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Abstract

In this paper a framework for efficient irregular wave simulations using Higher Order Spectral method coupled with fully nonlinear
viscous, two-phase Computational Fluid Dynamics (CFD) model is presented. CFD model is based on solution decomposition via Spectral
Wave Explicit Navier—Stokes Equation method, allowing efficient coupling with arbitrary potential flow solutions. Higher Order Spectrum is
a pseudo-spectral, potential flow method for solving nonlinear free surface boundary conditions up to an arbitrary order of nonlinearity. It
is capable of efficient long time nonlinear propagation of arbitrary input wave spectra, which can be used to obtain realistic extreme waves.
To facilitate the coupling strategy, Higher Order Spectrum method is implemented in foam-extend alongside the CFD model. Validation of
the Higher Order Spectrum method is performed on three test cases including monochromatic and irregular wave fields. Additionally, the
coupling between Higher Order Spectrum and CFD is validated on three hour irregular wave propagation. Finally, a simulation of a 3D

extreme wave encountering a full scale container ship is shown.
© 2017 Shanghai Jiaotong University. Published by Elsevier B.V.
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1. Introduction

With increased availability of CPU resources during past
few decades, Computational Fluid Dynamics (CFD) is becom-
ing a standard practice for simulation of transient free-surface
waves. CFD methods that model fully-nonlinear, two-phase,
viscous flow exhibit high computational costs, which prohibit
long time wave evolution in a large domain. This disadvantage
is partially overcome using domain decomposition strategies,
where the flow in a small, relevant part of the domain is re-
solved using CFD, while the farfield flow is resolved using
potential flow, a computationally cheaper model. Given the
potential flow solution, the CFD simulation naturally develops
nonlinear, viscous flow with vorticity effects. First decompo-
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sition method was developed by Van Dalsem and Steger [1],
called Fortified Navier—Stokes (FNS) method. Van Dalsem
and Steger used the decomposition to ‘fortify’ the solution of
subset equations in the boundary layer, while solving ordinary
Navier—Stokes in the rest of the domain. Jacobsen et al. [2] in-
troduced a domain decomposition method for wave modelling
using relaxation zones. Paulsen et al. [3] used one-way cou-
pling between fully nonlinear potential flow solver (developed
by Ensig-Karup et al. [4]) and fully nonlinear viscous CFD
solver to investigate wave loads on a circular surface piercing
cylinder. The same method was used to calculate steep reg-
ular wave loads on a bottom mounted cylinder [5]. Pistidda
and Ottens [6] used the Euler Overlay Method for domain
decomposition to calculate the Response Amplitude Operator
(RAO) for a moonpool of a deep water construction vessel.
Vukcevi¢ and Jasak [7] developed a modified Spectral
Wave Explicit Navier—Stokes Equation (SWENSE) [8—-10] so-
lution decomposition method which is used alongside domain
decomposition. The solution is decomposed into incident and
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diffracted fields, where the incident field is obtained from the
potential flow model, while the diffracted field is solved via
two-phase, viscous CFD model. All of the above mentioned
CFD methods are computationally expensive because they are
modelling highly resolved spatial flow features with nonlinear
and coupled equations in time domain. Hence, they cannot be
used to perform a large number of long time irregular wave
field propagations needed to obtain a naturally emerging ex-
treme wave.

Extreme wave loads are gaining more attention due to in-
creasing number of offshore objects being installed world-
wide. Extreme waves emerge due to focusing of wave spec-
trum components, which is influenced by nonlinear wave
modulation and wave-to-wave interaction. It is considered that
the influence of wind and atmospheric pressure, bathymetry
and current [11] also plays a role in extreme wave generation.
Apart from the focusing of unidirectional spectrum, geomet-
ric focusing of directional spectrum can also cause extreme
wave events.

Assessment of extreme wave loads demands accurate wave
modelling. Since extreme waves occur randomly in an irreg-
ular sea state, in order to obtain a statistically and physically
accurate extreme wave, irregular sea state needs to be evolved
for a long time on a large domain. Moreover, the evolution
of the irregular sea state has to take into account nonlin-
ear effects of wave interaction and modulation. CFD takes
into account all nonlinearities of the flow, and inherently the
nonlinearities of wave-to-wave interaction and wave modula-
tion. However, even with domain decomposition methods, it is
challenging to propagate arbitrary wave field for a sufficient
amount of time to observe a natural emergence of extreme
waves. Apart from that, long time CFD simulation might ac-
cumulate discretization errors which will inevitably influence
the wave field. To obtain a realistic extreme wave in an ir-
regular sea state, as much as a thousand peak periods need
to be simulated. Paulsen et al. [3] reported that one irregu-
lar wave peak period took 8 hours to compute on 10 CPU’s,
extrapolating to almost a year for 1000 peak periods, which
might be necessary to obtain a realistic extreme wave.

