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Estimating the size of an object captured with error
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Abstract
In many applications we are faced with the problem of estimating object di-

mensions from a noisy image. Some devices like a fluorescent microscope, X-ray
or ultrasound machines, etc., produce imperfect images. Image noise comes from a
variety of sources. It can be produced by the physical processes of imaging, or may
be caused by the presence of some unwanted structures (e.g. soft tissue captured
in images of bones ). In the proposed models we suppose that the data are drawn
from uniform distribution on the object of interest, but contaminated by an additive
error. Here we use two one-dimensional parametric models to construct confidence
intervals and statistical tests pertaining to the object size and suggest the possibil-
ity of application in two-dimensional problems. Normal and Laplace distributions
are used as error distributions. Finally, we illustrate ability of the R-programs we
created for these problems on a real-world example.

Key words: noisy image, additive error, maximum likelihood estimator, uniform
distribution, normal distribution, Laplace distribution

1 Introduction
Suppose we want to estimate the size of an object from a noisy image. This problem
occurs, for example, when the object is captured by a fluorescent microscope [23], a ground
penetrating radar, X-ray or ultrasound machines, etc. The dimensions of an object can
be calculated from its edges, using some edge detection techniques ([5, 21]), but it is not
an easy task. In our approach we don’t perform preliminary image restoration or some
other image processing techniques. In fact, the model we propose might be used in image
analysis.

We suppose that the data taken from the picture are from random variable Y , Y =
U + ε, where U is uniformly distributed over the object of interest and ε represents
measurement (or some other source of) error (see [1–4, 25]). Although this model is not
universal in image describing, we find it is appropriate in some cases. In particularly, it
may be helpful in the reconstruction of an object size from a grayscale image.

Here we use one-dimensional case of the model in order to simplify inference. A
medical image in Figure 1 gives us some clue how one-dimensional models can help in
two-dimensional problems.

Assuming that support of U has circular or elliptical shape it is possible to reconstruct
its boundary employing one-dimensional models and parametric curve fitting. Two-phased
procedure dealing with this problem can be seen in [2, 25].

In section 2, we briefly describe general one-dimensional model we use. Two types
of error distribution, namely normal and Laplace distributions, are analized in section
3. We recall some properties of estimators found by method of moments (MM) and
maximum likelihood method (ML) described in [1, 3, 4]. In section 4 we give two classic
methods of constructing a confidence intervals and hypothesis testing. In the last section
we demonstrate R-program created on the basis of this model.
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Figure 1: The line-object intersection

2 The Model
Suppose that random variable U has the uniform distribution on the interval [−a, a] ,
a > 0, but observations from U are contaminated by an additive error ε, so that we can
only observe

Y = U + ε.

Furthermore, assume that the random variables U and ε are independent. Our goal is to
estimate the parameter a, based on an i.i.d. sample Y1, Y2, . . . , Yn (see [1–4, 25])

This is the special case of general additive error model Y = X + ε, where X and ε
are assumed to be independent continuous random variables, but only Y is observable.
Usually, density fε is supposed to be completely known, but some papers deal with only
partially known error densities. Recovering the unknown density fX from i.i.d. sample
Y1, Y2, . . . , Yn, Y1 ∼ Y , is known as deconvolution problem. Several nonparametric meth-
ods are developed to estimate fX (see [20]), but the most popular and studied is the
deconvolution kernel density estimator ([6, 29]). It is known that although this estimator
is optimal, it converges at low rates, particularly in the case of so-called supersmooth er-
ror densities. For example, with normal error the rate of convergence is only logarithmic
([10]). Some papers deal with the problem of estimating only the support of fX ([19]).
Here we suppose that the X part is from simple parametric model (the uniform one) and
discuss parametric approach in support estimation.

If U is uniformly distributed on [−a, a], i.e. has density function

fU(x) = 1
2a

I[−a,a](x),

and ε is continuous random variable with density fε and distribution function Fε, then
the density of Y = U + ε is

fY (x; a) =
∫ ∞

−∞
fU(t)fε(x − t)dt = 1

2a
(Fε(x + a) − Fε(x − a)) .
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3 Two types of error

3.1 Normal error
The most common assumption is that error part ε has a normal distribution with zero
mean. The case ε ∼ N (0, σ2) with known σ2 is analysed in [1]. In that paper the MM
and ML estimators are suggested and compared.

