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1.  Introduction

In the last few years a lot of research activity has focussed on 
studying microlocomotion through analytical, experimental 
and numerical means (for comprehensive reviews see [1, 2]). 
Much of this focus has been on the collective movement of 
micro-organisms, since in nature these organisms tend to live 
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Abstract
Propulsion at low Reynolds numbers is often studied by defining artificial microswimmers which 
exhibit a particular stroke. The disadvantage of such an approach is that the stroke does not adjust 
to the environment, in particular the fluid flow, which can diminish the effect of hydrodynamic 
interactions. To overcome this limitation, we simulate a microswimmer consisting of three beads 
connected by springs and dampers, using the self-developed waLBerla and pe framework 
based on the lattice Boltzmann method and the discrete element method. In our approach, the 
swimming stroke of a swimmer emerges as a balance of the drag, the driving and the elastic 
internal forces. We validate the simulations by comparing the obtained swimming velocity to the 
velocity found analytically using a perturbative method where the bead oscillations are taken to be 
small. Including higher-order terms in the hydrodynamic interactions between the beads improves 
the agreement to the simulations in parts of the parameter space. Encouraged by the agreement 
between the theory and the simulations and aided by the massively parallel capabilities of the 
waLBerla-pe framework, we simulate more than ten thousand such swimmers together, thus 
presenting the first fully resolved simulations of large swarms with active responsive components.

Keywords: microswimming, three-sphere swimmer, lattice Boltzmann method,  
many-swimmer swarms, perturbation theory, Rotne–Prager theory
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and move together in huge clusters numbering up to millions 
of individuals [3–9]. The interactions amongst the various 
individuals impart new biological and physical features to 
their motion and their experience of their surroundings that 
are missing in the case of isolated swimmers.

A customary approach to model mechanical microswim-
mers theoretically is to assume that the swimming stroke of 
the model swimmer is known or is imposed [10–16]. With 
this approach, the hydrodynamic features of the motion are 
in essence smoothed over and the problem becomes a purely 
geometrical one, which simplifies both the numerical simu-
lation as well as the analysis of the motion considerably. 
Especially for the study of swimmer swarms, such a simpli-
fication is often crucial for reducing the computational com-
plexity of the setup. However, the biggest advantage of this 
approach-the reduced dependence of the swimmer on the fluid 
flow-is also its biggest weakness, as it robs the system of a full 
reliance on the hydrodynamic forces, suppressing for instance 
the hydrodynamic interactions between different parts of the 
swimmer or between different swimmers in large populations.

The alternative approach is to specify not the swimming 
stroke itself but the forces which drive the swimming motion. 
The swimming stroke then emerges in response to the various 
forces acting on the system, which are typically the driving 
forces, the hydrodynamic forces, and the internal forces of ten-
sion or elasticity in the swimmer connecting the different body 
parts. Such an approach has been adopted in studies of the motion 
of Chlamydomonas reinhardtii or similar swimmers [17, 18], of 
a deformable infinite slab [19], and of the three-sphere swimmer 
[20, 21]. This approach has however not been employed so far 
in the service of simulating large swarms of swimmers, owing to 
the formidable computational costs it entails.

In this paper we use the latter, force-based, approach in 
both simulating and theoretically analyzing the motion of 
individuals as well as swarms of the bead-spring swimmer 
[21]. This swimmer is based on the three-sphere model intro-
duced by Najafi and Golestanian [15] but differs from it in 
precisely the way described above, i.e. in its imposition of the 
forces driving the motion instead of the stroke of swimming, 
with the latter adapting dynamically to the former. Another 
difference is that in our swimmer the different beads are con-
nected by harmonic springs and dampers. Our simulations are 
run by a combined framework of waLBerla [22], which is a 
lattice Boltzmann fluid solver, and pe, which is a discrete ele-
ment method-based physics engine, with both these systems 
optimized for the simulation of our bead-spring swimmer on 
hundreds of thousands of parallel processes [23].

We begin with a comparison of the simulations of an iso-
lated bead-spring swimmer to analytical calculations. In pre-
vious work [21] we have employed a perturbative theory to 
calculate the swimmer velocity, where the variable of per-
turbation is the displacement of the beads from their equilib-
rium positions [20]. Here we extend this calculation by taking 
higher-order terms in the hydrodynamic interactions between 
the beads into account by using the Rotne–Prager tensor. We 
show that the velocities obtained in the simulations compare 
well to the theoretical values, and, at low swimming cycle 
periods, the higher-order theory shows better agreement with 
the simulations. The single-swimmer study helps us identify 

the parameters which lead to relatively fast swimming, and we 
employ one such set of parameters to simulate swarms con-
taining more than ten thousand individual swimmers, again 
with the forces and the geometries of the swimmers described 
completely. The massively parallel capabilities of our waL-
Berla-pe simulation framework are here crucial, since they 
lead to, in our knowledge, the first simulations of swarms 
where the swimmers and the forces on them are fully resolved, 
without taking recourse to effective strokes or velocity fields 
[24–27]. We find that a highly symmetric arrangement of the 
swimmers is stable over the simulated time, but small differ-
ences in the initial separation between the swimmers result in 
continuously growing deviations as a result of strong asym-
metric hydrodynamic interactions.

