Introduction to Generalized Parton Distributions, DVCS and DVMP

Kornelija Passek-K.

Rudjer Boskovic Institute, Croatia

(□) (@) (E) (E) E

WE-Heraeus Physics School "Diffractive and electromagnetic processes at high energies" Bad Honnef, August, 20th, 2015.

Introduction	
000000000	

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

Outline

- Resolving nucleon structure (form factors, PDFs, ...)
- DVCS, DVMP, GPDs theory
 - Deeply virtual Compton scattering (DVCS)
 - ..., deeply virtual meson electroproduction (DVMP)
 - Generalized parton distributions (GPDs)
- OVCS, DVMP, GPDs phenomenology
 - Experimental status
 - Towards unravelling GPDs
 - Modeling venues
 - One example approach...

Introduction	
00000000	

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology 00000000000

Summary O

Resolving nucleon structure

SCATTERING

$$\begin{array}{c} \rightarrow \mbox{ elastic } & (e^- p \rightarrow e^- p) \\ \rightarrow \mbox{ inelastic } & (e^- p \rightarrow e^- \pi p) \\ & (e^- p \rightarrow e^- X) \end{array} \right\} \quad \mbox{ exclusive } \end{array}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Introduction •00000000	DVCS, DVMP, GPDs — 0000000000	- theory DVCS, DVN	MP, GPDs — phenomenology	Summary O
Resolving	nucleon stru	ucture		
SCATTE	RING			
	ightarrow elastic $ ightarrow$ inelastic	$egin{aligned} (e^-p ightarrow e^-p) \ (e^-p ightarrow e^-\pi p) \ (e^-p ightarrow e^-X) \end{aligned}$	<pre>} exclusive } inclusive</pre>	
ELASTI	C SCATTERING	G on a pointlike pa	rticle (s $=1/2$)	
4	/			

$$\gamma^{\mu} \to i\mathcal{A}$$

$$\to \frac{d\sigma}{d\Omega_{lab}} = \frac{\alpha^2}{4E^2 \sin^4 \theta/2} \frac{E'}{E} \left\{ 1 \cos^2 \frac{\theta}{2} - \frac{1}{2M^2} \sin^2 \frac{\theta}{2} \right\}$$

$$\sim |\mathcal{A}|^2$$

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary 0

ELASTIC SCATTERING on a composite particle

 $F_1(q^2)\gamma^{\mu} + rac{\kappa}{2M}F_2(q^2)i\sigma^{\mu\nu}q_{\nu} \longrightarrow i\mathcal{A}$

・ロト ・母 ト ・ 由 ト ・ 由 ・ つへぐ

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary 0

ELASTIC SCATTERING on a composite particle

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

(日)

Summary

INELASTIC INCLUSIVE SCATTERING

 $q = (\nu, \vec{q})$

scalars often used:

$$\begin{array}{l} E', \ \theta \ (\text{exp.}) \\ q^2, \ \nu = \frac{q \cdot p}{M} = E - E' \ (\text{teor.}) \\ q^2, \ x = \frac{-q^2}{2q \cdot p} \ (\text{teor.}) \end{array}$$

5

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary

INELASTIC INCLUSIVE SCATTERING

 $q=(
u,ec{q})$

scalars often used:

$$E', \theta \text{ (exp.)}$$

$$q^2, \nu = \frac{q \cdot p}{M} = E - E' \text{ (teor.)}$$

$$q^2, x = \frac{-q^2}{2q \cdot p} \text{ (teor.)}$$

$$egin{aligned} \mathcal{W}^{\mu\lambda} &= -W_1 g^{\mu\lambda} + rac{W_2}{M^2} p^\mu p^\lambda + rac{W_4}{M^2} q^\mu q^\lambda + rac{W_5}{M^2} (p^\mu q^\lambda + p^\lambda q^\mu) \ q_\mu \mathcal{W}^{\mu\lambda} &= q_\lambda \mathcal{W}^{\mu\lambda} = 0 \end{aligned}$$

 $d\sigma \sim L^{e}_{\mu\lambda} W^{\mu\lambda}$ $\sim \left\{ W_{2}(q^{2},\nu) \cos^{2}\frac{\theta}{2} + 2W_{1}(q^{2},\nu) \sin^{2}\frac{\theta}{2} \right\}_{ep \to eX}$ $W_{1}, W_{2} \dots \text{ structure functions}$