Let y = (y1, . . . , yn) denotes the realization of the sample Y = (Y1, . . . , Yn). The
likelihood function has the form

L (a; y) =
n∏

i=1
fY (yi; a) = 1

(2a)n

n∏
i=1

(
Φ
(

yi + a

σ

)
− Φ

(
yi − a

σ

))
(1)

and the log-likelihood function is given by

l(a) = −n log(2a) +
n∑

i=1
log

(
Φ
(

yi + a

σ

)
− Φ

(
yi − a

σ

))
(2)

where Φ(x) is the standard normal cdf. In [1] the regularity conditions are checked, thus

√
n (âML − a0) −→ N

(
0,

1
I(a0)

)
, (3)

where

I(a) = −1
a2 + 1

aσ2

∫ ∞

0

(
φ
(

x+a
σ

)
+ φ

(
x−a

σ

))2

Φ
(

x+a
σ

)
− Φ

(
x−a

σ

) dx (4)

with φ(x) being the standard normal pdf. Also, in ([1]) is shown that the ML estimator
is more efficient than the MM estimator. The case with unknown σ2 is considered in [3],
where regularity of corresponding two-parametric model is proved.

3.2 Laplace error
However, estimators based on normal error model are shown to be very sensitive to the
presence of outliers in the data. One possible choice is to use Laplace error model instead,
since the Laplace distribution has heavier tails than the normal distribution (see [4]).
Laplace distribution with the location parameter µ = 0 and a scale parameter λ > 0 has
the density function

fλ(x) = 1
2λ

e− |x|
λ .

Similarly to the normal error case, the likelihood function and the log-likelihood func-
tion have the form

L (a; y) =
n∏

i=1
fY (yi; a) = 1

(2a)n

n∏
i=1

(
F
(

yi + a

λ

)
− F

(
yi − a

λ

))
(5)

l(a) = −n log(2a) +
n∑

i=1
log

(
F
(

yi + a

λ

)
− F

(
yi − a

λ

))
(6)
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where F (x) is the standard Laplace (λ = 1) cdf. Classical regularity conditions are
not satisfied in the model with Laplace error. Nevertheless, consistency and asymptotic
efficiency of ML estimator are proven in [4] using some nonstandard conditions. Thus we
have

√
n (âML − a0) −→ N

(
0,

1
I(a0)

)
, (7)

where

I(a) = −1
a2 + 1

aλ2

∫ ∞

0

(
f
(

x+a
λ

)
+ f

(
x−a

λ

))2

F
(

x+a
λ

)
− F

(
x−a

λ

) dx (8)

Here, f(x) is the standard Laplace (λ = 1) pdf. The ML estimator in the model with
Laplace error is shown to be more robust than in the model with normal error, as expected
(see [4]).

4 Confidence intervals and tests
Asymptotic distributions of ML estimators in (3) and (7) can be used to construct ap-
proximate confidence intervals for a. For a specified 0 < α < 1, regardless of error type,
an asymptotic (1 − α)100% confidence interval (AD.CI) for a is1

âML −
zα/2√

nI(âML)
, âML +

zα/2√
nI(âML)

 .

Note that we use I(âML) as a consistent estimator of I(a0).
Another way to compute a confidence interval is based on the likelihood ratio statistic

λ(Y) =
sup

a0
L (a; Y)

sup
(0,∞)

L (a; Y)
= L (a0; Y)

L (âML; Y)

We know that (recall that models with both type of errors are regular)

−2 log λ(Y) D−→ χ2
1

where χ2
1 is a χ2 random variable with 1 degree of freedom, provided a0 is the true value

of a. An approximate (1 − α)100% confidence interval (LR.CI) for a is{
a| l(âML) − l(a) ≤ 0.5χ2

1(1 − α)
}

,

where χ2
1(1 − α) is the 1 − α quantile of χ2

1 distribution.
We performed a simulation study to compare the AD and LR confidence intervals.