2.  Basic swimmer model

Our basic swimmer, which shall be used throughout this 
paper in individual or grouped arrangements, consists of three 
rigid spherical beads of equal radii λ connected by two linear 
springs of equal stiffness constants k and mean rest lengths l. 
The model assumes the far-field limit, that is the limit λ� l. 
In this limit, beads of any shape different from spheres can 
equally well be used by defining λ as the friction coefficient 
of the shape scaled by a factor of πη6  [21]. In the following, 
we will consequently call λ the reduced friction coefficient of 
a bead.

In the simulations, we include additionally angular springs 
of high stiffness constants to ensure that the three beads remain 
collinear [23]. These angular springs are excluded from the 
theoretical model under the assumption that the motion of 
an isolated swimmer occurs strictly in a straight line. Time-
irreversibility in the stroke, as required by the Scallop theorem 
for net propulsion at zero Reynolds number [28], is achieved 
via the sinusoidal driving forces

ˆ
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that are applied to the centers of mass of the beads along 
the x-axis which is also the direction along which all swim-
mers are aligned at the beginning of each simulation. Such a 
force protocol may be realized if the beads are acted upon by 
external fields. The parameters A and B denote the amplitudes 
of the sinusoidal forces, ω is the force frequency, α is the rela-
tive phase shift in the forces and t is the instantaneous time. 
The sum of the three driving forces is always kept zero, so that 
the criterion of force neutrality is satisfied.

Due to the driving forces, the positions ( )tRi  of the beads 
change, resulting in deformation of the springs and conse-
quent spring forces ( )tFi

s  given by
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if i and j denote neighboring beads, and ( ( ) ( ))− =t tG R R 0i j  
otherwise. As the beads oscillate, the trailing and leading arms 
of the swimmer perform sinusoidal motion with oscillation 
amplitudes d1 and d2, respectively (figure 1).

3.  Simulation framework

The simulation system that we employ consists of two parts, 
the parallel lattice Boltzmann framework waLBerla [22, 29, 
30] for simulating the fluid, and the rigid body engine pe based 
on the discrete element method [31] for the beads within it.

The waLBerla fluid solver uses a D3Q19 model [32] for 
three-dimensional space discretization employing 19 particle 
distribution functions (PDFs) per lattice site. For the col
lision operator, Ginzburg’s two-relaxation time model [33] 
is applied, which splits the PDFs, the used incompressible 
equilibrium distribution function, and the relaxation param
eter into symmetric and antisymmetric parts. For the simula-
tions, the best accuracy at the solid walls is achieved with the 
symmetric relaxation parameter set to /τ1  and the antisym-
metric one set to ( / )/( / )τ τ− −8 2 1 8 1  [33], where τ denotes 
the relaxation time. The software utilizes the message passing 
interface (MPI) and is optimized for scalable and efficient 
execution on the fastest supercomputers available [34].

The physics engine pe [31] handles the dynamics of the rigid 
body parts of the swimmer using Newton’s equations of motion, 
and includes mechanisms for resolving frictional rigid body col
lisions and modelling external forces like gravity or the sinusoidal 
forces driving the swimmer. The algorithm is augmented with 
an MPI communication strategy that can handle general pair-
wise spring-damper systems [35]. To avoid problems resulting 
from non-local communication among processes resulting from 
extended springs, communication is restricted to those pairs of 
processes on which objects interact. Global communication is 
avoided since it might lead to a deterioration of parallel perfor-
mance and scalability on modern supercomputers [23], a par
ticularly important concern for the simulation of swarms.

The interactions between the swimmer and the fluid, as well 
as between different bodies within the swimmer, are modelled 
by a four-way coupling scheme [23, 35, 36]. The rigid bodies 
of the swimmer overlap with the cells of the LBM grid and 
are marked as obstacles within the fluid resulting in a stair-
case approximation of the rigid bodies. Those that interface 
to the fluid are specified to have a moving boundary condition 
[37–39]. The fluid couples to a rigid body via the momentum 
exchange method [37, 38, 40] that takes into account the 
instantaneously acting hydrodynamic forces from the fluid on 
the rigid body.