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology 00000000000

Summary

DEEP INELASTIC SCATTERING

Bjorken limit:

$$q^2
ightarrow \infty$$
 $x = x_B = rac{-q^2}{2q \cdot
ho} = cte.$
 $u
ightarrow \infty$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary

DEEP INELASTIC SCATTERING

 $\nu \to \infty$

Bjorken limit:

 \rightarrow sum of elastic *e*⁻-parton scatterings

structure functions:

$$M W_1(q^2, x) \rightarrow F_1(x)$$

 $-\frac{q^2}{2Mx}W_1(q^2, x) \rightarrow F_2(x)$

200

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary 0

SCALING VIOLATION IN DEEP INELASTIC SCATTERING

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary 0

SCALING VIOLATION IN DEEP INELASTIC SCATTERING

structure functions:

 $F_1(x) \rightarrow F_1(x, Q^2)$ $F_2(x) \rightarrow F_2(x, Q^2)$

$$\downarrow$$
 In Q^2 dependence ($Q^2 = -q^2$)

↑ parton interactions

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - 少へぐ

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

∜

Summary O

PDFs and factorization of DIS

- asymptotic freedom
- factorization

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

PDFs and factorization of DIS

- asymptotic freedom
- factorization

structure functions:

$$F_{i}(x, Q^{2}) = \sum_{a} \int dz \ C_{i}^{a}(x/z, Q^{2}/\mu^{2}) \ f_{a}(z, \mu^{2})$$

∜

 μ^2 ... factorization scale *a* ... parton type

-

Sac

・ロト ・ 理ト ・ ヨト ・ ヨト

 $C_i^a(x/z, Q^2/\mu^2)$... coeficient functions $f_a(z, \mu^2)$... parton distribution functions (PDFs)

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

PDFs and factorization of DIS

- asymptotic freedom
- factorization

structure functions:

$$F_{i}(x, Q^{2}) = \sum_{a} \int dz \ C_{i}^{a}(x/z, Q^{2}/\mu^{2}) \ f_{a}(z, \mu^{2})$$

∜

 μ^2 ... factorization scale a ... parton type

 $C_i^a(x/z, Q^2/\mu^2) \dots$ coeficient functions $\rightarrow pQCD (\alpha_S exp.)$ $f_a(z, \mu^2) \dots$ parton distribution functions (PDFs)

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

PDFs and factorization of DIS

- asymptotic freedom
- factorization

structure functions:

$$F_{i}(x, Q^{2}) = \sum_{a} \int dz \ C_{i}^{a}(x/z, Q^{2}/\mu^{2}) \ f_{a}(z, \mu^{2})$$

 \downarrow

 μ^2 ... factorization scale *a* ... parton type

 $C_i^a(x/z, Q^2/\mu^2) \dots$ coeficient functions $\rightarrow pQCD$ ($\alpha_S exp.$) $f_a(z, \mu^2) \dots$ parton distribution functions (PDFs) \rightarrow nonpert. input + DGLAP evolution equation (pQCD)

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

Parton distribution functions

• Deeply inelastic scattering

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

Electromagnetic form factors

 $\bullet~\mbox{Form}~\mbox{factors} \rightarrow \mbox{charge}~\mbox{distribution}$

$$\int \frac{\Gamma^{\mu}(\gamma^{*})}{q(b_{\perp})}$$

$$f^{\mu}(\gamma^* p \to p) = \gamma^{\mu} F_1(Q^2) + \frac{n_p}{2M_p} i \sigma^{\mu}_{\nu} q_1^{\nu} F_2(Q^2)$$

$$q(b_{\perp}) \sim \int dq_1 e^{iq_1 \cdot b_{\perp}} F_1(t = q_1^2)$$

 q_1

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

Electromagnetic form factors

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

Electromagnetic form factors

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

DIS and Compton scattering

• Deeply inelastic scattering $-q_1^2 \equiv Q^2 \rightarrow \infty$, $x_{BJ} \equiv \frac{-q_1^2}{2p_1q_1} \rightarrow \text{cte.}$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary

Probing the proton with two photons

• Deeply virtual Compton scattering (DVCS) [Müller '92, et al. '94]

