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ABSTRACT 
The aim of this work is to combine different mathematical representations of the 

forward kinematics problem with various optimization algorithms and find a suitable 
combination that may be utilized in real-time environment. Additionally, we note the 
existence of equivalent trajectories of the mobile platform and suggest an adaptation to 
the solving method that, having satisfied certain assumptions, is able to successfully solve 
the forward kinematics problem in real-time conditions with very high precision. In addition 
inverse kinematics problem is presented and its usage is demonstrated on workspace 
area calculation. 

1. INTRODUCTION 

The forward kinematics of a parallel manipulator is finding the position and 
orientation of the mobile platform when the strut lengths are known. This problem has no 
known closed form solution for the most general 6-6 form of hexapod manipulator (with six 
joints on the base and six on the mobile platform). This procedure would be invaluable in 
controlling the force-feedback loop of the manipulator. It would also provide new 
application possibilities for a hexapod mechanism, such as a force-torque sensor, 
position-orientation sensor etc.In this work several mathematical representations of the 
forward kinematics problem, in the form of optimization functions, are combined with 
various optimization algorithms and adaptation methods in order to find an efficient 
procedure that would allow for precise forward kinematics solving in real-time conditions.  

In the last two sections inverse kinematics is briefly described and an method for 
workspace calculation is presented. 

2. THE FORWARD KINEMATICS PROBLEM 

The forward kinematics relations for a hexapod machine can be mathematically 
formulated in several ways. Every representation of the problem can have its advantages 
and disadvantages which become emphasized when a different optimization algorithm is 
applied. 

A. The position and orientation of the mobile platform 

In order to define a forward kinematics problem we have to represent the actual 
hexapod configuration, i.e. the actual position and orientation of the mobile platform. The 
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most common approach utilizes the three positional coordinates of the center of the 
mobile platform and three angles that define its orientation. The coordinates are 
represented by vector t

r
: 
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and the three rotational angles are here defined as roll-pitch-yaw angles α , β  and 
γ . The angle values represent the consecutive rotation about the x, y and z axis, 
respectively. The hexapod geometry is defined with six vectors for base and six vectors 
for mobile platform, which define the six joint coordinates on each platform: 
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The above vectors are represented in local coordinate systems of the base and 
mobile platform and are of constant value. The base and mobile platform are presumed to 
be planar, which can be perceived from the z coordinate of the joint vectors. The strut 
vectors il

r
 can then be expressed as 

6,..,1, =⋅++−= ipRtbl iii
rrrr

, (3) 

where R  is the rotational matrix, calculated from three rotational angles. If the 
position and orientation of the mobile platform is known, the length of each strut is 
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, (4) 

where D represents the Euclidean distance between the vector pairs. For an 
arbitrary solution to a forward kinematics problem, i.e. arbitrary position and orientation of 
the mobile, the error can be expressed as the sum of squares of differences between the 
calculated and actual length values. Having stated the above relations, we can define the 
first optimization function and the related unknowns as 
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B. The canonical formulation of the forward kinematics 

The idea behind this approach [1.] is to use the elements of the rotation matrix, 
rather than the angle values, to represent orientation: 
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Without loss of generality we can position the origins of the local coordinate 
systems of the base and mobile platform at the strut joints with index one, as shown in 
Fig. 1, which gives us the following parameter values: 

0221111 ====== yyyxyx pbppbb . (7) 
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Fig. 1 Positioning of coordinate systems for base and mobile platform 
After extensive simplifications, the forward kinematics can be expressed as a 

system of 9 equations with 9 unknowns, which allows us to define the optimization 
function F2 and the related variables vector as 
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and the constants' values can be found in [1.]. 

C. Reduced canonical formulation 

Three equations used in canonical formulation are of linear form, which can be 
used to reduce the number of variables without introducing additional complexity in the 
system. Three of the six variables tx, nx, ox, ty, ny and oy can be replaced with linear 
combinations of the other three, which leaves us with only six unknowns. For instance, if 
we choose to eliminate the following variables 
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we can define another target function as 
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D. Other optimization functions 

It is possible to further reduce the number of unknowns to only three, but with 
inevitable complexity increase. Furthermore, the orientation of the mobile platform can be 
described with rotation vector, which allows us to define another optimization function. 
Those functions (F4, F5) did not, however, show any advantages over the previous defined 
three, so they are omitted here. More information can be found in [13.]. 