4.  Study of an individual swimmer

We first investigate the case of a single swimmer swimming 
far away from any boundaries or from any other swimmers. In 
response to the driving forces, the swimming stroke induced 
is sinusoidal, and can be expressed as

( ) ( )
( ) ( )

ω δ
ω δ

= + +
= + +

L t l d t
L t l d t

cos ,
cos ,

1 1 1

2 2 2
� (4.1)

where Li is the instantaneous length of the ith arm, and di and 
δi are the amplitude and the phase of its oscillation. Once this 
form of the swimming stroke is adopted, and the conditions 
of no fluid slip, large bead separations (justifying the use of 
the Oseen tensor in specifying the inter-bead hydrodynamic 
interactions) and small arm-length oscillations are assumed, 
then the swimmer’s velocity can be written as [41]

( )ω δ δ= −Gd dv sin .S
O

1 2 1 2� (4.2)

Here vS
O is the swimming velocity (with the subscript ‘S’ refer-

ring to the stroke-based nature of its calculation and the super-
script ‘O’ to the use of the Oseen tensor), and G is a geometrical 
constant which for equal bead reduced friction coefficients λ and 
equal mean arm-lengths l is given by /( )λ=G l7 24 2 .

The above is the stroke-centric calculation of the swimming 
velocity. In previous work [21], we have calculated the velocity 
of the swimmer in the force-centric picture by considering the 
effect on each bead of the different forces it faces, these being the 
spring forces, the driving forces and the hydrodynamic forces. 
For small driving forces, the oscillations of the beads are small 
too, and we obtain a coupled system of ordinary differential equa-
tions for the bead positions as functions of time, due to the linear 
velocity-force relationship in Stokes flow mediated by the Oseen 
tensor [42]. We solve this system in a perturbative manner (as in 
[20]) with the oscillation of the swimmer arms being the variable 
of perturbation. Calculation of the velocity to the second order in 
the armlength oscillation amplitudes—since the zeroth and the 
first orders turn out not to contribute, due to the sinusoidal nature 
of the driving and the armlength oscillations which integrate to 
zero over a cycle—leads finally to the following expression (in 
the notation employed in this paper) [21],

ˆ[ ( ) ( ) ]
( )( )

λω π η ω λ α πηω λ
π η ω λ π η ω λ

=
+ + −
+ +

AB k A B k

l k k
v x

7 12 sin 2

24 4 36
.F

O
2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

� (4.3)

Here vF
O denotes the swimming velocity calculated using 

the forces (hence the subscript ‘F’) acting upon the swimmer 
and with the superscript ‘O’ again marking the use of the 
Oseen tensor. The dynamic viscosity of the fluid is η. The 
above calculation assumes that there is no slip between the 
beads and the fluid, and that the distances between the beads 
are much larger than their radii (that is /λ�l 1), and the results 
are correct only to the lowest order in /λ l.

The two approaches of finding the swimming velocity—
i.e. assuming known driving forces and known strokes—may 
be reconciled by determining the various stroke parameters 
for the assumed force protocol, and then using the now-known 
strokes to find the velocity as in (4.2). The amplitudes of oscil-
lation of the two arms are found to be [21]

Figure 1.  The bead-spring swimmer.
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Defining β as the stroke phase shift β δ δ= −1 2, its sinusoidal 
function is given by

 β =
N

D
sin , where� (4.6)
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The stroke- and the force-based velocity expressions are then 
found to be related as

( )( )
( )
λ λ

λ
=

− −
−

l l

l l
v v
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F
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To the lowest order in /λ l, the two velocities agree.

4.1.  Velocity calculation to higher order in hydrodynamic 
interaction

We now extend the above calculation in order to take 
higher-order terms in the hydrodynamic interactions 
amongst the beads into account. Including these terms 
loosens the requirement on the ratio /λl  to be large, and 
is beneficial for comparison with our simulations where 
this ratio /λl  equals 5. For the calculation, we employ the 
Rotne–Prager matrix [43] which gives the hydrodynamic 
interaction terms to one order higher than the Oseen 
approximation. This involves the use of the method of 
reflections [44]. Section 5.10 in [45] provides the Rotne–
Prager matrix for a suspension of spheres of equal radii. 
We here present the derivation of the matrix for beads 
with possibly unequal reduced friction coefficients λi 
(which, for spherical beads, equal their radii). Note that 
the ‘higher-order’ label for this calculation refers not to 
the perturbation scheme used—since the velocity is again 
calculated to the second order in the armlength oscillation 
amplitudes, as in section  4—but to the precision of the 
terms specifying the hydrodynamic interaction amongst 
the beads.