Nonlinear wave field can be efficiently propagated using
spectral potential flow approach. In this work, potential flow
pseudo-spectral Higher Order Spectral (HOS) method is used.
Nonlinearities of wave-to-wave interaction and wave modu-
lation are taken into account, while viscous effects, vorticity,
wave breaking, diffraction and radiation are neglected. Since
the latter effects have minor influence on extreme wave emer-
gence, HOS method can be used to perform a long time evo-
lution of an irregular wave field on a large-scale domain to
obtain a statistically and physically consistent extreme wave.
HOS can then be coupled with CFD in a small spatial domain
containing the extreme wave, and for a short period of time
to capture viscous effects, wave breaking and fluid—structure
interaction. In this work one-way coupling between HOS and
CFD is achieved using the decomposition model [7].

HOS method was first developed by Dommermuth and Yue
[12] and West et al. [13] independently. West et al. used order
consistent Taylor and perturbation series expansion, which is

adopted by most HOS algorithms today [14,15]. Since the
publication of the original method in 1987, numerous au-
thors continued its development. Ducrozet et al. [15] enhanced
numerical efficiency and aliasing treatment, while Tanaka
[14] combined HOS with complex amplitude function. Dom-
mermuth [16] developed a time relaxation scheme which en-
ables HOS calculation to be initialized with a linear solution.
This is of crucial importance since wave energy spectra are
defined for linear wave components.

In this paper a mathematical overview of the HOS method
is given, followed by a detailed description of numerical pro-
cedure. The CFD model and coupling with potential flow by
Vukcevi¢ and Jasak [7] is used. Three test cases are consid-
ered for HOS validation purposes. The first case considers
monochromatic wave train propagation, where modal ampli-
tudes are compared with analytical Stokes solution. Second
test case considers propagation of four uniformly steep spec-
tra, where the HOS solution is compared to viscous, two-
phase CFD solution. Third test case shows naturally occurring
Benjamin—Feir instabilities [17]. In addition to the validation
of the implemented HOS model, the coupling between HOS
and CFD using SWENSE is also validated on a three hour ir-
regular wave propagation case. Finally, an example simulation
of a 3D extreme wave encountering a full scale container ship
is shown. According to ITTC guidelines, the present method
applied on this case presents a fully-nonlinear seakeeping cal-
culation.

2. Mathematical model

In this section mathematical model for the HOS method is
outlined; the reader is referred to [12-15] for more details.

Pseudo-spectral HOS method is used to reformulate non-
linear partial differential equation set via perturbation, Taylor
and Fourier series into a set of ordinary differential equations.

2.1. Governing equations

In this model, free-surface flow is assumed irrotational,
inviscid and incompressible. Surface gravity wave propagation
is described with the following governing equations:

» Laplace equation for incompressible, irrotational, inviscid
flow:

VZi(x,y,z,1) =0, (1)

where ¢ is the velocity potential, while x, y, z are spatial
coordinates and ¢ is time.

Dynamic free surface boundary condition:

d¢

[
5 tet 5 (V9T =0, @

where g is the gravitational acceleration in the direction of
negative z axis.
Kinematic free surface boundary condition:

an dp ¢ an an\ _ 9¢
5*(5@)'(5’5)— 2z’ ©
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where n = n(x, y, t) is a single valued function of the free
surface displacement.

Depth is considered uniform and the bottom impermeable,
while the domain is assumed periodic in the horizontal direc-
tions [15].

Egs. (2) and (3) can be rewritten in terms of surface po-
tential ¥ (x,y,¢) = ¢(x,y, n(x,y,t),t), as they are valid for
z=nx,y,1):

N Y Ay
¥+gn+2<a ay)
A ? an oan\’
n oan\"\ _
S
an oy Iy an an
¥+(ax ay) ($5>
9 an an\7\ _
(1 + <£ 8_y> ) =0. 5)

az
2.2. Higher Order Spectral method

A pseudo-spectral, HOS method has been used to obtain a
nonlinear solution of free surface boundary conditions, Eqgs.
(4) and (5). All spatial derivatives are evaluated in wave num-
ber space, while time derivatives are evolved in physical space
instead of the frequency domain. The shape function for ve-
locity potential used in the wave number space is:

hK +d
¢<xy,z,r>—Zchl()C°S izt )

cosh(Ky d)
where ¢y (t) are the time-dependent Fourier coefficients, while
K1, K and K; are wave numbers defined as:

il(kx eik])" (6)

_ 2k 7
k= L
2wl
K =—, 8
] L (8)

Ko = JK2+ K. ©)

