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Abstract: Recently, the need for improving the efficiency of distribution network in terms of power losses is being
emphasised. A large share of total power losses refers to low-voltage networks which are usually unbalanced. For the
power flow analysis, it is necessary to use three-phase modelling. This study presents modelling of distribution
network elements and their implementation in backward/forward sweep (BFS) power flow method. An improvement of
the BFS method is developed by using the breadth-first search method for network renumbering and creation of
modified incidence matrix. The improved method minimises the read elements of each iteration and results in a
significant reduction in total calculation time without accuracy loss. This improvement makes this method more
suitable for using in real-time calculations. The proposed method is used for calculation of power losses in unbalanced
and symmetrical network which are compared. The purpose of this test is to show the advantage of a three-phase
power flow analysis compared with a symmetrical model.
1 Introduction

Recently, power loss reduction and increase in distribution network
efficiency of distribution networks are being emphasised.
Distribution networks are mostly radial systems that are
characterised with short branches with many laterals, large number
of nodes, three-phase, and single-phase users that cause
unbalanced loads. Owing to increasing penetration of distributed
generation, power can flow in both directions of radial system that
also impacts on electrical conditions and further complicates the
management of distribution network.

To ensure distribution network reliability, increase its efficiency,
and to enable connections of distributed generation, it is necessary
to increase network automation and implement an active
distribution management that also includes optimisation of power
losses. For optimisation of power losses, it is necessary to make
power flow analysis. Owing to high R/X ratio of distribution
network, power flow methods that are commonly used for
transmission network analysis, like Gauss–Seidel or Newton–
Raphson, are not suitable because they do not always converge.
For power flow analysis of distribution networks are rather used
BFS method and ladder network theory method that are both
described in [1]. Comparison of these methods is made in many
researches and many of them more prefer BFS method like [2, 3].
Analysis of unbalanced networks by using a symmetrical model
can cause inaccurate results which are particularly expressed in
low-voltage networks. Hence, for better accuracy, it is necessary to
use three-phase models.

The purpose of this paper is to present the way of modelling of
three-phase distribution network elements, including lines,
transformers, and loads. Special case is low-voltage network that
is four-wired line with neutral wire. Hence, it has to be
transformed in a three-phase model, so it can be used in the same
calculation with three-phase models of middle-voltage networks.

After defining three-phase models, an iterative three-phase power
flow BFS method algorithm will be described. That method will be
used for calculation of total power losses in distribution networks.
For large networks, calculation time can be significantly increased,
so it makes some difficulties in implementation of this method in a
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real-time analysis. In this paper, authors made an improvement of
the commonly used BFS method by renumbering of network
nodes and branches by using breadth-first search graph theory
method. The proposed method minimises the number of read
elements of incidence matrix, which is a sparse matrix, and thus
reduces the calculation time.

Comparison of calculation time of the commonly used BFS
method and the proposed method will be made for networks with
various numbers of nodes.

Developed algorithm will be used for comparison of the results of
power losses calculation by using symmetrical model and the
three-phase model. The analysis will be made on a real
low-voltage network and the results will prove the advantages of a
three-phase model.
2 Three-phase distribution network elements

2.1 Line model

Distribution middle-voltage lines consist of three-phase conductors,
while low-voltage lines consist of three phase and on neutral
conductor. For three-phase model of a line, it is necessary to define
impedance and admittance matrix, both with dimensions 3 × 3. For
four-wired low-voltage network, initial impedance and admittance
matrix have dimension 4× 4 and they need to be transformed to
matrices with dimension 3× 3. Fig. 1 presents four-wired line
section model between nodes p and q. The conductor impedances
between nodes p and q of the same phase are called self-coupling
impedances and impedances between conductors of different phases
are called mutual-coupled impedances.

For the utility frequency of 50 Hz, the formula for self-coupling
impedances is (1) and for mutual-coupling impedances is (2) [4]:
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Fig. 1 Line model of a four-wired network Fig. 2 Line section model with shunt capacitances
where, R1 is the resistance of the conductor (Ω/km), ρ the earth
resistivity (Ω m), DS, geometric mean radius of the conductor (m),
and Dij the distance between phases i and j (m).