We start with the flow field induced in an initially motionless 
fluid by a bead of reduced friction coefficient λj and velocity vj 

positioned instantaneously at the origin of the coordinate system. 
This flow field ( )u r  at the point r in the fluid is given by [45]
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(4.10)
For our assembly of beads, the flow field induced by each 

bead then affects the motion of the other beads. The change 
in the other beads’ velocities is given by Faxén’s theorem 
for translational motion [46], which states that the velocity vi 
acquired by a sphere of radius ai immersed at the position ri in 
a fluid with a flow velocity field ( )u r  is given by

( ) ( )
πη

=
−

+ + ∇
a

av F u r u r
1

6

1

6
,i

i
i i i i i
h 2 2

� (4.11)

where Fi
h is the hydrodynamic drag force on the sphere in 

question.
In our case, clearly, the velocity vi of the ith bead is affected 

by the fluid flow ( )u r  induced by the jth bead swimming with 
the velocity vj at the instantaneous position rj in the fluid. 
Since the velocity of the jth bead in the absence of any other 
bead is given by the Stokes drag law

πηλ
=
−

v F
1

6
,j

j
j
h

� (4.12)

therefore, combining equations  (4.10)–(4.12) and simpli-
fying the expressions (see Appendix for details), we find the 
velocity of the ith bead in terms of the drag forces on the ith 
and the jth beads to be
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where ( )T rij  and ( )W rij  denote respectively the first and the 
second terms in the summation in (4.13) (with ( )T r  being the 
Oseen tensor). The sum of these two terms, ( ) ( )+T r W rij ij , is 
the Rotne–Prager matrix for an assembly of spherical beads 
of radii λi.

Using (4.14) we can write out in full the velocities of the 
three beads in our swimmer as
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Here +Fi
d s is shorthand for the magnitude of the sum of the 

spring and driving forces on the ith bead (i.e. +F Fi i
s d, with 

these forces given by equations  (2.1) and (2.2)), which can 
replace the (negative of the) drag force on the bead since the 
spring, the driving and the drag forces on each bead always 
sum to zero. In equations (4.15)–(4.17) the time-dependence 
of the armlengths Li(t), the forces ( )+F ti

d s  and the velocities 
( )tvi  has been suppressed for brevity of expression.

From the velocities of the beads, the velocity of the 
swimmer vF

RP (where the superscript ‘RP’ in the swimmer 
velocity denotes the use of the Rotne–Prager matrix in finding 
the velocity within the force-based formulation) may be found 
by averaging ( )tvi  over the three beads and over one cycle 
period, i.e.

( )
/
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ω
π

=
π ω
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d .
i

iF
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2

1

3
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Equations (4.15)–(4.18) are the equations  of motion for 
the system, differential in the bead positions ( )tRi , which are 
related to the velocities ( )tvi  as

( ) ( ) ( )= =t
t

t
iv

Rd

d
1, 2, 3 ,i

i
� (4.19)

and which enter into both the armlengths Li(t) and the forces 
( )+F ti

d s  (the latter because the spring forces depend on the 
bead positions).

To solve this coupled system of differential equations, we 
adopt a perturbative approach following a method proposed 
in [20], wherein we assume that in the steady state the swim-
mer’s motion consists of a uniformly-moving equilibrium 
configuration with the three beads executing small sinusoidal 
oscillations around this configuration. In particular, the bead 
positions are assumed to be of the form

( ) ( )ξ= + +t t tR S v ,i i i0 F
RP� (4.20)

where ( )ξ ti  denotes small sinusoidal oscillations around the 
equilibrium configuration Si0 of the swimmer. We expand 
the functions of the relative bead positions ( ( ) ( ))−t tR Ri j  in 
equations  (4.15)–(4.18) in terms of series of the variables 
ξ ξ−t ti j( ( ) ( )) centred around the equilibrium configuration, 

which can be taken to be the configuration at time t  =  0. The 
different variables which depend on ( ( ) ( ))−t tR Ri j  are the 
functions ( ( ) ( ))−t tG R Ri j  specifying the spring forces (from 
(2.2)) and the functions ( ( ) ( )) ( ( ) ( ))− + −t t t tT R R W R Ri j i j  
defining the Rotne–Prager matrix for the system. To the first 
order in ( ( ) ( ))ξ ξ−t ti j , these functions are expanded to
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and a similar expansion as (4.22) for ( ( ) ( ))−t tW R Ri j , with 

( ( ) ( ))−t tT R Ri j , Tij and Pij in (4.22) being replaced respec-
tively by ( ( ) ( ))−t tW R Ri j , Wij and Qij.