Fourier series decomposition given by Eq. (6) allows us to
calculate horizontal derivatives analytically, whereas vertical
derivative needs special treatment as it represents vertical ve-
locity of the free surface W, at the unknown wave elevation
n. Hence, it is necessary to use the full form of the shape
function given by Eq. (6), calculate its derivative it in z di-
rection, and evaluate it at the exact free surface location. This
presents a Dirichlet problem for the velocity potential ¢ on
a boundary of complicated shape n(x, y, #). In order to cir-
cumvent this difficulty, the surface potential is expanded in a
Taylor series around z = 0 in terms of 7:

>y

P,y 1) =Yy 1) = Z —,;qxx ¥.0.1). (10)

The vertical derivative of surface potential is:

d
Wx,y,t) = a—f

o i qi+l
n' ot
=2 R 00, (11)
i=0

z=1
To keep the solution up to an arbitrary order of nonlinearity,
the potential is expanded in perturbation series in terms of
wave slope € = Ka, where K is the wave number and a is
the wave amplitude:

M
POy 1) =1 +epp+Elps+ =Y ™, (12)
m=1

where M is the perturbation series order of nonlinearity. With
every order of ¢ expanded in a Taylor series using Eq. (10),
surface potential can be written as:

M M-—m ,- i
(m)
v, w)—%% l,a,qs (x,,0,1). (13)
The orders of nonlinearities are determined with respect to
the product of n' and 3'¢"/3z', and the second sum in Eq.
(13) is truncated at M — m to account for order consistency.
The unknowns in Eq. (13) are the individual orders of
velocity potential ¢, which are calculated sequentially by
equating the terms of the same order:

oV =y (x,p1),

ad
¢ =—n_—¢",
0z
mol i gi
¢(m):_21'7__i¢(m_i); m=2,3...,M. (14)

Once the individual orders of ¢ are obtained, vertical velocity
W can be evaluated. Vertical velocity of the free surface is
also expanded in a perturbation series, while the individual
orders are calculated using orders of ¢ as follows:

(m) __ (m— l) —
w Zz'az<l+l>¢ m=1,2,..., M. (15)
Total vertical velocity is then obtained by summing all
individual orders:

M
Wy )=y wm. (16)
m=1

In theory, the order of nonlinearity M at which the ex-
pansion is truncated is arbitrary. The main advantage of this
approach is that no iterations are needed per time step to re-
solve the coupling of the boundary conditions. Furthermore,
Fourier transform facilitates the calculation of spatial deriva-
tives, accelerating the numerical procedure.

3. Numerical model

The Fast Fourier Transform (FFT) algorithm is used for
efficient calculation of the Fourier transform, while the fifth-
order Cash—Karp embedded Runge—Kutta scheme with error
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control and adjustable time-step size [18] is used to solve or-
dinary differential equations. In this section, emphasis is given
on numerical procedure and initialisation of HOS calculation.
Dealiasing, time integration and coupling with CFD are also
briefly explained.

3.1. Numerical procedure

The numerical procedure starts with a discrete surface po-
tential ¥ and surface elevation 1 which are obtained from the
previous time step or initial conditions. The discrete values are
located on a uniform discrete mesh with nodes equidistantly
spaced along the domain’s length L, and width L,. Hence,
the mesh is fully defined with a number of nodes N, in x and
N, in y direction, yielding mesh resolution Ax = L,/Nx and
Ay = Ly/N,. Using Eq. (6), the vertical derivative of velocity
potential can generally be written as:

Lka eiK,y)

aaj—;f - (ZZCH()

o osinh (K j(z+d)) v oo
= Z Z () K/ ( ki )) oK iK1y
[ cosh (K ;d)

While calculating individual terms of a given order in
Eq. (14), the spatial derivatives are calculated in wave num-
ber space. After evaluating each order ¢ in physical space,
it is transformed via FFT into wave number space. This is
required in order to efficiently calculate vertical derivative
of ¢, used in calculation of ¢+D. Once the individual
derivatives are calculated, they are inversely transformed back
into physical space before multiplying with a corresponding
power of n. In the following equations, Fourier transform of
a discrete field f is denoted with .% (f), and the inverse trans-
form is denoted with .Z~!(f). Eq. (14) can be written as:

otV = 1#(xmt)

Jj .
¢(m) — _Zn a— lizzc(m J)(I)KlileikaeiK,y .

m_23..., , (18)

cosh (K (z + d))
cosh(Ky ;d)

a7

where c(m (1) is the Fourier coefficient of order m — j of
the &, lth Fourier mode. It is calculated by performing FFT
on preceding orders of ¢ on a discrete spatial mesh:

) = Fle" P (x,y. 1)} (19)

Once all the orders of ¢ are evaluated, orders of vertical
velocity W are calculated using Eq. (15):

w = {ZZC(I)U)KM €iK”€iK’y},
o o)

jO
m=1,2,...,M. (20)

The inverse Fourier transforms occurring in Eq. (20) are
already calculated in Eq. (18), except for the last order of

vertical velocity W™, for which the inverse Fourier transform
has to be calculated separately. The inverse Fourier transforms
calculated in Eq. (18) are hence stored for efficiency.