These impedances are used for creation of impedance matrix 4 × 4
(3)
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Kron reduction is used for reduction of this matrix to dimensions
3 × 3. Voltage equation between nodes p and q is (4) [5]:
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Matrices are divided in blocks by lines, so it can be also written as:
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If the neutral wire is grounded, then V n
p and V n

q are equal and the
result is:

Inpq = −Z−1
nn · ZT

n · Iabcpq (6)

Inserting (6) in (5) gives:
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where

Zabc
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nn · ZT
n (8)

Finally, impedance matrix can be reduced to dimensions 3 × 3 (9)
[5]:
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Fig. 2 presents the line section model with phase-to-phase and
phase-to-ground shunt capacitances.
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Self and mutual potential coefficients are defined as (10) and (11)
[1]
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where Di′i is the distance from the conductor i to its image i′ (m), Dii

is the radius of the conductor i (m), Di′ j is the distance from the
conductor i to the image of conductor j (m), and Dij is the distance
from the conductor i to conductor j (m).

These potential coefficients are used for creation of admittance
matrix of node p (12):
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If the values of self and mutual admittances are known, admittance
matrix is equal to (13):
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Shunt currents in node p are equal to (14):
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2.2 Spot load models

Three-phase model of a star-connected load with constant power at
node p can be expressed as

Iloadabcp

[ ]
=

Iloadap

Iloadbp
Iloadcp

⎡
⎢⎣

⎤
⎥⎦ =

Sap
Va
p

( )∗

Sbp
Vb
p

( )∗

Scp
V c
p

( )∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)
RED, Open Access Proc. J., 2017, Vol. 2017, Iss. 1, pp. 2361–2365
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)



Single-phase load currents are calculated by using (15), but only in a
phase where the load is connected, while the current in other two
phases is equal to zero.
Fig. 4 Equivalent model of a three-phase transformer Dyn5
2.3 Current and voltage line equations

Total current that flows through line section pq is equal to sum of all
shunt currents in node q, all load currents in node q and currents of
all branches that exit from node q Iexitq:
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Voltage equation is equal to:
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2.4 Transformer model

A single-phase transformer is modelled as a four-pole model (Fig. 3).
Depending on the transformer connection vector group, the model

is derived by connecting three single-phase models. One of the most
commonly used transformers in distribution network is Dyn5. Its
three-phase model is shown in Fig. 4 and its current–voltage
equation is:
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3 Solution algorithm

The proposed method is based on the BFS method. Input parameters
are feeder voltage, loads in all nodes, line parameters and mismatch
tolerance.
Fig. 3 Single-phase transformer model
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3.1 Modified incidence matrix

The first step after initialisation is to create an incidence matrix of the
network. Distribution networks are usually radial with laterals. Their
incidence matrix is a sparse matrix where zero elements mean ‘no
connection’, −1 represents sending nodes which are located on a
matrix diagonal, and 1 represents receiving nodes. Reading of all
the elements significantly prolongs calculation time. The number
of read elements NRE for every step of BFS is equal to the
number of non-diagonal elements of upper-triangular matrix (n× n):

NRE = n(n− 1)

2
(19)

The idea of the proposed method is to create modified incidence
matrix MIM by using breadth-first search method where all the
non-diagonal and non-zero elements of each row will be sorted
sequentially and thus minimise NRE. The method will be
explained on a nine-node sample network in Fig. 5.

The numbers below the nodes are node labels. The first step of the
method is to give the ordinal numbers to nodes and branches. The
first node is the feeder node (usually busbar or substation) and the
first branch is that which enters the feeder node. The nodes that
are connected to the first node are successively assigned with next
ordinal numbers, and the ordinal numbers of branches are equal to
the ordinal number of the node that they enter. Then for each of
these nodes, their neighbour nodes are searched and they get the
next free ordinal number. Searching is finished when the end node
of the network is reached. In Fig. 5, the node ordinal numbers are
placed above the nodes and the branch numbers are placed in
Fig. 5 Nine-node sample network
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Fig. 7 Incidence matrix and its modification

Fig. 6 Renumbering scheme for a nine-node sample network
circles. A scheme of renumbering for the sample network is shown in
Fig. 6.

