Ugural [24] and Fatemi [25] among others, is not considered. Spring is for simplicity considered to be 

perfectly smooth and without any residual stresses. Table 3. shows example spring parameters. 

Table 3. Helical spring computational model example parameters 
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Unconventional Poisson factor ν = 0 is adopted in Table 3. as stress field shouldn’t depend on the used 

value, but robustness of adopted Ancker & Goodier displacement equation can be tested on an illustra-

tive example. D and d are chosen so C = D/d ≈ 4.545 which is a relatively small spring index, but still 

in the industrially accepted boundaries. However, such small spring index C results with a relatively 

large stress correction factor which is a convenient fatigue benchmark. Rest of the material parameters 

(E, S'f and b) are chosen in such way to represent regular fatigue and elastic properties of steel [25], 

[26]. Also, fatigue notch sensitivity is near unity, i.e. Kt(σ) = Kf which is a valid assumption according 

to Ugural [24]. Spring fatigue life can now be calculated according to derived simplified expression 
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where all correction factors are taken into account, and δmax refers to displacement amplitude δ0(ω). 

For fatigue analysis, Fe-Safe [35] software suite is employed with von Mises criterion evoked, taking 

into account converged FEM nodal stresses from Abaqus. Custom material is defined according to 

Table 3. and entire spring is analyzed. Fig. 6.a) and b) shows final results of performed HCF analysis. 

a)  b)   

Fig. 6. Spring k3: a) inverse No. of cycles to fracture/failure 1/Nf(k3), b) Abaqus/Fe-Safe Nf(k3) 

The improvement in the number of cycles to failure Nf is evident at most frequencies when using the 

optimum damping c2,opt (Fig. 6.a), dashed line) in comparison to low damping c2,lo = c2,opt/100 (solid 

line), or high damping c2,hi = 100c2,opt (dot-dashed line). Additionally, a significant further improve-

ment in the fatigue life 1/Nf(ω) is observed at most frequencies, in case where the optimum inerter 

b2,opt is implemented in combination with the optimum damper c2,opt2, as shown in Fig. 6.a) (dotted 

line). Fig. 6.b) shows particular fatigue life results of spring with parameters obtained from Table 3. 

and post-processed in Abaqus. Fe-Safe shows homogenous life field scaled according to expression 
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where actual minimum number of cycles Nf compared to analytical results is shown in lower Table 4. 

Table 4. Analytical and numerical results fatigue comparison 

 

It can be seen that force amplitude F0 from Table 3. is chosen in such way to result in max. equivalent 

stress σeqv(max) = 300 MPa in Table 4., according to adopted Wahl criterion. Although analytical and 

numerical stress σeqv(max) results shown on Table 4. differ by only ~0.232 %, that difference is enlarged 

in fatigue analysis to ~2.289 %, as fatigue expression (2) presents exponential equation where small 

differences in stress result in much larger dissipation in fatigue analysis. By taking Abaqus numerical 

results into account, difference between hand calculated fatigue and Fe-Safe results fall to ~0.0016 % 

which is negligible and can be attributed to rounding error. It can be seen that Wahl prediction gives 

somewhat more conservative results compared to numerical results. Finally, Ancker & Goodier deflec-

Method σ eqv, MPa E rel, % δ max, mm E rel, % N f, - E rel, %

Analytical 300.000 - 0.936895 - 169350.9 -

Abaqus 299.307 0.232 0.937889 -0.106 173315.8 0.001654

Fe -Safe - - - - 173318.7 -2.28932

 



 
tion correction excellently predicts displacement field where maximum relative error is around 0.1 %. 

However, the present optimization is based on a vibration-based criterion. It would be interesting as a 

future work, to consider a type of optimization which would aim at maximizing fatigue life of the spring 

and compare it to the present results. Also, considering that pitch angle is defined through relation l = 

2d and α = tan-1 [l/(πD)] in this work, it would be beneficiary to investigate the influence of pitch angle 

on deflection and stress correction, as some of the expressions from Table 2. consider the pitch angle 

influence, and some don’t. That most notably applies to further testing of Wahl stress correction factor, 

as it currently demonstrates highest accuracy for chosen parameters. Logical continuation of this work 

would also be investigation of mean stress influence on the spring fatigue life, as all calculations were 

performed for simple harmonic i.e. fully reversed loading R = –l where dead weight static load wasn’t 

considered. 

3. Conclusions 

If the parameters of the passive, inerter based isolator are optimized to maximize the effect of vibration 

isolation, this also seems to correspond to significant reductions of the stresses in the considered spring 

and an increase of its fatigue life as a consequence. The deflections and stresses in the spring have been 

calculated numerically and analytically, and they agree very well. Therefore it can be concluded that 

minimizing the kinetic energy of the receiving body is beneficial in terms of the spring fatigue life. 

However, it would be most interesting to investigate whether the vibration-based optimization can be 

met in parallel with a fatigue-life-based optimization, or if there would be some trade-off regarding the 

achievement of the two goals simultaneously. 
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