Once ¢, n and W are known, we proceed by evaluating
the coupling terms in Egs. (4) and (5). Spatial horizontal
derivatives are calculated in the wave number space, hence
the surface elevation displacement 5 (available on discrete
spatial mesh) has to be transformed via FFT. When all the
derivatives are calculated, they are transformed back to the
physical space and multiplied. Time marching boundary con-
dition equations, Eqgs. (4) and (5) can finally be written as:

Wyt _
ot

2
1 -1 v ; iKix iK;y
~3 (ﬁ IXk:XI:Ck’I(t)lKk’leKk eK”})
| 2
+§W2 1+<351iZZCZ.I(I)iKk,leikaeiKly}) , @2
1

k

—gn(x,y, 1)

k l

I{ZZCZ](I)IK](’] e[kaeiK[y}

k 1

-1 {Z Z cf () iKy €™ e } (22)
k 1

where c}ﬁ ,(t) and c,'(’. ,(t) are the Fourier coefficients obtained
by performing a Fourier transform on discrete values of 4
and n, respectively. Fig. | shows the flow chart of the HOS
method during one time step.

2
an(x’ y»t) -1 n . iKyx iK;y
T =Wl1 —|—<ﬁ E E Ck,l(t)lkal e Kix piKiy

3.2. Time integration

Time integration of Eqs. (21) and (22) is performed with
the fifth-order Cash—Karp embedded Runge—Kutta scheme
with error control and adjustable time-step size. For more de-
tails on time integration the reader is referred to Press et al.
[18].

3.3. Initialization of the wave field in a HOS simulation

In order to initialize a HOS simulation, discrete values
of Y(x,y,t =0) and n(x,y,t = 0) are needed. Initialization
of HOS simulation is not trivial since linear initial condi-
tions generally do not satisfy the free surface boundary con-
ditions. As shown by Dommermuth [16], initializing the sim-
ulation with a linear solution leads to unstable simulation,
since nonlinearities do not have the time to develop before
the emergence of spurious high frequency standing waves.
Dommermuth developed a time relaxation scheme to avoid
this problem, enabling initialisation of HOS simulation with
a linear solution. This adjustment scheme smooths out the
natural emergence of nonlinear terms over time by relaxing
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Initialize ¥(x,y, 0)

calculate ¢ se-
quentially, Eqn. (18)

,,,,,,,,,,,,,,,,

calculate W™ se-
quentially, Equ. (20)

calculate RHS terms of free
surface boundary conditions,
Eqn. (21) and Eqn. (22)

Y(x,y,t + At),
n(x,y,t + At)

advance solution in time,
Eqn. (21) and Eqn. (22)

Fig. 1. Flow chart of the HOS algorithm.

the nonlinear RHS terms in free surface boundary conditions,
Egs. (4) and (5):

%—w +gn=G (1 — e‘(f’a)n), (23)
t
Mo _ g (1 - e‘(ﬁ)”) 24)
ot

where T, is the relaxation time, and » is the relaxation expo-
nent. According to Dommermuth [16], time relaxation period
T, should be at least as long as the period of the longest
wave that can occur in the simulation. G and F are the non-
linear parts of dynamic and kinematic free surface boundary
conditions, respectively:

Loy ay\> 1., an an\’
G=— (222 4 owe[14 (2220 ), 25
2<8x 8y> +2 + ox dy (25)

Y Y\ (9 9 an an\’
F:_W(l)__w’_w _77’_77 w1+ _771_’7 .
dx dy J\dx 3y dx Jy
(26)

Note that linear terms are not relaxed.
3.4. Dealiasing

In the HOS simulation, aliasing is inevitable since mul-
tiplication of periodic fields is performed in physical space
instead of spectral space [19] for the products in the free
surface boundary conditions, Eqs. (4) and (5), and for the
products in sequential system of equations for ¢ and W,
Egs. (14) and (15). In this work, dealiasing is performed by
extending the spectra using zero-padding [19]. Zero-padding

is a technique where the wave number space is extended to
the size of the physical mesh and the extended part of the
wave number space is set to zero. More details can be found
in Canuto et al. [19]. Number of modes that may be kept in
wave number space is determined using the half rule:

M+1
2

where Ng is the number of modes in wave number space,
while N is the number of physical mesh nodes. M is the
nonlinearity order used in the calculation. According to Eq.
(27), to maintain the same number of alias-free wave num-
bers Ng , for a high nonlinearity order M, larger physical
mesh N should be used. This causes the simulation to be
progressively slower with increasing order of nonlinearity M.