Using the above expansions, equations  (4.15)–(4.18) can 
be solved to successive orders in ξi. We find that the lowest 
order in ξi turns out to be 2, because the forces as well as the 
displacements are of a sinusoidal form and sinusoidal func-
tions are orthonormal. The final expression obtained for the 
velocity is accurate to the lowest order in ξi and the second 
lowest order in /λ l, the latter due to the use of the Rotne–
Prager tensor instead of the Oseen tensor in describing the 
hydrodynamic interactions amongst the beads. This velocity 
expression is rather long, and for simplicity we here state it 
only for the case of equal driving force amplitudes A  =  B, in 
which case it reads

ˆ( ) [( ) ] )
[( ) ( ) ]
ωλ λ λ π η ω λ
λ π η ω λ λ π η ω λ

=
− − +

− + − +
A l l k l

l l k l k l
v x

28 45 2 5 24

192 5 4 8 33 144
.F

RP
2 2 2 2 2 2

3 4 2 2 2 2 2 4 4 4 4

�
(4.23)
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Following the above procedure, we can also find the corre
sponding expression in the stroke-based formulation. In terms 
of the swimming stroke specified in (4.1), the velocity comes 
out to be

ˆ( ) ( )
( )

λ λ ω φ φ
λ

=
− −

−
l d d

l l
v x

28 99 sin

24 4 17
,S

RP 1 2 1 2
2� (4.24)

again for equal reduced friction coefficients λ λ=i  of the 
beads and equal mean lengths li  =  l of the two arms of the 
swimmer, and where the superscript ‘RP’ again marks the use 
of the Rotne–Prager matrix instead of the Oseen tensor (here 
in the stroke-based calculation).

We observe that the velocity expressions in equations (4.23) 
and (4.24) reduce to those in equations (4.3) and (4.2), respec-
tively, when only the lowest order terms in /λ l are kept in the 
numerator and the denominator, as they should. We also note 
that the difference between the two velocity expressions in 
the stroke-based formulation is only of a geometric factor 
at the beginning of the expression, which is not the case for 
the two velocity expressions obtained from the force-based 
formulation.

We can compare the four theoretical velocity formulae 
obtained for our swimmer, namely by using the force-centric 
and the stroke-centric approaches to two different orders in 
the hydrodynamic interactions. Figure 2 shows such a com-
parison for a swimmer with a varying /λl  ratio. As expected, 
the four velocity expressions converge to the same curve as 
the /λl  ratio becomes larger.

4.2.  Validation of simulations

For validation of the simulation system, we perform simula-
tions of an isolated bead-spring swimmer and compare them 
with the theoretical expressions described in sections 4 and 
4.1. The beads are spherical with a radius of λ = 4 cells and 
separated by mean distances of l  =  20 cells. The fluid has 
a dynamic viscosity (on the lattice) of /η = 1 3 (which also 
equals its kinematic viscosity ν defined as /ν η ρ= , since the 
density of the fluid ρ is taken to be 1 on the lattice). The relax-
ation time is set to τ = 1.5, and the spring stiffness (on the 
lattice) to k  =  0.0347. The simulations are carried out in a box 
of size ( ) ( )× × = × ×x y z 1200 800 800  lattice cells with 

free-slip boundary conditions specified at the walls of the box. 
We perform six full swimming cycles in total to ensure that 
the steady state is reached. The other parameters in the dif-
ferent simulations are detailed in table  1 in the supplemen-
tary information (S.I.) (stacks.iop.org/JPhysCM/29/124001/
mmedia). All the simulations are performed using the Emmy 
cluster of the RRZE computing centre in Erlangen [47].

Figure 3(a) shows the cycle-averaged velocity of the 
swimmer as a function of the cycle period, from simulations 
(dashed black line) and from theory, with the dashed-dotted 
red line marking the lower-order theory (with respect to the 
inter-bead hydrodynamic interactions) and the solid green 
line the higher-order one. We find that the simulation results 
compare very well to the theoretical curves, except at small 
cycle periods. The relative error between the simulations and 
the lower order theory (figure 3(b), dashed dotted red curve) 
go down continuously and for cycle periods larger than 4800 
time steps become 10% or smaller, becoming nearly 0% for 
a cycle period of 10 000 time steps. It is simple to under-
stand why the simulations perform better as the cycle period 
increases. Firstly, the smaller the cycle period is, the larger 
are the errors due to time discretization. Secondly, small time 
periods result in larger instantaneous bead Reynolds numbers 
(these becoming, for instance, larger than 0.2 in the simulation 
with a cycle period of 1000 time steps).

