Generalized Parton Distributions (GPDs) through DVCS and DVMP

Kornelija Passek-K.

Rudjer Boskovic Institute, Croatia

ACHT2015 "Strong Interactions in Quantum Field Theory" Leibnitz, Oct, 8th, 2015.

<□> <@> < ≥> < ≥> < ≥</p>

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary
0000	00000000	000000000	O
Outline			

Outline

- Resolving nucleon structure (form factors, PDFs, ...)
- DVCS, DVMP, GPDs theory
 - Deeply virtual Compton scattering (DVCS)
 - ..., deeply virtual meson electroproduction (DVMP)
 - Generalized parton distributions (GPDs)
- OVCS, DVMP, GPDs phenomenology
 - Experimental status
 - Towards unravelling GPDs
 - Modeling venues
 - One example approach...

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary
●000	00000000	000000000	0

Resolving nucleon structure

SCATTERING

$$\begin{array}{c} \rightarrow \mbox{ elastic } & (e^-p \rightarrow e^-p) \\ \rightarrow \mbox{ inelastic } & (e^-p \rightarrow e^-\pi p) \\ & (e^-p \rightarrow e^-X) \end{array} \right\} \quad \mbox{ exclusive } \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary
0000	00000000	000000000	0

Resolving nucleon structure

SCATTERING

$$\begin{array}{c} \rightarrow \mbox{ elastic } & (e^-p \rightarrow e^-p) \\ \rightarrow \mbox{ inelastic } & (e^-p \rightarrow e^-\pi p) \\ & (e^-p \rightarrow e^-X) \end{array} \right\} \quad \mbox{ exclusive } \end{array}$$

 Introduction
 DVCS, DVMP, GPDs → theory
 DVCS, DVMP, GPDs → phenomenology

 0●00
 000000000
 000000000

Parton distribution functions

• Deeply inelastic scattering
$$\left| -q_1^2 \equiv Q^2 \rightarrow \infty, x_{BJ} \equiv \frac{-q_1^2}{2\rho \cdot q_1} \rightarrow \text{cte.} \right|$$
 (Bjorken limit)

Summary

 Introduction
 DVCS, DVMP, GPDs — theory
 DVCS, DVMP, GPDs — phenomenology
 Summary

 0•00
 000000000
 0000000000
 0

Parton distribution functions

• Deeply inelastic scattering
$$\left| -q_1^2 \equiv Q^2 \to \infty, x_{BJ} \equiv \frac{-q_1^2}{2\rho \cdot q_1} \to \text{cte.} \right|$$
 (Bjorken limit)

 Introduction
 DVCS, DVMP, GPDs — theory
 DVCS, DVMP, GPDs — phenomenology
 Summary

 0•00
 000000000
 0000000000
 0

Parton distribution functions

• Deeply inelastic scattering $\left| -q_{1}^{2} \equiv Q^{2} \rightarrow \infty, x_{BJ} \equiv \frac{-q_{1}^{2}}{2p \cdot q_{1}} \rightarrow \text{cte.} \right|$ (Bjorken limit)

Introduction	DVC
0000	000

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Sum mary O

Electromagnetic form factors

• Form factors \rightarrow charge distribution

$$\Gamma^{\mu}(\gamma^{*}\boldsymbol{p} \rightarrow \boldsymbol{p}) = \gamma^{\mu}F_{1}(\boldsymbol{Q}^{2}) + \frac{\kappa_{\boldsymbol{p}}}{2M_{\boldsymbol{p}}}i\sigma_{\nu}^{\mu}q_{1}^{\nu}F_{2}(\boldsymbol{Q}^{2})$$