N =

Nz, 27

3.5. Coupling HOS and CFD

Decomposition model [7] based on SWENSE with implicit
relaxation zones and implicitly redistanced Level Set method
for interface capturing is used to achieve one way coupling of
HOS and CFD. HOS solution in terms of velocity and surface
elevation field is imposed into the CFD domain. The surface
elevation in any point in time and space is provided by direct
Fourier transform:

nx,yt) = Z Z CZ’l(t)eiKkix oK (28)
k I

The velocity field is not directly available, hence it is calcu-
lated from the velocity potential assuming the following shape
function:

g cosh (K@ +d)) o e
L2 1) = ! ‘
¢x,y, 2, 1) Xk:XI:C“( ) cosh(Ky ;d) ©

(29)

The velocity field is obtained by differentiating Eq. (29) in
three Cartesian directions:

B v ___cosh (Kk,l(Z, +d)) iKix iKjy
velx,y,z,t) = Zk: ZI: Ck,l(l)lKk cosh(Ky ;d) ¢ <

~ v . cosh (Kk,l(Z/“‘d)) iKex iKpy
vy(x,y,2,1) = Xk:;ck,z(l)ll(l cosh(K; ;d) e

_ " sinh (Kt (2 +d)) e iy

(30)

where 7 stands for the vertical coordinate modified using
Wheeler correction:

7 =qz+d(g—1), 3D
where g =d/(d + n(x, y, 1)).

3.6. Viscous flow model

Governing equations of the incompressible, viscous, two-
phase, and turbulent flow are shown in this section.
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Conservation of mass is described with the following equa-
tion:

V-u=0, (32)

where u stands for a velocity field in global coordinate sys-
tem. Equation of momentum conservation for a moving com-
putational grid reads:

aa—‘t'w-((u—umu) ~ V- (v, V) = —%Vpd, (33)
where uy, represents the relative grid motion velocity accord-
ing to the Space Conservation Law [20], v, is the effective
kinematic viscosity taking into account the fluid kinematic
viscosity and turbulent eddy viscosity, allowing general eddy
viscosity turbulence models. p is the density field, while pd
stands for dynamic pressure: p; = p — pg.Xx, where p stands
for total pressure, g is the gravitational acceleration, and x
is the radii vector. In the present numerical model, the Ghost
Fluid Method (GFM) is used to discretize free surface bound-
ary conditions in the CFD model [21]. The GFM method
takes into account the jump in density and pressure gradient
on the interface, removing the spurious air velocities near the
free surface. The reader is referred to Vukcevi¢ et al. [21] for
more details on the GFM method.

The Level Set method is used for interface capturing with
implicit redistancing [7]:

8_\]1 +V.-(c¥) -V bV - (V) —b\/—it h<l>
o - (ev) — -C— - ( = b= an| i ,
(34)

where W stands for the Level Set field, while b and € are nu-
merical parameters, diffusion coefficient and width parameter,
respectively. ¢ is the modified convective velocity. For further
details regarding viscous flow model the reader is referred to
Vukcevié et al. [7].

4. Validation of the implemented HOS method

Three test cases are performed to validate the implemented
HOS algorithm:

o Comparison of nonlinear monochromatic wave propaga-
tion with nonlinear analytical Stokes solution, following
Dommermuth [16].

o Comparison of irregular sea state propagation with viscous,
two-phase CFD study performed by Lupieri et al. [22].

A qualitative comparison of Benjamin—Feir (BF) instability
emergence with experimental results performed by Su et al.
[23] and Lake et al. [24], and a quantitative comparison
of induced BF instability emergence with analytic solution
obtained by Stiassnie and Shemer [25].

4.1. Monochromatic wave train validation
Long time evolution of a progressive monochromatic wave

train is conducted and compared with a nonlinear analytical
Stokes solution following Dommermuth [16]. Linear solution

Table 1

Comparison of HOS results and exact Stokes solution modal amplitudes.

Order Modal amplitude, m Relative error, %
Analytical solution HOS solution

1 9.9870520x 102 9.9870524x 1072 434%x107°

2 5.0594125%x1073 5.0594197x1073 1.43%x10~*

3 3.8584235%x10~* 3.8584342x10~* 2.78x10~*

4 3.4929691x 1073 3.4929838x 1075 420104

5 3.4769679x 1070 3.4769678x 1076 —3.26x 107

6 3.6763951x10~7 3.6763189%x 1077 —2.07x1073

7 4.0531740x10~8 4.0530830x10~8 —2.24x1073

8 4.6076934x 1079 4.6026818x 1077 —1.09x107!

is imposed as the initial condition from which a nonlinear
solution up to 8th order is obtained.

Dommermuth [16] presented a HOS simulation for a wave
with intermediate steepness Ka = 0.1, showing convergence
of modal amplitudes during the simulation. In this study, the
wave number is set to K = 1, giving the wave amplitude of
a = 0.1 m. Relaxation time is 7, = 87, where T is the wave
period, and the relaxation exponent is set to n, = 4.