When we compare the simulations with the higher order 
theory, we find that the relative error (shown as a solid green 
curve in figure 3(b)) again initially decreases with the cycle 
period, but for cycle periods larger than 4000 time steps it 
becomes stable at about 8%. This is within the expected error 
range of 5%–10% in lattice Boltzmann simulations due to the 
presence of the simulation walls, time and space discretiza-
tion errors, and other numerical artefacts. As the cycle period 
increases to 10 000 time steps, the errors with respect to the 
lower order theory are even smaller than that for the higher 
order one, and this is likely due to a fortuitous cancellation. In 
either case, they remain below 10%.

Apart from the swimming velocity, we also check the 
dependence of the stroke parameters on the driving force 
amplitude ratio A/B (in figure  3(c)) and on the force phase 
shift α (figure 3(d)). For this we use the relatively small cycle 
period of 4800 time steps in the simulations (where, from fig-
ures 3(a) and (b), the errors in the velocity with respect to both 
the first and the second order theories go down to 10%). In 
both the cases, the expected stroke parameters are reproduced 
very well in the simulations.

5.  Swarms of swimmers

Understanding the motion of a single swimmer is a prereq-
uisite for studying the behavior of swarms, which are large 
populations of individuals whose trajectories are coordinated 
and interdependent in complex ways. Here we present swarm 
simulations, comprised of thousands of individual swimmers. 
In the literature, the swimmers within a swarm are not usu-
ally represented individually as doing so is often prohibi-
tively expensive computationally. If possible, however, such 

Figure 2.  Comparison of theoretically calculated velocities of a 
swimmer from both force- and stroke-based approaches, as the bead 
separation-to-radius ratio ( λl / ) decreases.
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a fine-grained approach can shed important light on how the 
interactions amongst individuals executing simple motion 
result in the rich cooperative behavior that swarms typically 
exhibit. We therefore adopt the latter, fully-detailed approach.

In our simulations we use between 60 and 1280 compute 
cores, and place × ×1 3 3 swimmers on each core, so that 
there are up to 11520 swimmers in our swarms. Our approach 
is to begin with smaller swarms of 540 swimmers (on 60 
cores), and, if these result in simulations that run successfully, 
to scale them up to 11520 swimmers. The distances between 
the swimmers on one core are Cy and Cz along the y- and 
z-directions, respectively, and within two neighboring swim-
mers on different cores are Dx, Dy and Dz along the three axes 
(figure 4). The entire configuration is always kept symmetric 
along the y- and z-directions, so that =C Cy z and =D Dy z. 
Periodic boundary conditions are imposed at the walls of the 
simulation box.

The individual swimmers within each swarm are com-
posed of spherical beads with a radius of λ = 6 cells and sep-
arated by a mean distance of l  =  32 cells. The driving force 
amplitude is 2, and the force phase shift is π0.5 . The cycle 
period is kept at 2000 time steps, since this value serves the 
dual purposes of enabling the individual swimmer velocity 
to be relatively high while keeping the cycle period small 
(see figure  3(a)). Both of these features are important in 
allowing the inter-swimmer interactions within large swarms 

to propagate quickly. The simulations are run for up to 124 
swimming cycles. In any simulation, if the instantaneous 
swimming velocity exceeds 0.5 lattice cell/time step, then 

Figure 3.  (a) Comparison of the cycle-averaged swimming velocity from simulations and from theory for two different orders in sphere 
radius-to-separation ratio, for different cycle periods. (b) Relative error between the velocities from simulations and from the two 
theoretical expressions in equations (4.3) and (4.23). (c) and (d) The dependence of the stroke parameters on the force amplitude ratio 
A/B and the force phase shift α, respectively, for a simulation with cycle period 4800 time steps. The superscript ‘sim’ denotes simulation 
results.

Figure 4.  Setup of the swarm simulation on each core for both 
uniform and non-uniform initial arrangements of the swimmers 
within a swarm. The distances between the swimmers within one 
core are Cy and Cz along the y- and z-directions, respectively, and 
within two neighboring swimmers on different cores are Dx, Dy 
and Dz along the three axes. Two particular swimmers A and B are 
marked for later comparison of trajectories.

J. Phys.: Condens. Matter 29 (2017) 124001
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the simulation is terminated. This is because, firstly, such a 
velocity results in Reynolds numbers larger than 10 which is 
much beyond the typical values in microswimming, and sec-
ondly, traversal of more than half a cell length in a time step 
by a bead can result in an incorrect exchange of momentum 
between different lattice cells in the simulations.