Introduction	
0000	

DVCS, DVMP, GPDs — theory 00000000

DVCS, DVMP, GPDs — phenomenology

Sum mary O

Electromagnetic form factors

$$\Gamma^{\mu}(\gamma^{*}\boldsymbol{p}\rightarrow\boldsymbol{p})=\gamma^{\mu}F_{1}(\boldsymbol{Q}^{2})+\frac{\kappa_{\boldsymbol{p}}}{2M_{\boldsymbol{p}}}i\sigma_{\nu}^{\mu}q_{1}^{\nu}F_{2}(\boldsymbol{Q}^{2})$$

$$q(b_{\perp}) \sim \int dq_1 \, e^{iq_1 \cdot b_{\perp}} F_1(t = q_1^2)$$

х

Introduction	
0000	

DVCS, DVMP, GPDs — theory 00000000

DVCS, DVMP, GPDs — phenomenology

Sum mary O

Electromagnetic form factors

$$\Gamma^{\mu}(\gamma^* \boldsymbol{p} \to \boldsymbol{p}) = \gamma^{\mu} F_1(\boldsymbol{Q}^2) + \frac{\kappa_p}{2M_p} i \sigma^{\mu}_{\nu} q_1^{\nu} F_2(\boldsymbol{Q}^2)$$

Introduction 000● DVCS, DVMP, GPDs — theory 00000000

DVCS, DVMP, GPDs — phenomenology

Sum mary O

DIS and Compton scattering

• Deeply inelastic scattering $-q_1^2 \equiv Q^2 \rightarrow \infty$, $x_{BJ} \equiv \frac{-q_1^2}{2p_1q_1} \rightarrow \text{cte.}$

troduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summar
000	• 000 00000	000000000	0

Probing the proton with two photons

• Deeply virtual Compton scattering (DVCS) [Müller '92, et al. '94]

 $P = P_1 + P_2$ $q = (q_1 + q_2)/2$ $\Delta = P_2 - P_1$

 Introduction
 DVCS, DVMP, GPDs — theory
 DVCS, DVMP, GPDs — phenomenology

 0000
 000000000
 000000000

Probing the proton with two photons

• Deeply virtual Compton scattering (DVCS) [Müller '92, et al. '94]

 $P = P_1 + P_2$ $q = (q_1 + q_2)/2$ $\Delta = P_2 - P_1$

Summary

generalized Bjorken limit:

 $-q^{2} (\stackrel{\text{DVCS}}{\simeq} \mathcal{Q}^{2}/2) \to \infty \qquad \qquad \vartheta = \frac{q_{1}^{2} - q_{2}^{2}}{q_{1}^{2} + q_{2}^{2}} \approx \frac{\eta}{\xi} \stackrel{\text{DVCS}}{=} 1$ $\xi = \frac{-q^{2}}{2P \cdot q} \to \text{const } (\text{as } x_{B}) \qquad \qquad t = (P_{2} - P_{1})^{2} = \Delta^{2}$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology 000000000

Summary

Deeply virtual Compton scattering

 There is a background process but it can be used to our advantage:

 $\sigma \propto |\mathcal{A}_{\rm DVCS}|^2 + |\mathcal{A}_{\rm BH}|^2 + \mathcal{A}_{\rm DVCS}^* \mathcal{A}_{\rm BH} + \mathcal{A}_{\rm DVCS} \mathcal{A}_{\rm BH}^*$

 \bullet Using ${\cal A}_{\rm BH}$ as a referent "source" enables measurement of the phase of ${\cal A}_{\rm DVCS}$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary

Factorization of DVCS \longrightarrow GPDs

 \rightarrow cross-section can be expressed in terms of (the squares of) Compton form factors: $\mathcal{H}(\xi, t, Q^2), \mathcal{E}(\xi, t, Q^2), \tilde{\mathcal{H}}(\xi, t, Q^2), \tilde{\mathcal{E}}(\xi, t, Q^2), \dots$

[Collins and Freund '99]

• Compton form factor is a convolution:

$${}^{a}\mathcal{H}(\xi, t, \mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x, \xi, \mathcal{Q}^{2}/\mu^{2}) \ H^{a}(x, \eta = \xi, t, \mu^{2})$$
$$H^{a}(x, \eta, t, \mu^{2}) - \text{Generalized parton distribution (GPD)} \xrightarrow{\mathbb{R}^{n}} \xrightarrow{\mathbb{R}^{n}} \mathbb{R}^{n}$$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary

Factorization of DVCS \longrightarrow GPDs

$${}^{a}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ \boldsymbol{C}^{a}(x,\xi,\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \ \boldsymbol{H}^{a}(x,\eta=\xi,t,\mu^{2})$$

• $C^{a}(x, \xi, Q^{2}/\mu^{2})$... hard scattering amplitude $\rightarrow pQCD$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary

Factorization of DVCS \longrightarrow GPDs

$${}^{a}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x,\xi,\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \ H^{a}(x,\eta=\xi,t,\mu^{2})$$

• $C^a(x, \xi, Q^2/\mu^2)$... hard scattering amplitude $\rightarrow pQCD$

•
$$H^a(x, \eta = \xi, t, \mu^2) \dots \text{GPD}$$

 \rightarrow nonperturbative input

 \rightarrow evolution \Leftarrow pQCD (limiting cases DGLAP ($\eta = 0$) and ERBL ($\eta = 1$) evolution equations)

$$\mu^{2} \frac{d}{d\mu^{2}} \mathbf{F}(x,\eta,t,\mu^{2}) = \int_{-1}^{1} \frac{dy}{2\eta} \mathbf{V}\left(\frac{\eta+x}{2\eta}, \frac{\eta+y}{2\eta}; \eta \middle| \alpha_{s}(\mu)\right) \cdot \mathbf{F}(y,\eta,t,\mu^{2})$$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Sum mary

Complementary processes

Deeply virtual production of mesons (DVMP)

more difficult, but access to flavours

$$\gamma^* p \to M p$$

factorization: [Collins, Frankfurt, Strikman '97]

ntroduction	
0000	

DVCS, DVMP, GPDs — phenomenology 000000000

Sum mary O

Hard-scattering amplitudes

NLO: [Ji et al, Belitsky et al, Mankiewicz et al, '97]

・ロト・日本・日本・日本・日本・日本・日本

DVCS, DVMP, GPDs — phenomenology 000000000

Sum mary O

Hard-scattering amplitudes

DVMP

NLO: [Belitsky and Müller '01, Ivanov et al '04]

・ロト ・ 母 ト ・ 由 ト ・ 由 ・ うへぐ

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary
0000	000000000	000000000	0

Definition of GPDs

• In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$\widetilde{F}^{q}(x,\eta,t=\Delta^{2}) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|\bar{q}(-z)\gamma^{+}\gamma_{5}q(z)|P_{1}\rangle\Big|_{z^{+}=0,z_{\perp}}$$

$$\widetilde{F}^{g}(x,\eta,t=\Delta^{2}) = \frac{4}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|G_{a}^{+\mu}(-z)\widetilde{G}_{a\mu}^{+}(z)|P_{1}\rangle\Big|_{\dots}$$

• Decomposing into helicity conserving and non-conserving part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

▲ロト ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Sum mary O

Properties of GPDs

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Sum mary O

Properties of GPDs

• Sum rules: \Rightarrow GPD \rightarrow form factors

$$\sum_{q=u,d} Q_q \int_{-1}^1 dx \left\{ \begin{array}{l} H^q(x,\eta,t) \\ E^q(x,\eta,t) \end{array} \right\} = \left\{ \begin{array}{l} F_1(t) \\ F_2(t) \end{array} \right\}$$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Sum mary O

Properties of GPDs

• Sum rules: \Rightarrow GPD \rightarrow form factors

$$\sum_{q=u,d} Q_q \int_{-1}^1 dx \left\{ \begin{array}{l} H^q(x,\eta,t) \\ E^q(x,\eta,t) \end{array} \right\} = \left\{ \begin{array}{l} F_1(t) \\ F_2(t) \end{array} \right\}$$

• Possibility of solution of proton spin problem

$$\frac{1}{2} \int_{-1}^{1} dx x \Big[H^{q}(x,\eta,t) + E^{q}(x,\eta,t) \Big] = J^{q}(t) \qquad \text{[Ji '96]}$$