The parameter a is fixed at a = 1 and the scale parameters are varied. For each of the
three sample sizes (n ∈ {30, 300, 1000}), N = 1000 samples of size n were generated. The

1as usual, zα is the 1 − α quantile of standard normal distribution
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average length and cover rate for confidence coefficient 0.95 are presented in Tables 1-6.
In small samples some difficulties in computing confidence intervals may occur. Namely,
in the AD approach it may happen that estimated asymptotic variance of âML does not
exist. On the other hand, in the LR approach it happens that equation l(âML) − l(a) =
0.5χ2

1(1 − α) has only one solution. Therefore, the number of successfully computed
confidence intervals is also presented in these tables. As expected, smaller values of scale
parameter lead to shorter intervals. For moderate and large samples, the AD.CI and
LR.CI are similar in length and cover rate. In small samples AD.CI are slightly shorter
than LR.CI (except for large values of scale parameter), but have worse cover rate. The
AD.CI are computationally more acceptable, but the LR.CI have the advantage of being
exact invariant under reparametrization.

The two approaches above can be used to testing hypothesis about a parameter
a. The asymptotic tests are based on limiting distributions of the test statistics W =√

nI(a0)(âML − a0) (AD approach) and χ2
L = −2 log λ(Y) (LR approach).

For testing the hypothesis H0 : a = a0 against H1 : a ̸= a0 the critical regions of
asymptotic size α are{

y|
√

nI(a0)|âML − a0| ≥ zα/2

}
, (AD approach) and (9)

{
y| − 2 log λ(y) ≥ χ2

1(1 − α)
}

, (LR approach).

In order to make meaningful comparison of tests we should compute the power in a
sequence of so-called local alternatives an = a0 + δ/

√
n, δ ∈ R. For the AD approach

it is more convenient to use statistic χ2
W := W 2 = nI(a0) (âML − a0)2 (known as Wald

statistic). In terms of this statistic (note that χ2
1(1−α) = z2

α/2), the critical region (9) has
the form {y| χ2

W ≥ χ2
1(1 − α)}. Under the local alternatives, both χ2

W and χ2
L statistics

have an asymptotic χ2
1,δ2I(a0) distribution2 (see [28]).

For a given alternative a and sample size n, this result can be used to get an approx-
imate power at a by equating a and an. In this way, an approximate power function of
both tests is

β(a) = 1 − F
(
χ2

1(1 − α)
)

,

where F (x) is the cdf of non-central χ2 distribution with 1 degree of freedom and non-
centrality parameter nI(a0)(a − a0)2.

For moderate values of scale parameter nominal (theoretical) power is close to the
empirical ones of both tests, even in relatively small samples. In any case, moderate
or large samples ensure very close power functions. Also, the power increases as the
value of scale parameter decreases. As an example, simulation results with normal error
N (0, (0.25)2) are shown in Figure 2. The null value is set at a0 = 1. For each of the
alternatives a ∈ {0.60, 0.64, . . . , 1.40}, N = 1000 samples of size n (n ∈ {30, 100}) are
generated. We computed the proportion of rejected null hypotheses under a (at 0.05
level), which we refer to as empirical power at a.

2χ2
k,p is the non-central χ2 distribution with k degree of freedom and non-centrality parameter p
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σ AD.CI AD.CI AD.CI LB.CI LB.CI LB.CI
Success Length Cover rate Success Length Cover rate

1.00 880 2.5608 0.939 214 1.7958 0.855
0.50 999 0.8436 0.967 937 0.8314 0.963
0.25 1000 0.4412 0.933 1000 0.4471 0.938
0.10 1000 0.2508 0.935 1000 0.2562 0.952
0.05 1000 0.1719 0.921 1000 0.1788 0.946
0.01 1000 0.0749 0.748 1000 0.0944 0.914

Table 1: Simulation results for the CI, a = 1, n = 30, N = 1000 (normal error)

σ AD.CI AD.CI AD.CI LB.CI LB.CI LB.CI
Success Length Cover rate Success Length Cover rate

1.00 1000 0.6451 0.966 942 0.6548 0.968
0.50 1000 0.2506 0.940 1000 0.2514 0.939
0.25 1000 0.1400 0.956 1000 0.1404 0.958
0.10 1000 0.0799 0.959 1000 0.0801 0.958
0.05 1000 0.0548 0.945 1000 0.0551 0.951
0.01 1000 0.0239 0.938 1000 0.0243 0.955

Table 2: Simulation results for the CI, a = 1, n = 300, N = 1000 (normal error)

For testing H0 : a = a0 against one-sided alternatives, it is straightforward to create
tests based on W statistic. For example, in the case of alternative hypothesis H1 : a > a0
the critical region of size α is{

y|
√

nI(a0) (âML − a0) ≥ zα

}
with approximate power function

β(a) = Φ
(√

nI(a0)(a − a0) − zα

)
However, it is more difficult to adapt the likelihood ratio test to the one-sided alternatives
since the null value is on the boundary of the parameter space.