 $P = P_1 + P_2$ $q = (q_1 + q_2)/2$ $\Delta = P_2 - P_1$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary

Probing the proton with two photons

• Deeply virtual Compton scattering (DVCS) [Müller '92, et al. '94]

 $P = P_1 + P_2$ $q = (q_1 + q_2)/2$ $\Delta = P_2 - P_1$

generalized Bjorken limit:

 $-q^{2} (\stackrel{\text{DVCS}}{\simeq} \mathcal{Q}^{2}/2) \to \infty \qquad \qquad \vartheta = \frac{q_{1}^{2} - q_{2}^{2}}{q_{1}^{2} + q_{2}^{2}} \approx \frac{\eta}{\xi} \stackrel{\text{DVCS}}{=} 1$ $\xi = \frac{-q^{2}}{2P \cdot q} \to \text{const } (\text{as } x_{B}) \qquad \qquad t = (P_{2} - P_{1})^{2} = \Delta^{2}$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary O

Deeply virtual Compton scattering

• There is a background process

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

イロト イポト イヨト イヨト

Summary O

Deeply virtual Compton scattering

 There is a background process but it can be used to our advantage:

 $\sigma \propto |\mathcal{A}_{\rm DVCS}|^2 + |\mathcal{A}_{\rm BH}|^2 + \mathcal{A}_{\rm DVCS}^* \mathcal{A}_{\rm BH} + \mathcal{A}_{\rm DVCS} \mathcal{A}_{\rm BH}^*$

 \bullet Using ${\cal A}_{\rm BH}$ as a referent "source" enables measurement of the phase of ${\cal A}_{\rm DVCS}$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary

Factorization of DVCS \longrightarrow GPDs

→ cross-section can be expressed in terms of (the squares of) Compton form factors: $\mathcal{H}(\xi, t, Q^2), \mathcal{E}(\xi, t, Q^2), \tilde{\mathcal{H}}(\xi, t, Q^2), \tilde{\mathcal{E}}(\xi, t, Q^2), \dots$

[Collins and Freund '99]

• Compton form factor is a convolution:

$${}^{a}\mathcal{H}(\xi, t, \mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x, \xi, \mathcal{Q}^{2}/\mu^{2}) \ H^{a}(x, \eta = \xi, t, \mu^{2})$$
$$H^{a}(x, \eta, t, \mu^{2}) - \text{Generalized parton distribution } (\bar{\mathsf{GPD}})^{\mathbb{P}} \xrightarrow{\mathbb{P}} \mathcal{Q}^{\mathcal{Q}}$$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary O

Factorization of DVCS \longrightarrow GPDs

• $C^a(x,\xi,\mathcal{Q}^2/\mu^2)$... hard scattering amplitude

 $\to \mathsf{pQCD}$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary O

Factorization of DVCS \longrightarrow GPDs

• $C^{a}(x,\xi,Q^{2}/\mu^{2})$... hard scattering amplitude $\rightarrow pQCD$

•
$$H^a(x,\eta=\xi,t,\mu^2)\ldots \text{GPD}$$

 \rightarrow nonperturbative input

→ evolution \Leftarrow pQCD (limiting cases DGLAP ($\eta = 0$) and ERBL ($\eta = 1$) evolution equations)

$$\mu^2 \frac{d}{d\mu^2} \mathbf{F}(x,\eta,t,\mu^2) = \int_{-1}^1 \frac{dy}{2\eta} \, \mathbf{V}\!\left(\!\frac{\eta+x}{2\eta},\frac{\eta+y}{2\eta};\eta\Big|\alpha_s(\mu)\!\right) \cdot \mathbf{F}(y,\eta,t,\mu^2)$$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary O

Complementary processes

Deeply virtual production of mesons (DVMP)

more difficult, but access to flavours

$$\gamma^* p \to M p$$

factorization: [Collins, Frankfurt, Strikman '97]

 Introduction
 DVCS, DVMP, GPDs - theory
 DVCS, DVMP, GPDs - phenomenology
 Summary

 Hard-scattering amplitudes (DV processes vs. meson form factors)

DVCS $\gamma^* q \rightarrow \gamma q$, $\gamma^* g \rightarrow \gamma g$ 200000 GPD GPD

DVCS, DVMP, GPDs - theory DVCS, DVMP, GPDs - phenomenology Summary 00000000000 Hard-scattering amplitudes (DV processes vs. meson form factors)