3. THE OPTIMIZATION ALGORITHMS 

The forward kinematics problem is presented as five optimization functions for 
which the optimization algorithm has to find the minimum, the value of the functions being 
the error of the estimated solution. Several optimization methods have been applied to 
each of the functions in order to find an effective combination which would allow for real-
time application. The algorithms applied in this work are Powell's method, Hooke-Jeeves', 
steepest descent search, Newton-Raphson's (NR) method, NR method with constant 
Jacobian and Fletcher-Powell algorithm.  

4. EXPERIMENTAL RESULTS 

Solving of forward kinematics was simulated in static and dynamic conditions. The 
goal was to find the combination which would yield the best results considering the 
convergence, speed and accuracy. The most promising combinations were tested in 
dynamic conditions, where the algorithm had to track a preset trajectory of the mobile 
platform with as small error and as large sampling frequency as possible. Those 
combinations include Hooke-Jeeves' algorithm with function F1 and Fletcher-Powell 
method with functions F2 and F3, but the most successful optimization method was 
Newton-Raphson's algorithm applied to function F3.  

In dynamic simulation, the starting hexapod configuration is known and serves as 
an initial solution. During the sampling period T the algorithm has to find the new solution, 
which will become the initial solution in the next cycle. Several hexapod movements were 
defined as time dependant functions of the position and orientation of mobile platform. 
One of those trajectories, hereafter denoted as A, is defined with 
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The results of the dynamic simulation are presented in the form of a graph where 
errors in the three rotation angles and three position coordinates of the mobile are 
pictured. The sampling period T was set to 2 ms, which equals to a 500 Hz sampling 
frequency. The errors shown represent the absolute difference between the calculated 
and the actual hexapod configuration. Due to the large number of cycles, the error is 
defined as the biggest absolute error value in the last 100 ms, so the graphs in each point 
show the worst case in the last 100 ms of simulation. The errors are presented separately 
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for angles, in degrees, and position coordinates. The errors for movement A and Newton-
Raphson algorithm with function F3 are shown in Fig. 2 and Fig. 3. 
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Fig. 2 Absolute angle error (α = , β = , γ = ),  
NR algorithm with F3, movement A 
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Fig. 3 Absolute coordinate error (α = , β = , γ = ),  
NR algorithm with F3, movement A 

The achieved level of accuracy is very high as the absolute error does not exceed 
10-12 both for angles and coordinates. Another trajectory is derived from the described one 
by enlarging some of the amplitudes in (11), which is denoted as movement B (the altered 
values are in boldface): 
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The movement B errors are shown in Fig. 4. While still low, the error for movement 
B has two distinctive peaks at certain points in simulated motion. What is the cause of 
those peaks? Mathematical analysis has shown (4., 5., 6.) that there may exist up to 40 
distinctive solutions for forward kinematics problem for Stewart platform with planar base 
and mobile platform. The existence of multiple solutions for the same set of strut lengths 
may prove as a problem for the solving method.  
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Fig. 4 Absolute angle error (α = , β = , γ = ),  
NR algorithm with F3, movement B 
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Fig. 5 Absolute angle error (α = , β = , γ = ),  
NR algorithm with F3, movement B - division 

Let us suppose that in one hexapod configuration there exists no other forward 
kinematics solution for actual set of strut lengths, but that in some other configuration 
there exist several of them. If hexapod in its movement passes through those two 
configurations, then at a certain point in between there has to be a division point where 
the number of solutions increases. In those division points the solving algorithm may, 
unfortunately, begin to follow any of the possible paths, because any of them represents a 
valid forward kinematics solution! That is exactly the problem that occurs in movement B: 
the algorithm may or may not follow the correct trajectory. If the latter is the case, than the 
absolute error looks like in Fig. 5. 

The algorithm will randomly follow either the correct trajectory or the equivalent 
one. It is important to note that in both cases the optimization function remains very low 
(app. 10-30 to 10-20) during the whole process because both trajectories depict a valid 
solution to the forward kinematics problem. The problem is, only one of them represents 
the actual hexapod configuration in each point of time. The error between junction points 
in Fig. 5 actually shows the difference between the two equivalent trajectories. 