We have simulated various configurations, listed in 
table 2 in the S.I., where the initial inter-swimmer distances 
( =C Cy z, Dx, =D Dy z) vary. In the first setup we study (sim-
ulations (a) and (b) in table  2 in the S.I.), the swimmers 
are arranged initially on a regular cubic lattice, with the 
distances between any two neighboring swimmers in any 
direction ( = = = =C C D D Dy z x y z) being 32 lattice units. 
We find that such an initial configuration results in a steady 
motion of the swarm along the x-axis over the course of the 
simulation. This setup can be identified as a non-equilibrium 
steady state. Figure  5(a) shows the configuration of the 
swarm at the end of 124 swimming cycles. The regularity 
in the arrangement of the swarm can be easily seen, and 
is also illustrated by the x-coordinates of two randomly-
chosen swimmers within the swarm shown in figure 5(b), 
which exhibit a uniform cycle-averaged velocity. Which 
two swimmers are chosen is immaterial, since the configu-
ration is stable and the local neighborhood of each swimmer 
remains identical throughout the simulation. The y- and 
z-positions of all the swimmers are constant over the entire 
simulation time.

We now disturb the steady state by introducing spacing 
defects in the initial arrangement of the swarm. For this 
we keep ≠C Dy y (and consequently ≠C Dz z), which means 
that the swarm is split into layers along both the y- and the 
z-directions, with the swimmers within each layer being 
equidistant (but with this distance being unequal to the 
separation between the different layers). We find that most 
of these defects induce strong hydrodynamic forces acting 
asymmetrically between the swimmers, which cause them 
to accelerate to high swimming speeds (larger than 0.5 lat-
tice cell/time step) such that they cannot be appropriately 

resolved in the simulations, and the simulations conse-
quently terminate.

However, one particular setup (simulations (c) to (g) in 
table 2 in the S.I.) demonstrates transiently oscillating behavior 
along the axis of driving (the x-axis) over the course of the 
simulation time. Here we have = =C C 37y z , Dx  =  56 and 
= =D D 46y z  lattice units. The two representative swimmers 

A and B (marked in figure 4) show identical motion along the 
x-direction (figure 6), indicating that the entire swarm oscil-
lates coherently along the axis of driving.

In the other two directions, the local environment of a 
swimmer affects its motion. There are two significant differ-
ences in the initial placement of swimmers A and B within the 
swarm (figure 4). Firstly, the y and z directions are identical for 
swimmer A but not for swimmer B. Secondly, the whole swarm 
is symmetric around swimmer B along the z-axis but not along 
the y-axis (since swimmer B is the middle swimmer in its core 
in the z-direction but not in the y-direction), while for swimmer 
A the swarm is symmetrically placed neither along the z- nor 
the y-axis (if ≠C Dz z and ≠C Dy y). Due to this, the two swim-
mers face different hydrodynamic forces from the other swim-
mers in the swarm and consequently execute dissimilar motion 
along different directions. Swimmer A undergoes a rotation in 
the x-z plane (demonstrated by the z-trajectories of its three 
spheres in figure 6(b)), which, due to its z-symmetry, is absent 
in the case of swimmer B (within an error of one lattice cell, 
not shown here). The rotation of swimmer A in the x-y plane 
is, as expected, identical to that in the x-z plane (not shown). 
In contrast, swimmer B undergoes significant rotation only in 
the x-y plane (figure 6(c)). Moreover, swimmer B changes its 
orientation with respect to the x-axis only once during the sim-
ulation time, unlike swimmer A which does so twice. For this 
swarm we see that the swimmers display cooperative behavior, 
by moving as one along the axis of driving (the x-axis), yet 
differences in their motion are equally visible, as evidenced 
by the different kinds of rotation observed for different swim-
mers. It remains unclear how much of the cooperation between 
the swimmers derives from the identical driving forces which 

Figure 5.  (a) The configuration of a stably moving swarm at the end of 124 swimming cycles. The colors group together the beads which 
are being handled by one process at the particular instant considered. In each direction the colors are arranged in a chequerboard pattern. 
(b) The x-trajectories of the middle beads of two selected swimmers within the swarm.

J. Phys.: Condens. Matter 29 (2017) 124001



K Pickl et al

9

all the swimmers are subjected to, and to what extent the 
boundary conditions affect this behavior. In any case, our sim-
ulations show that large swarms of microswimmers are by and 
large unstable under the condition of fixed driving. An impor-
tant consequence, for both artificial microswimmer swarms as 
well as biological ones such as those formed by bacteria, is 

that in order to maintain order in a swarm, some kind of self-
regulation in the stroke of the individual swimmers is essential, 
as otherwise the hydrodynamic forces result in the breaking up 
of the swarm.