NLO: [Ji et al, Belitsky et al, Mankiewicz et al, '97]

Meson transition form factor

$$\gamma^*\gamma
ightarrow (qar q), \ \gamma^*\gamma
ightarrow (gg)$$

 Introduction
 DVCS, DVMP, GPDs - theory
 DVCS, DVMP, GPDs - phenomenology
 Summary

 Hard-scattering amplitudes (DV processes vs. meson form factors)

Meson em form factor

 $\gamma^*(q\bar{q})
ightarrow (q\bar{q})$

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs -
00000000	00000000000	0000000000000

Definition of GPDs

• In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$\widetilde{F}^{q}(x,\eta,t=\Delta^{2}) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|\overline{q}(-z)\gamma^{+}\gamma_{5}q(z)|P_{1}\rangle\Big|_{z^{+}=0,z_{\perp}}$$

$$\widetilde{F}^{g}(x,\eta,t=\Delta^{2}) = \frac{4}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|G_{a}^{+\mu}(-z)\widetilde{G}_{a\mu}^{+}(z)|P_{1}\rangle\Big|_{...}$$

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

phenomenology

Summary

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary O

Properties of GPDs

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary O

Properties of GPDs

• Forward limit ($\Delta \rightarrow 0, \eta \rightarrow 0$): $\Rightarrow \widetilde{H}$ -GPDs \rightarrow PDFs

• Sum rules: \Rightarrow GPD \rightarrow form factors

$$\sum_{q=u,d} Q_q \int_{-1}^1 dx \left\{ \begin{array}{l} H^q(x,\eta,t) \\ E^q(x,\eta,t) \end{array} \right\} = \left\{ \begin{array}{l} F_1(t) \\ F_2(t) \end{array} \right\}$$

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary O

Properties of GPDs

• Sum rules: \Rightarrow GPD \rightarrow form factors

$$\sum_{q=u,d} Q_q \int_{-1}^1 dx \left\{ \begin{array}{l} H^q(x,\eta,t) \\ E^q(x,\eta,t) \end{array} \right\} = \left\{ \begin{array}{l} F_1(t) \\ F_2(t) \end{array} \right\}$$

• Possibility of solution of proton spin problem

$$\frac{1}{2} \int_{-1}^{1} dx x \Big[H^{q}(x,\eta,t) + E^{q}(x,\eta,t) \Big] = J^{q}(t) \qquad \text{[Ji '96]}$$

▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 - 釣 Q ()~

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary O

Properties of GPDs

• Sum rules: \Rightarrow GPD \rightarrow form factors

$$\sum_{q=u,d} Q_q \int_{-1}^1 dx \left\{ \begin{array}{l} H^q(x,\eta,t) \\ E^q(x,\eta,t) \end{array} \right\} = \left\{ \begin{array}{l} F_1(t) \\ F_2(t) \end{array} \right\}$$

• Possibility of solution of proton spin problem

$$rac{1}{2}\int_{-1}^{1}dxx\Big[H^{q}(x,\eta,t)+E^{q}(x,\eta,t)\Big]=J^{q}(t)$$
 [Ji '96]

• polinomiality and positivity constraints

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology 00000000000

[V. D. Burkert, 2006]

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary

Contempory hierarchy of parton distributions

Introduction	
000000000	

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

ъ

Experimental status

DVMP

• in the last decade: vector meson (ρ , J/Ψ , ϕ) production at H1 and ZEUS, COMPASS, pseudoscalar mesons (π , η) at CLAS ...

 \rightarrow new results from COMPASS, JLab12 (EIC)

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary
00000000	000000000	0000000000	0

Towards unravelling GPDs

DVCS: Compton form factors

$${}^{a}\mathcal{H}(\boldsymbol{\xi},t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x,\xi,\mathcal{Q}^{2}/\mu^{2})) \ \mathcal{H}^{a}(x,\xi,t,\mu^{2})_{a=q,G} \\ {}_{a=q,G} \text{ or NS,S}(\boldsymbol{\Sigma},G)$$

DVMP: transition form factors

$${}^{a}\mathcal{T}(\boldsymbol{\xi},\boldsymbol{t},\mathcal{Q}^{2}) = \int \mathrm{d}x \ \int \mathrm{d}y \ T^{a}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{y},\mathcal{Q}^{2}/\mu^{2})) \ \boldsymbol{H}^{a}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{t},\mu^{2}) \ \phi(\boldsymbol{y},\mu^{2})$$

• Complete deconvolution is impossible and to extract GPDs from the experiment we need to model their functional dependence, or alternatively model form factors for start.