Without any additional information about the hexapod configuration, such as may 
be obtained from extra transitional displacement sensors, there is unfortunately no way to 
determine which of the existent solutions to the forward kinematics problem for the same 
set of strut lengths describes the actual hexapod configuration. Nevertheless, with some 
assumptions we may devise a strategy that should keep the solving method on the right 
track. If the change of the direction of movement is relatively small during a single period, 
which is in this case only 2 ms, then we can try to predict the position of the mobile 
platform in the next cycle. We can use the solutions from the past cycles to construct a 
straight line and estimate the initial solution in the next iteration. Let the solution in the 
current iteration be 0P

r
 and the solutions from the last two cycles 1P

r
 and 2P

r
. Then we can 

calculate the new initial solution using one of the following methods: 
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The above methods were tested in conjunction with NR algorithm and function F3 
for all the simulated trajectories. The results are very good: the solving method was now 



The Forward and Inverse Kinematics Problems for Stewart Parallel Mechanisms 7 

able to track the correct solution during the whole simulation process for all three 
estimation methods. The number of conducted experiments was several hundred times 
and every time the algorithm's error margin was below 10-11 both for angles and 
coordinates. However, the described algorithm adaptation will only be successful if the 
assumption of a small direction change during a few iterations is valid. To test the 
algorithms behaviour, simulated movement B was accelerated by factor 2, 4 and 8, while 
maintaining the same cycle duration of 2 ms. Only by reaching the 8-fold acceleration, 
when the total movement time equals a very unrealistic half a second, did the algorithm 
produce significant errors, while still holding to the correct solution. 

5. THE INVERSE KINEMATICS PROBLEM 

The inverse kinematics problem is almost trivial for parallel manipulator such as 
hexapod and is extensively used in many methods.  

Inverse kinematics will be presented for two different hexapod structures: standard 
Stewart platform based manipulator as shown in Fig.6 and discussed in previous sections, 
and hexapod shown on Fig.7.  

First hexapod model can be defined in many ways but most common set of 
parameters are: minimal and maximal struts length (lmin, lmax), radii of fixed and mobile 
platforms (r1, r2), joint placement defined with angle between closest joints for both 
platforms ( ϕ, θ) and joint moving area (assuming cone with angle ψ). From those values 
are then calculated values for ia

r
 and ib

r
 which are used in calculations. 
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Fig. 6 Stewart Platform manipulator 

Inverse kinematics can be described with equations: 
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where iA
r

 and iB
r

 are joint position vectors on base and mobile platform, ia
r

 are 
joint position vectors of mobile platform in local coordinate system, t

r
 is translation vector 

between base and mobile systems, R  is orientation matrix of mobile platform, iq  are strut 
lengths calculated with inverse kinematics and d() is distance between two joints, at the 
beginning and end of struts – the actual strut lengths. 

The second observed hexapod model, shown in Fig.7, differs from standard 
Stewart manipulator at base platform and struts. Strut lengths are constant and same for 
all struts but their joints on one side are placed on sliding guideways where actuators are 
placed. Parameters which describe this model differ only for base platform where 
guideways are placed: ikB ,

r
 and ipB ,

r
 define ith guide way and ti as value between [0, 1] 

identify actual joint position. If we observe models like on Fig.2 where pairs of guideways 
are parallel, those vectors can be defined using four parameters: d as distance between 
closes parallel guide ways, r11 and r12 as radii of circles where guide ways ends are placed 
with height difference h. 
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Fig. 7 Hexapod with fixed strut lengths 

Inverse kinematics for this model is slightly more complex from standard hexapod 
and can be computed using equations: 

( )
( ).

,,

,

,,, ipikiipi

ii

ii

BBsBB

BAdl

aRTA

rrrr

rr
rrr

−⋅+=

=

⋅+=

 (18) 

is  is calculated from quadratic equation and therefore can give two possible joint 
position on same guide way. This problem must be solved in control procedures. 

End effector (tool) is placed on mobile platform above the geometrical center of 
joints placed on that platform by height ltool. Therefore, origin of local coordinate system of 
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mobile platform is placed in that point. Subsequently vectors ia
r

 are calculated for that 
origin. 

6. WORKSPACE AREA CALCULATION 

For given end effector (tool) position and orientation defined with translation vector 
t
r

 and rotation matrix R , joint positions on mobile platform iA
r

 can be calculated using 
(16). Using inverse kinematics strut lengths iq  and directions iw

r
 for first model and joint 

positions is  and directions iw
r

 for second model can be calculated. With these values it is 
possible to check if that hexapod is able to put its mobile platform to required position 
verifying several constraints. First, strut lengths must be within given ranges for 1st model 
and joints can be placed on guideways for 2nd model.  

Second, joint constraints must be met. We assumed spherical joints whose 
restrictions can be defined with some initial direction and a maximal angle which strut can 
have regarding this direction. Joint constraints’ checking is done by comparing those 
angles on base and mobile platform joints. Initial joint direction on mobile platforms must 
first be rotated as whole platform before checking is made. 