The wave train is propagated using HOS during 100 pe-
riods, yielding 200 s of simulated time, which required 80 s
of CPU time on a single core of a Intel Core 15-3570K CPU
at 3.40 GHz.

Table 1 presents the comparison of HOS simulation modal
amplitudes with analytical solution in terms of relative errors
defined as:

€ = (Ckros — Cks)/CkHOS> (35)

where cgos is the kth modal amplitude from the HOS simula-
tion, while ¢;g is the kth modal amplitude from the analytical
Stokes solution. It can be seen that the relative errors are very
small, being only 4.34 x 107%% for the first order. Relative
error increases for higher orders; however it remains accept-
ably small: the largest being ~0.1% for 8th order with modal
amplitude of &~ 4.6 x 10~° m. Order-wise rate of convergence
over time is compared with the solution obtained by Dommer-
muth [16] in Fig. 2. The convergence rates agree well with
Dommermuth’s results, indicating consistent and valid imple-
mentation. It should be noted that order consistency proposed
by West et al. [13] is not used here since it produced inferior
results. Instead, the formulation developed by Dommermuth
and Yue [12] is employed for this particular test case.

4.2. Propagation of unidirectional wave spectrum

Lupieri et al. [22] presented a viscous, two-phase CFD
simulation of uniformly steep uni-directional spectra. Wave
components are focused to create a steep focused wave, and
changes in each spectrum are observed due to nonlinear and
viscous effects. Focusing technique [26] is used to obtain a
positive superposition of components at a desired location,
and the wave energy spectrum is calculated for various loca-
tions along the basin. In HOS, FFT is performed in the spatial
domain, i.e. spatial signal is transformed into wave number
space. Lupieri et al. performed FFT to transform a temporal
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wave elevation signal into frequency domain. Although it is
possible to perform a time spectral analysis of the wave ele-
vation signal in HOS, it is not possible to achieve the same
conditions of wave focusing. The reason for this is the time
relaxation needed by HOS to initialize the simulation using a
linear solution. As the relaxation time is several times longer
than the propagation time of waves from the wave maker
to the focusing location (used by Lupieri et al. [22]), HOS
results are converted to the frequency domain S,,(w) from
wavenumber spectrum S,,(K) using the dispersion relation.

Input spectra are constructed to have components with
equal individual wave steepness. Four steepnesses are used:
H;/x; =1/715,1/400,1/300 and 1/210. Components are
equidistantly spaced in the wavenumber space instead of
the frequency space. Fig. 3 depicts the input spectrum with
H;/x; =1/715.

For the first three cases with H;/A; = 1/715, 1/400, 1/300,
the spectra are calculated at + = 37 s while the focusing time
is Tr =35 s. In the case of the highest steepness H;/\; =
1/210, relaxation time needs to be prolonged to Ty = 80 s due

Table 2

HOS simulation parameters.

Hilx; 1/715 1/400 1/300 1/210
Ny 1024 1024 1024 2048
M 6 6 6 10
Ty, s 25 25 25 60
Ty, s 35 35 35 80

to higher nonlinearity of the spectrum, especially at focusing
time. The time of focusing is increased to Ty = 80 s. The
steeper the waves being simulated, the larger the difference
between linear and non-linear solution. Thus, steeper waves
demand higher relaxation time to permit stable development
of the non-linear solution [16].

HOS simulation parameters are summarized in Table 2 for
each test case. N, is the number of physical mesh points, M
is the order of nonlinearity, T, is the relaxation time, while T¢
is the focusing time. Following Eq. (27), number of alias-free
Fourier modes corresponds to 2N,/(M + 1). Length of the
domain used in all simulations is 72.3 m, which corresponds
to 18 wave lengths of the longest input wave. For the first
three cases, 1.3 s of CPU time per one second of simulated
time is required, while the last case took 5 s of CPU time
per second on a single core of Intel Core i5-3570K CPU at
3.40 GHz. Results are shown in Figs. 4-7.

Results shows good agreement in all test cases compar-
ing with viscous results. Magnitude of the highest spec-
trum peak corresponding to w=3.2 rad/s is well predicted
in all test cases. Furthermore, the rightmost smaller peak
at w=~8 rad/s is well presented. In the case of highest
steepness H;/A; = 1/210 two peaks are present at the right-
most of the spectrum (6 <w <8 rad/s), and both are well
predicted in HOS calculation. For the first two cases with
milder steepness, shape of the spectrum in the mid fre-
quency range (4 <w <6 rad/s) agrees well with the viscous
results. According to Lupieri et al. [22], the lower frequency
peaks (0 <w <2 rad/s) in Figs. 4(a)-7(a) correspond to sec-
ond sloshing mode of the CFD basin used in their simula-
tion. These peaks are not present in HOS simulation due to
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unbounded periodic wave propagation. The cases for steep-
ness H;/A; = 1/300 and 1/210 correspond to wave breaking
events at the focusing time, causing larger discrepancies in
the mid frequency range (4 < < 6 rad/s), which increase for
larger steepness. HOS method is not able to capture wave
braking events since n is a single valued function. When 7
has more than one solution (multi-valued function), the fail-
ure of convergence is caused by spurious high wave number
components, which are truncated via filtering. In Figs. 4(b)—
7(b), it can be seen that the frequency range is truncated at
approximately 11 rad/s. This truncation enables HOS simu-
lation to continue beyond the breaking event, causing energy
loss. This is shown in Fig. 8, where computed energy over