000000000 000000000 0 0 0	Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary
	00000000	000000000	0000000000	0

Towards unravelling GPDs

DVCS: Compton form factors

$${}^{a}\mathcal{H}(\boldsymbol{\xi},\boldsymbol{t},\mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x,\boldsymbol{\xi},\mathcal{Q}^{2}/\mu^{2})) \ H^{a}(x,\boldsymbol{\xi},\boldsymbol{t},\mu^{2})_{a=q,G} |_{\mathrm{or}} \ \mathrm{NS},\mathrm{S}(\boldsymbol{\Sigma},G)$$

DVMP: transition form factors

$${}^{a}\mathcal{T}(\boldsymbol{\xi},\boldsymbol{t},\mathcal{Q}^{2}) = \int \mathrm{d}x \ \int \mathrm{d}y \ T^{a}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{y},\mathcal{Q}^{2}/\mu^{2})) \ \boldsymbol{H}^{a}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{t},\mu^{2}) \ \phi(\boldsymbol{y},\mu^{2})$$

- Complete deconvolution is impossible and to extract GPDs from the experiment we need to model their functional dependence, or alternatively model form factors for start.
- "*Curse of the dimensionality*" When the dimensionality increases, the volume of the space increases so fast that the available data become sparse.

000000000 000000000 0 0 0	Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary
	00000000	000000000	0000000000	0

Towards unravelling GPDs

DVCS: Compton form factors

$${}^{a}\mathcal{H}(\boldsymbol{\xi},\boldsymbol{t},\mathcal{Q}^{2}) = \int \mathrm{d}x \; C^{a}(x,\boldsymbol{\xi},\mathcal{Q}^{2}/\mu^{2})) \; H^{a}(x,\boldsymbol{\xi},\boldsymbol{t},\mu^{2})_{\substack{a=q,G} \text{ or NS,S}(\boldsymbol{\Sigma},G)}$$

DVMP: transition form factors

$${}^{a}\mathcal{T}(\boldsymbol{\xi},\boldsymbol{t},\mathcal{Q}^{2}) = \int \mathrm{d}x \ \int \mathrm{d}y \ T^{a}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{y},\mathcal{Q}^{2}/\mu^{2})) \ \boldsymbol{H}^{a}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{t},\mu^{2}) \ \phi(\boldsymbol{y},\mu^{2})$$

- Complete deconvolution is impossible and to extract GPDs from the experiment we need to model their functional dependence, or alternatively model form factors for start.
- "*Curse of the dimensionality*" When the dimensionality increases, the volume of the space increases so fast that the available data become sparse.
- Known GPD constraints don't decrease the dimensionality of the GPD domain space.

Introduction 00000000	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary O
Modeling	venues		

- double distribution amplitude (DDA) satisfy automatically the polinomiality constraint so many models based on it, or specificaly Radyushkin's DDA (RDDA) (VGG code, [Goeke et al. 01], BMK model [Belitsky, Muller, Kirchner 01], GK model [Goloskokov, Kroll 05]))
- 'aligned jet' model [Freund, McDermott, Strikman 02], polynomials [Belitsky et al. '98], [Liuti et al. '07], [Moutarde '09]
- 'dual model' [Polyakov, Shuvaev 02], [Guzey, Teckentrup 06], [Polyakov 07]
- various models in Mellin-Barnes integral representation [Kumericki, Muller, Passek-K 08, ...]
- fitting Compton form factors with neural networks [Kumericki, Muller, Schaefer 11]

Introduction 00000000	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary O
Modeling	venues		

- double distribution amplitude (DDA) satisfy automatically the polinomiality constraint so many models based on it, or specificaly Radyushkin's DDA (RDDA) (VGG code, [Goeke et al. 01], BMK model [Belitsky, Muller, Kirchner 01], GK model [Goloskokov, Kroll 05]))
- 'aligned jet' model [Freund, McDermott, Strikman 02], polynomials [Belitsky et al. '98], [Liuti et al. '07], [Moutarde '09]
- 'dual model' [Polyakov, Shuvaev 02], [Guzey, Teckentrup 06], [Polyakov 07]
- various models in Mellin-Barnes integral representation [Kumericki, Muller, Passek-K 08, ...]
- fitting Compton form factors with neural networks [Kumericki, Muller, Schaefer 11]