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Sum mary O

Properties of GPDs

• Sum rules: \Rightarrow GPD \rightarrow form factors

$$\sum_{q=u,d} Q_q \int_{-1}^1 dx \left\{ \begin{array}{l} H^q(x,\eta,t) \\ E^q(x,\eta,t) \end{array} \right\} = \left\{ \begin{array}{l} F_1(t) \\ F_2(t) \end{array} \right\}$$

• Possibility of solution of proton spin problem

$$\frac{1}{2} \int_{-1}^{1} dx \, x \Big[H^q(x,\eta,t) + E^q(x,\eta,t) \Big] = J^q(t) \qquad \text{[Ji '96]}$$

• polinomiality and positivity constraints

DVCS, DVMP, GPDs — theory

DVCS, DVMP, GPDs — phenomenology

Summary

Contempory hierarchy of parton distributions

Introduction	DVCS, DVMP, GPDs - theo
0000	00000000

DVCS, DVMP, GPDs — phenomenology

Sum mary O

ъ

Experimental status

DVMP

• in the last decade: vector meson (ρ , J/Ψ , ϕ) production at H1 and ZEUS, COMPASS, pseudoscalar mesons (π , η) at CLAS ...

 \rightarrow new results from COMPASS, JLab12 (EIC)

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary
0000	00000000	00000000	0

Towards unravelling GPDs

DVCS: Compton form factors

$${}^{a}\mathcal{H}(\boldsymbol{\xi},t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x,\xi,\mathcal{Q}^{2}/\mu^{2})) \ \mathcal{H}^{a}(x,\xi,t,\mu^{2})_{a=q,G} \\ {}_{a=q,G} \text{ or NS,S}(\boldsymbol{\Sigma},G)$$

DVMP: transition form factors

 ${}^{a}\mathcal{T}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ \int \mathrm{d}y \ T^{a}(x,\xi,y,\mathcal{Q}^{2}/\mu^{2})) \ H^{a}(x,\xi,t,\mu^{2}) \ \phi(y,\mu^{2})$

- **Complete deconvolution is impossible** and to extract GPDs from the experiment we need to **model** their functional dependence, or alternatively model form factors for start.
- "Curse of the dimensionality" When the dimensionality increases, the volume of the space increases so fast that the **available data become sparse**.
- Known GPD constraints don't decrease the dimensionality of the GPD domain space.

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Sum mary
0000	00000000		O
Modeling	venues		

- double distribution amplitude (DDA) satisfy automatically the polinomiality constraint so many models based on it, or specificaly Radyushkin's DDA (RDDA) (VGG code, [Goeke et al. 01], BMK model [Belitsky, Muller, Kirchner 01], GK model [Goloskokov, Kroll 05]))
- 'aligned jet' model [Freund, McDermott, Strikman 02], polynomials [Belitsky et al. '98], [Liuti et al. '07], [Moutarde '09]
- 'dual model' [Polyakov, Shuvaev 02], [Guzey, Teckentrup 06], [Polyakov 07]
- various models in Mellin-Barnes integral representation [Kumericki, Muller, Passek-K 08, ...]
- fitting Compton form factors with neural networks [Kumericki, Muller, Schaefer 11]

DVCS, DVMP, GPDs — theory 00000000

DVCS, DVMP, GPDs — phenomenology

Sum mary O

• factorization formula for singlet DVCS CFFs:

$$^{S}\mathcal{H}(\xi, t, \mathcal{Q}^{2}) = \int \mathrm{d}x \ \mathbf{C}(x, \xi, \mathcal{Q}^{2}/\mu^{2}, \alpha_{s}(\mu)) \ \mathbf{H}(x, \xi, t, \mu^{2})$$

DVCS, DVMP, GPDs — theory 00000000

• factorization formula for singlet DVCS CFFs:

$${}^{S}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ \mathbf{C}(x,\xi,\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \ \mathbf{H}(x,\xi,t,\mu^{2})$$

• ... in terms of conformal moments

(analogous to Mellin moments in DIS: $x^n \rightarrow C_n^{3/2}(x), C_n^{5/2}(x)$):

$$= 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_j(\mathcal{Q}^2/\mu^2, \alpha_s(\mu)) \mathbf{H}_j(\xi = \eta, t, \mu^2)$$