6.  Summary and conclusion

Here we have expanded upon our previous study of the bead-
spring swimmer model wherein we analyse its motion starting 
from a description of the driving forces [21, 48]. In this paper 
we have extended the accuracy of our prior calculations by 
including higher order terms in the hydrodynamic interactions 
between the beads in the swimmer. Along with the theory, 
we have here studied the motion of the swimmer numerically 
using the waLBerla-pe simulation system based on the lattice 
Boltzmann method. The accuracy of the simulations is veri-
fied by good agreement with the theoretical expressions to both 
investigated orders in the hydrodynamic interactions, which 
gets better as the cycle period increases due to better time 
discretization and reduced Reynolds numbers. Comparison 
with the higher order theory shows that the simulation errors 
saturate to a value below 10% for cycle periods larger than 
4000 time steps.

After studying single swimmers, we have simulated swarms 
containing thousands of individuals. We have shown that a 
particular uniform spacing between the different swimmers 
in the swarm results in a stable uniaxial motion. Introducing 
defects in the uniformity of the swarm results in differences 
emerging in the motion of individual swimmers within the 
swarm. For one particular initial swarm spacing (with unequal 
separation distances along the three axes), some swimmers 
show a pronounced rotation along different axes, but along 
the axis of driving the swarm oscillates as one body. The dif-
ferences in the responses of individual swimmers are due to 
the unequal hydrodynamic forces that they face from other 
swimmers in the swarm, the effect of which builds up over the 
simulation time. For all the other initial separation distances 
tried, the simulations terminate due to strong acceleration of 
the swimmers caused by their hydrodynamic interaction. It is 
here worthwhile to note that unlike in the swarm case, an iso-
lated swimmer with the same parameters and facing the same 
driving forces swims within the Stokes regime (at Reynolds 
numbers smaller than 1).

Our results speak to the instabilities which grow rapidly 
and result in a complete breaking of the initial order in the 
swarms when their members are allowed to respond indi-
vidually to the different forces upon the system. With this in 
mind, it would be interesting to implement a few extensions 
to the simulation methodology. In the present simulations, 
all the swimmers act under an identical force protocol, as 
would be the case if an artificial swarm is propelled by 
an oscillating external field. A different kind of swarm 
behavior could occur if each swimmer within the swarm 
is associated with a (slightly) different driving protocol, as 
for instance is the case in living systems. The sensitivity of 
the stable phase points to the fact that in living systems the 
stroke must be adjusted by regulating the energy invested 

Figure 6.  (a) Trajectories along the x-direction of the middle 
spheres of swimmers A and B marked in figure 4, indicating that the 
entire swarm oscillates along the x-direction. (b) Trajectories along 
the z-direction of the three spheres of swimmer A, showing the 
rotation of the swimmer in the x-z plane. (c) Trajectories along the 
y-direction of the three spheres of swimmer B, showing the rotation 
of the swimmer in the x-y plane.
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into forcing the different body parts of a swimmer, in order 
to maintain the stability of the swarm. If the hydrodynamic 
interactions are amplified to such an extent that they cannot 
be compensated by the self-regulation of the swimmers, 
then the swarm should become unstable (as in most of the 
simulated cases here). However, our results show that even 
if the stroke of the swimmers is not identical (such as due to 
the introduced spacing defects in our simulations) and not 
self-correcting, some synchronization between the swim-
mers can take place in a passive manner. It remains to be 
clarified whether this synchronization is a result of expe-
riencing an identical driving protocol, or is dominated by 
hydrodynamic interactions.

In order to improve the accuracy of the simulations, 
second order boundary conditions could be implemented at 
the swimmer-fluid interfaces, and an adaptive mesh refine-
ment could be employed which would reduce computational 
cost. This would permit longer simulations, which are at 
the moment not possible due to limited availability of the 
supercomputing resources. However, even with the current 
limitations, we have been able to build up a fully resolved 
microswimming model and to expand it to the simulation 
of large swarms composed of thousands of instances of the 
same fully-resolved swimmer. Such a level of detail is, to 
our knowledge, unique for a swarm and is a promising har-
binger of more insight into the complex patterns displayed 
by real swarms, the members of which, at a fundamental 
level, are individual entities navigating their immediate 
environments.
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Appendix

Here we show how to obtain the expression for vi, the velocity 
of the ith bead, in (4.13) in the calculation of the Rotne–Prager 
matrix for beads with unequal reduced friction coefficients λi.

From equations (4.10)–(4.12), we get
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To simplify the above expression, we note that in spherical 
polar coordinates we have
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Using equations (A.1)–(A.5), we can write the second-order 
velocities as
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Collecting like terms leads to (4.13).
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