0.005
0.004
i»_ 0.003
0.002

0.001

, rad/s

(b)

time is compared with the initial energy of the linear spec-
trum. This energy loss is present in the viscous study as well,
however it is caused mainly by viscous dissipation in wave
breaking mechanism. As expected, cases that correspond to
wave braking events show larger energy loss after the focus-
ing time.

4.3. Development of Benjamin—Feir instabilities

In their study, Benjamin and Feir [17] discovered an insta-
bility that occurs in monochromatic wave train. The instabil-
ity was confirmed by numerous experiments, Feir [27] being
the first. As shown by McLean et al. [28] and McLean [29],
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there are two main types of instabilities in wave trains. Type I
is the Benjamin—Feir instability, which occurs for waves of
steepness Ka < 0.38, while type II occurs for Ka > 0.4. Only
Benjamin—Feir instabilities will be considered in this section,
which manifest as the emergence of nonlinear side bands
whose amplitudes grow exponentially once they emerge. Side
bands emerge near the carrier frequency and near higher or-
der modes. The growth is initialized by an initial disturbance
which is always present in nature and in numerical simulation
(due to numerical errors), or it can be imposed. The growth of
nonlinear sidebands occurring in HOS simulation is compared
with theory and experiment.

First, a qualitative comparison is performed where the nat-
ural growth is observed, i.e. there is no imposed initial dis-
turbance. Wave parameters used in the simulation and the

HOS parameters are given in Table 3. HOS simulation is ini-
tialized using a linear solution. Simulation required ~2 s of
CPU time per one second of simulated time on a single core
of Intel Core i5-3570K CPU at 3.40 GHz.

Time evolution of nonlinear side-bands in frequency do-
main is given in Fig. 9, and the dispersion relation is used
to transform from the wave number to the frequency domain.
Time domain Fourier analysis is difficult in HOS simulation
since the occurrence of Benjamin—Feir instabilities is tran-
sient in time, and cannot be captured accurately by perform-
ing Fourier transform on the time elevation signal. The non-
linearities in HOS simulation evolve in time in the whole
spatial domain, while in the experiment, nonlinearities evolve
with waves propagating in space. A probe measuring eleva-
tion over time in the experiment will always be exposed to the
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Table 3

Wave and HOS simulation parameters.

Ka K, rad/m T, s Ta, s ng M Ny
0.25 16.1 0.5 5 4 8 1024

same level of nonlinearity, since it is always equally distanced
from the wave maker. This allows a time Fourier transform
which produces spectrum in the frequency domain. Fig. 10(a)
and (b) presents spectra for the corresponding wave steepness
from the experimental studies of Su et al. [23] and Lake et al.
[24], respectively.

According to Benjamin and Feir [17], the strongest in-
stability growth is for 6 = Ka where § = Af/f. Af is the
frequency separation of the carrier frequency f and the fre-
quencies of the higher and lower nonlinear side bands. It can
be seen in Fig. 9 that the frequencies of the nonlinear side
bands near the carrier frequency are approximately 9.7 and
14.8 rad/s. The carrier frequency is w = 12.56 rad/s which
gives Aw = 3.14 rad/s. The frequencies of the fastest grow-
ing side bands are expected to be 9.4 and 15.7 rad/s, which is
close to the obtained values. Part of the difference is caused
by the use of linear dispersion relation.

A quantitative comparison is performed for a case where
the initial instabilities are imposed. Following Stiassnie and
Shemer [25] the initial solution comprises carrier Airy wave
with kA = 0.13 and two sidebands harmonics with amplitudes
10% of the carrier wave, with £22% wavenumber separation
in respect to the carrier wave. Following Dommermuth and
Yue [12] the carrier wavenumber is set to K. = 9 rad/m to al-
low integral wavenumbers of sidebands; for the subharmonic
K_ =7 rad/m and for the superharmonic K; = 11 rad/m. In
HOS simulation the order of nonlinearity is set to M = 4,
while the number of grid points is N = 128. Time relaxation
and order consistency are not used.