$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

 H^a_i even polynomials in η with maximal power η^{j+1}

・ロト ・日 ・ モー・ モー・ うへぐ

DVCS, DVMP, GPDs — theory 00000000

• factorization formula for singlet DVCS CFFs:

$${}^{S}\mathcal{H}(\xi,t,\mathcal{Q}^{2}) = \int \mathrm{d}x \ \mathbf{C}(x,\xi,\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu)) \ \mathbf{H}(x,\xi,t,\mu^{2})$$

• ... in terms of conformal moments

(analogous to Mellin moments in DIS: $x^n \rightarrow C_n^{3/2}(x), C_n^{5/2}(x)$):

$$= 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_j(\mathcal{Q}^2/\mu^2, \alpha_s(\mu)) \mathbf{H}_j(\xi = \eta, t, \mu^2)$$

$$H_{j}^{q}(\eta,\ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x,\eta,\ldots)$$

 H_i^a even polynomials in η with maximal power η^{j+1}

• series summed using Mellin-Barnes integral over complex *j*:

$$=\frac{1}{2i}\int_{c-i\infty}^{c+i\infty}dj\left[i+\tan\left(\frac{\pi j}{2}\right)\right]\xi^{-j-1}\mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2},\alpha_{s}(\mu))\mathbf{H}_{j}(\xi,t,\mu^{2})$$

 DVCS, DVMP, GPDs — theory
 DV

 00
 000000000
 000000000

DVCS, DVMP, GPDs — phenomenology

Sum mary O

Advantages of conformal moments and Mellin-Barnes representation

- enables simpler inclusion of evolution effects
- powerful analytic methods of **complex j** plane are available (similar to complex angular momentum of Regge theory)
- opens the door for interesting modelling of GPDs
- possible efficient and stable numerical treatment ⇒ stable and fast computer code for evolution and fitting
- moments are equal to matrix elements of local operators and are thus directly accessible on the **lattice**
- NNLO corrections for DVCS accessible by making use of conformal OPE and known NNLO DIS results

DVCS, DVMP, GPDs — theory 00000000

DVCS, DVMP, GPDs — phenomenology

Sum mary

NLO and NNLO corrections

DVCS, DVMP, GPDs - theory

5 dø∕dt

5

Ş.

0

DATA/DVCS_H1_2.DAT

0.2 0.4 0.6 0.8

-t DATA/DIS1H1.DAT

DATA/DIS11H1_DAT

DVCS, DVMP, GPDs - phenomenology 00000000000

Summary

Fits (GeParD output)

ş

o

20 40

٥ž

5 Resulting PDFs

8

DATA/DVCS_ZEUS_1.DAT

DATA/DIS4H1.DAT

Э

DVCS, DVMP, GPDs — theory 000000000

DVCS, DVMP, GPDs — phenomenology

Summary

NNLO fit to HERA DVCS+DIS data

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Summary
0000	00000000	000000000	0

Parton probability density

• Fourier transform of GPD for $\eta = 0$ can be interpreted as probability density depending on x and transversal distance b [Burkardt '00, '02]

$$H(x,\vec{b}) = \int \frac{d^2\vec{\Delta}}{(2\pi)^2} e^{-i\vec{b}\cdot\vec{\Delta}} H(x,\eta=0,\Delta^2=-\vec{\Delta}^2) ,$$

Introduction 0000	DVCS, DVMP, GPDs — theory 00000000	DVCS, DVMP, GPDs — phenomenology	Sum mary O
Three-di	mensional image o	f a proton	
Quark	s: G	luons:	

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Sum mary
0000	000000000	000000000	●
Summary			

• Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS, DVMP ... different processes offer different insight and should provide more complete picture.

Introduction	DVCS, DVMP, GPDs — theory	DVCS, DVMP, GPDs — phenomenology	Sum mary
0000	00000000	000000000	●
Summary			

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS, DVMP ... different processes offer different insight and should provide more complete picture.
- Extraction of GPDs is extremely chalenging but efforts for global fits are being made.
- New data are expected from COMPASS and JLab12. DVCS and related processes have a large role in EIC proposal.

The End