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

DVCS using Mellin-Barnes representation, going to higher-orders and fitting GPDs

K. Kumerički, D. Müller, K. Passek-K.,

Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond, [hep-ph/0703179]

D. Müller, K. Passek-K., T. Lautenschlager, A. Schäfer, *Towards a fitting procedure to deeply virtual meson production - the next-to-leading order case*, [arXiv:1310.5394]

K. Kumerički and D. Müller, [arXiv:0904.0458 [hep-ph]]

K. Kumerički, T. Lautenschlager, D. Müller, K. Passek-K., A. Schäfer and M. Meskauskas, [arXiv:1105.0899 [hep-ph]]

K. Kumerički, D. Müller and A. Schäfer, [arXiv:1106.2808 [hep-ph]]

K. Kumerički, D. Müller and M. Murray [arXiv:1301.1230 [hep-ph]]

T. Lautenschlager, D. Müller and A. Schäfer, [arXiv:1312.5493]

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary

• factorization formula for singlet DVCS CFFs:

$${}^{S}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ \mathbf{C}(x,\xi,\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \ \mathbf{H}(x,\xi,t,\mu^{2})$$

DVCS, DVMP, GPDs — theory 000000000

• factorization formula for singlet DVCS CFFs:

$${}^{S}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \, \mathbf{C}(x,\xi,\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \, \mathbf{H}(x,\xi,t,\mu^{2})$$

• ... in terms of conformal moments

(analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x), C_n^{5/2}(x)$):

$$= 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_j(\mathcal{Q}^2/\mu^2, \alpha_s(\mu)) \mathbf{H}_j(\xi = \eta, t, \mu^2)$$

$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

 H_i^a even polynomials in η with maximal power η^{j+1}

DVCS, DVMP, GPDs — theory 000000000

• factorization formula for singlet DVCS CFFs:

$${}^{S}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \, \mathbf{C}(x,\xi,\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \, \mathbf{H}(x,\xi,t,\mu^{2})$$

• ... in terms of conformal moments

(analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x), C_n^{5/2}(x)$):

$$= 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_j(\mathcal{Q}^2/\mu^2, \alpha_s(\mu)) \mathbf{H}_j(\xi = \eta, t, \mu^2)$$

$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

 H^a_i even polynomials in η with maximal power η^{j+1}

• series summed using Mellin-Barnes integral over complex *j*:

$$=\frac{1}{2i}\int_{c-i\infty}^{c+i\infty} dj \left[i+\tan\left(\frac{\pi j}{2}\right)\right]\xi^{-j-1}\mathbf{C}_j(\mathcal{Q}^2/\mu^2,\alpha_s(\mu))\mathbf{H}_j(\xi,t,\mu^2)$$

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary 0

- enables simpler inclusion of evolution effects
- powerful analytic methods of **complex j** plane are available (similar to complex angular momentum of Regge theory)
- opens the door for interesting modelling of GPDs
- possible efficient and stable numerical treatment ⇒ stable and fast computer code for evolution and fitting
- moments are equal to matrix elements of local operators and are thus directly accessible on the **lattice**
- NNLO corrections for DVCS accessible by making use of conformal OPE and known NNLO DIS results

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

- enables simpler inclusion of evolution effects
- powerful analytic methods of **complex j** plane are available (similar to complex angular momentum of Regge theory)
- opens the door for interesting modelling of GPDs
- possible efficient and stable numerical treatment ⇒ stable and fast computer code for evolution and fitting
- moments are equal to matrix elements of local operators and are thus directly accessible on the **lattice**
- NNLO corrections for DVCS accessible by making use of conformal OPE and known NNLO DIS results

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

- enables simpler inclusion of evolution effects
- powerful analytic methods of **complex j** plane are available (similar to complex angular momentum of Regge theory)
- opens the door for interesting modelling of GPDs
- possible efficient and stable numerical treatment ⇒ stable and fast computer code for evolution and fitting
- moments are equal to matrix elements of local operators and are thus directly accessible on the **lattice**
- NNLO corrections for DVCS accessible by making use of conformal OPE and known NNLO DIS results