New ordinal numbers are used to create MIM. The ith node is
placed on the diagonal element of the ith row of the incidence
matrix. The diagonal elements represent receiving nodes of
branches. All nodes that are connected to the ith node are placed
in the upper-triangular part of the matrix in the column that is
equal to their ordinal number. Fig. 7 represents incidence matrix
and its modification MIM and the line connects only elements that
are read in every loop.
Table 1 Comparison of calculation durations (e=0.0001)

Nodes e=0.0001

Iterations BFS, s Proposed method, s Time reduction,%

9 5 0.0192 0.0163 15.10
34 8 0.0915 0.0507 44.59
100 2 0.2850 0.1958 31.30
250 6 2.9540 1.0531 64.35
500 6 11.6423 3.9384 66.17
1000 6 46.0294 15.2329 66.91

Table 2 Comparison of total NRE (e=0.0001)

Nodes e=0.0001

BFS Proposed method Number reduction,%

9 1575 415 73.65
34 36,720 6064 83.49
100 79,800 11,086 86.11
250 1,498,500 195,708 86.94
500 5,997,000 766,458 87.22
1000 23,994,000 3,032,958 87.36
3.2 BFS method

After creation of MIM, an iterative process of BFS starts. In each
iteration k, the first step is calculation of nodal currents in all nodes:
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The next step is backward sweep which starts from the end node and
successively moves to the feeder node. The branch currents are
calculated as the sum of nodal currents in receiving node and
currents of all branches that exit the receiving node:
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∑
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∑
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[ ](k)
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The third step is forward sweep which starts from the feeder node
and moves towards the end node. Nodal voltages are calculated by
using:
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[ ]
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The final step of each iteration is calculation of voltage mismatch for
every node i:

D Vabc
i

[ ](k)= Vabc
i

[ ](k)− Vabc
i

[ ](k−1)
i = 1, 2, . . . , n (23)
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If the voltage mismatch for every node in all phases is lower than
tolerance limit, iteration process stops.

Total power losses are calculated as sum of power losses in all
branches and losses in shunt capacitances:

Sloss =
∑
i,j

Slossbranchij+
∑
i

Slossshunti (24)
4 Test results

4.1 Performance test

The program code of commonly used BFS and the proposed method
is made in MATLAB in order to compare their execution times for
networks with various numbers of nodes. All tests are made on
computer with AMD Athlon 64 X2 dual-core processor 2.50 GHz
and 6.00 GB RAM.

The performance tests are made on sample three-phase
distribution grids with 9, 34, 100, 250, 500, and 1000 nodes. Each
test is performed for convergence tolerance e= 0.0001. Calculation
durations are compared in Table 1. Given results are average
values of ten consecutive calculations. Total numbers of incidence
matrix elements that are read during the iteration process (NRE)
for both methods are compared in Table 2.

Based on test results, it can be concluded that the proposed
method is significantly more efficient, and the efficiency is more
emphasised in larger networks. For the network with 1000 nodes
that converges in six iterations, the proposed method reduces the
number of incidence matrix read elements for more than seven
times which causes the three times shorter execution time in
comparison with the commonly used BFS method.
4.2 Power losses analysis of unbalanced networks

One of the goals of this paper is to compare results of power losses
calculation in unbalanced distribution networks with three-phase
model and symmetrical model. Test was performed for five cases
of daily diagram of low-voltage unbalanced network that is
supplied from substation 10/0.4 kV Sv. Matije near Slavonski
Brod, Croatia, with 64 three-phase and 18 single-phase customers
(Fig. 8) and test results are shown in Table 3.
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Table 3 Comparison of power losses calculation results by three-phase
model and symmetrical model

Time, h Total power, kVA Total power losses, kVA Mismatch,%

Three phase Symmetric

01:45 36.4832 0.1755 0.1681 4.22
07:00 63.0352 0.9364 0.8844 5.55
13:00 100.5001 2.5222 2.3400 7.22
19:00 142.7314 5.6432 5.1276 9.14
22:30 87.9337 1.4444 1.3480 6.68

Fig. 8 Low-voltage 0.4 kV network of substation 10/0.4 kV Sv. Matije
For power losses analysis of unbalanced networks, three-phase
model is more accurate because it distinguishes three-phase and
single-phase loads as well as asymmetry of three-phase loads.
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Based on test results, it can be concluded that the more
unbalanced load of the network causes a greater mismatch
between the results. Thus, for power losses analysis of unbalanced
distribution networks, especially of low-voltage networks, it is
recommended to use three-phase model.
5 Conclusions

This paper presents how to use three-phase power flow calculation
BFS method for unbalanced distribution networks. The authors
developed an improvement of commonly used BFS by
modification of incidence matrix by breadth-first search method
which resulted in significant reduction in programme execution
time. The proposed method is used for calculation of power losses
in unbalanced networks and the conclusion is that it is more
accurate than symmetrical model. Although three-phase calculation
model is more complex than symmetrical model, and thus it lasts
longer, an improvement presented in this paper, which
significantly shortens programme execution time, makes the
proposed method suitable for application in real-time analysis.
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