5 A real world example
To enable the use of these models in the real world, we are building an R-package (the
work is still in progress). In the loaded image we choose the line in desired direction and
extract the data along this line. We can estimate the length of the line-object intersection
(line profile) using our one-dimensional models (see screenshot at Figure 3). The argu-
ments of the main R function are: the data extracted from the line, the type of the error
distribution, standard error of the error distribution (known, ML estimate or MM esti-
mate), confidence level (for the CI), the null value and the type of alternative hypothesis
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σ AD.CI AD.CI AD.CI LB.CI LB.CI LB.CI
Success Length Cover rate Success Length Cover rate

1.00 1000 0.3446 0.955 1000 0.3477 0.955
0.50 1000 0.1371 0.956 1000 0.1372 0.957
0.25 1000 0.0767 0.958 1000 0.0767 0.958
0.10 1000 0.0437 0.952 1000 0.0438 0.953
0.05 1000 0.0300 0.951 1000 0.0300 0.951
0.01 1000 0.0131 0.947 1000 0.0132 0.952

Table 3: Simulation results for the CI, a = 1, n = 1000, N = 1000 (normal error)

λ AD.CI AD.CI AD.CI LB.CI LB.CI LB.CI
Success Length Cover rate Success Length Cover rate

1.00 1000 4.0450 0.951 206 2.1543 0.815
0.50 1000 1.0691 0.957 766 1.0628 0.953
0.25 1000 0.5375 0.920 999 0.5622 0.932
0.10 1000 0.2926 0.917 1000 0.3075 0.930
0.05 1000 0.1984 0.900 1000 0.2133 0.935
0.01 1000 0.0857 0.772 1000 0.1016 0.898

Table 4: Simulation results for the CI, a = 1, n = 30, N = 1000 (Laplace error)

λ AD.CI AD.CI AD.CI LB.CI LB.CI LB.CI
Success Length Cover rate Success Length Cover rate

1.00 1000 0.7569 0.957 924 0.7619 0.976
0.50 1000 0.3201 0.952 1000 0.3240 0.949
0.25 1000 0.1697 0.960 1000 0.1706 0.961
0.10 1000 0.0929 0.948 1000 0.0934 0.952
0.05 1000 0.0631 0.949 1000 0.0637 0.949
0.01 1000 0.0274 0.927 1000 0.0285 0.942

Table 5: Simulation results for the CI, a = 1, n = 300, N = 1000 (Laplace error)

λ AD.CI AD.CI AD.CI LB.CI LB.CI LB.CI
Success Length Cover rate Success Length Cover rate

1.00 1000 0.4030 0.953 999 0.4077 0.950
0.50 1000 0.1751 0.951 1000 0.1759 0.949
0.25 1000 0.0930 0.951 1000 0.0932 0.948
0.10 1000 0.0509 0.945 1000 0.0509 0.950
0.05 1000 0.0346 0.947 1000 0.0348 0.947
0.01 1000 0.0150 0.938 1000 0.0152 0.945

Table 6: Simulation results for the CI, a = 1, n = 1000, N = 1000 (Laplace error)
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Figure 2: Power functions (empirical and nominal) with a0 = 1 and error ε ∼
N (0, (0.25)2)

Figure 3: Screenshot of a line profile length estimation.

(for the tests), the number of gray levels, box size, line thickness (the "line" is not a line
but a thin rectangle). The values of R function, among others, are: estimated line profile,
estimated standard error of the error distribution, confidence interval, p-value. We are
going to enrich the program with some more features. For example, we plan to include:
more error distributions, computing the maximum width and height of the object, testing
if there is a change in size of the same object but captured at different times, etc..
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