Third and last constraint we checked is struts collisions. Since struts have some 
thickness it is possible that collision between any two struts occur. It is required that 
minimal distance between every two struts dmin are calculated as shown on Fig. 8. 
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Fig. 8 Distance between two struts Fig. 9 Orientations used in calculations 

For second hexapod model it is also checked for strut collisions with base platform. 
It is assumed that for first model joint constraints will be violated before collision between 
struts and platforms will occur and therefore are not checked.  

If all constraint for given end effector are satisfied then given position is possible 
for observed hexapod. With a fixed end effector orientation a predefined area can be 
checked and workspace with given orientation found. 

Assuming that manipulator is used for machining free surface items, working area 
can be better defined as area were manipulator can work for any required orientation. 
Required orientations which give optimal surface characteristics usually can be defined 
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with vectors within a cone with defined angle as in Fig. 9. Working area calculated using 
this definition gives superior visual and numeric description of manipulator. In our 
implementation such cone is approximated with a dozen of vectors for each of several 
different angles ϑ smaller than or equal to ϑmax, starting with the smallest ones. In this way 
the result isn’t just twofold, and if point isn’t a part of workspace we can still obtain 
information for which ϑmax it will eventually be. 

When dealing with 6-DOF hexapod manipulators, which on its end effector have 
tool on spindle, inverse kinematics can’t generally give unique result. This gives us 
freedom to apriori choose rotation angle of moving platform as the 6th DOF. For simplicity, 
no rotation angle was used whenever such orientation was feasible. 

Using described methods workspace area for one first and one second hexapod 
model are calculated and presented both numerical and graphical. Length unit isn’t 
directly specified because values can be easily scaled with any factor while proportions 
would remain same. 

Table 1 show parameters for first hexapod model and volume V calculated for it. 
Volume for second model is more than three times larger but that hexapod itself is much 
larger – its base platform is three times wider. 

TABLE 1. First hexapod model 

param. value param. value 

r1 50 ϕ 30° 

r2 25 θ 30° 

lmax 90 ψ 45° 

lmin 50 ϑmax 20° 

ltool 10 V 30099  

TABLE 2. Second hexapod model  

param. value param. Value 

r11 75 ltool 10 

r12 10 θ 30° 

h 45 ψ 45° 

d 10 ϑmax 20° 

r2 10   

l 70 V 108060  

Fig. 10 shows workspace area intersections with vertical plane x=0.  

  
Fig. 10 Workspace in intersection with x=0 for first and second model 

Darker the point is the bigger ϑmax is satisfied. The brightest gray points show 
workspace with ϑmax=0°, workspace which every point is reachable but with vertical end 
effector direction. Workspaces as shown in Fig. 10 are not symmetric in intersection with 
single plane. Intersection would be symmetric if two planes rotated by 120° were used. 
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Fig. 11 and Fig. 12 shows workspace area shape and hexapod models with its end 
effector placed in lowest workspace points. 

 
Fig. 11 Workspace and model (1) Fig. 12 Workspace and model (2) 

7. CONCLUSION 

Combining several representations of the forward kinematics problem with 
optimization techniques, an efficient method for solving the problem was found. The 
solving method was able to determine the exact position and orientation of the mobile 
platform within insignificant error margins (less than 10 to the power of –12 of the 
minimum hexapod dimension) and with 500 Hz sampling frequency. 

The problem of equivalent trajectories was noted: because of the existence of 
multiple solutions to forward kinematics, there may exist more than one path that mobile 
platform can follow while having exactly the same strut lengths in every point of the way. 
The solving algorithm may, under some circumstances, skip to an equivalent trajectory at 
certain division points. It has to be said that every such path represents an equal correct 
solution of the forward kinematics, but only one of them represents the true mobile 
platform trajectory. An empirical algorithm was devised which can increase the probability 
of finding the right solution, and it proved itself successful in every test case. 
Unfortunately, it cannot be proven that it will do so in every imaginable movement of the 
mobile platform. However, the solving method will always find the right solution if the 
change in the position or moving direction of the mobile platform is relatively small during 
a few sampling periods. 

The inverse kinematics problem as opposed to direct kinematics problem is much 
simple and therefore applicable in different methods regarding parallel structures. Its 
usage to working area calculation is demonstrated on two parallel structures: first is 
standard Stewart platform based manipulator and second is model with fixed struts 
lengths but instead of base platform it has guide ways where joints are placed. 
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