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

- enables simpler inclusion of evolution effects
- powerful analytic methods of **complex j** plane are available (similar to complex angular momentum of Regge theory)
- opens the door for interesting modelling of GPDs
- possible efficient and stable numerical treatment ⇒ stable and fast computer code for evolution and fitting
- moments are equal to matrix elements of local operators and are thus directly accessible on the **lattice**
- NNLO corrections for DVCS accessible by making use of conformal OPE and known NNLO DIS results

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

- enables simpler inclusion of evolution effects
- powerful analytic methods of **complex j** plane are available (similar to complex angular momentum of Regge theory)
- opens the door for interesting modelling of GPDs
- possible efficient and stable numerical treatment ⇒ stable and fast computer code for evolution and fitting
- moments are equal to matrix elements of local operators and are thus directly accessible on the **lattice**
- NNLO corrections for DVCS accessible by making use of conformal OPE and known NNLO DIS results

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

,

Summary

Modelling conformal moments

$$\mathbf{H}_{j}(\eta, t) = \underbrace{\begin{pmatrix} N_{\Sigma}' F_{\Sigma}(t) B(1+j-\alpha_{\Sigma}(0), 8) \\ N_{G}' F_{G}(t) B(1+j-\alpha_{G}(0), 6) \end{pmatrix}}_{\text{Leading partial wave}} + \begin{pmatrix} s_{\Sigma} \\ s_{G} \end{pmatrix} \begin{pmatrix} \text{subleading partial waves}, & \eta - \eta - \eta \\ \text{dependence!} \end{pmatrix}$$

• Leading wave – simplest case:

(at NLO data can be fitted with leading wave only)

Regge-inspired ansatz

$$\alpha_{a}(t) = \alpha_{a}(0) + 0.15t$$
 $F_{a}(t) = \frac{j+1-\alpha(0)}{j+1-\alpha(t)} \left(1-\frac{t}{M_{0}^{a^{2}}}\right)^{-p_{a}}$

- for t = 0 corresponds to x-space PDFs of the form $\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^{7}; \qquad G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^{5}$
- fit parameters: N_{Σ} , $\alpha_{\Sigma}(0)$, $\alpha_{G}(0)$ (DIS) and M_{0}^{Σ} (DVCS) $(M_{0}^{G} = \sqrt{0.7} \text{ GeV from } J/\Psi \text{ prod.})$

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

NLO and NNLO corrections

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary O

Э

Fits (GeParD output)

DATA/DIS11H1_DAT

ş

o

20 40

٥ž

ិទី ទី

ñ

DATA/DIS2H1.DAT

PETE I .

Resulting PDFs

30

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary

NNLO fit to HERA DVCS+DIS data

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

GPD page and server

• Durham-like CFF/GPD server page

 binary code for cross sections and KM models available at http://calculon.phy.hr/gpd/

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

Parton probability density

• Fourier transform of GPD for $\eta = 0$ can be interpreted as probability density depending on x and transversal distance b [Burkardt '00, '02]

$$H(x,\vec{b}) = \int \frac{d^2\vec{\Delta}}{(2\pi)^2} e^{-i\vec{b}\cdot\vec{\Delta}} H(x,\eta=0,\Delta^2=-\vec{\Delta}^2) ,$$

• Average transversal distance :

$$\langle \vec{b}^2 \rangle(x, \mathcal{Q}^2) = \frac{\int d\vec{b} \, \vec{b}^2 H(x, \vec{b}, \mathcal{Q}^2)}{\int d\vec{b} \, H(x, \vec{b}, \mathcal{Q}^2)} = 4B(x, \mathcal{Q}^2),$$

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary O

Three-dimensional image of a proton

Introduction 000000000	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary ●
Summary			

 Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS, DVMP ... different processes offer different insight and should provide more complete picture.

00000000	000000000	00000000000	•	
ntroduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary	

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS, DVMP ... different processes offer different insight and should provide more complete picture.
- Extraction of GPDs is extremely chalenging but efforts for global fits are being made.
- New data are expected from COMPASS and JLab12. DVCS and related processes have a large role in EIC proposal.

The End

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○