Time histories of the three harmonics obtained with HOS
and by Stiassnie and Shemer are presented in Fig. 11, where
n/no is the wave amplitude normalised by carrier wave ampli-
tude, and #/T is the time scaled with carrier wave period. It

can be seen that evolution of individual harmonics agrees well
with the analytical solution. HOS simulation predicts the first
minimum of the carrier mode near #~ 807, while the analyt-
ical solution predicts t~607. However, the distance between
carrier mode minima is &~ 85T for both HOS simulation and
the analytical solution. It can be concluded that there is a
delay in the nonlinearity development at the beginning of the
simulation, but the time scale of nonlinear behaviour is well
predicted.

5. Validation of coupling HOS and CFD

The coupling between HOS and CFD described in Sec-
tion 3.6 is validated on a three hour irregular wave propa-
gation. The validation is performed by comparing the wave
energy spectrum obtained from HOS with the spectrum ob-
tained in CFD measured at the same location. HOS simula-
tion is initialised using JOSWAP spectrum with H; = 17 m,
T,=155 s and y =2.6. In the HOS simulation, M =3
is used, N, = 2048, and domain length is L, = 60, 000 m.
Two-dimensional CFD simulation is carried out with domain
2160 m long, 100 m deep and 40 m high (above the calm
free surface). Near the free surface the cells have the size of
0.5 x 0.5 m, while the grid counts 136,800 cells. Fixed time
step of At =0.31 s is used which corresponds to 50 time-
steps per peak period of the spectrum. Inlet relaxation zone is
700 m long, while the outlet is 1000 m long, leaving 460 m
of unaffected CFD domain. Long relaxation zones are neces-
sary in order to prevent the reflection of the longest waves
that can occur in the sea state, and to prevent standing waves
corresponding to the natural frequency of the numerical wave
tank. Given the small depth of the domain, the velocity field
from HOS solution is imposed to the bottom boundary in
order to mimic the rest of the fluid below the level of the
bottom boundary. Fig. 12 shows the volume fraction field re-
constructed from the level set variable in one time instant.
The free surface is well preserved with very little smearing.
The waves propagate from left to right.

As in the experimental wave basin test, the initial linear
spectrum needs to be calibrated in order to obtain the imposed
JONSWAP spectrum in the HOS realisation. Calibration of
the initial HOS condition is performed by running at least ten
three hour realisations of the target spectrum, and acquiring
the average correction factors for the initial linear spectrum.
In Fig. 13 the target spectrum is compared to the spectrum
obtained before and after calibration.

The calibration coefficients are applied to the linear JON-
SWAP spectrum with random phase shifts used to initialise
the HOS simulation coupled to the CFD simulation. Fig. 14
shows the comparison of wave energy spectrum obtained from
the HOS simulation, and the spectrum measured in the cor-
responding CFD simulation. The damping of spectral wave
energy is minimal, and the spectrum shape corresponds well.
The agreement is better for lower frequencies, while higher
frequencies (w > 0.6 rad/s) exhibit larger relative damping,
which is caused by smaller spatial and temporal resolution
relative to wave component height, length and period. In
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Table 4
Quantitative comparison of wave energy spectrum obtained with HOS and
CFD.

Hsa m TI” S
HOS 17.12 12.76
CFD 16.13 13.11

Table 4 the two spectra are compared quantitatively, where
H, and T, are compared. The significant wave height cor-
responds quite well, where damping in CFD results in 1 m
smaller height corresponding to 5.8% difference. For the peak
period the difference is smaller, being less than 2%. Note that
the peak period differs significantly with respect to the the-
oretical value of 15.5 s. This is caused by the fact that the
spectrum used in HOS is truncated for stability reasons, hence
the theoretical expression for the peak period calculation de-
rived based on the wave elevation distribution is not valid,
however it enables a quantitative comparison.

6. CFD simulation of a 3D extreme wave encountering a
full scale container ship

In this section a simulation of a 3D extreme wave en-
countering a freely floating full-scale container ship is pre-
sented. The hull form parameters of the KRISO Container
Ship (KCS) are available at the Tokyo Workshop on CFD in
Ship Hydrodynamics [30].

Unstructured grid with 1.2 million cells is used, mostly
composed out of hexahedral cells (~83%), the rest being
polyhedral cells. At the hull surface, the grid is aligned with
the hull surface with boundary layer refinement. The transition
from the boundary layer cells to the surrounding background
orthogonal grid is accomplished with polyhedral cells. Sec-
ond order backward scheme is used for temporal discretisation
in the momentum equation, while implicit first order upwind
scheme is used for convection with second order, upwind bi-
ased deferred correction. Second order scheme with explicit
limited non-orthogonal correction is used for the discretisa-
tion of the Laplace operator for the diffusion term in the mo-
mentum equation and the pressure. No turbulence modelling
is used in this case since the ship has zero initial velocity,
hence adverse pressure gradients can be expected near the
hull in the wave field, rendering conventional eddy viscosity
turbulence models non-valid.

A 3D extreme wave is obtained using HOS, where the
HOS simulation is initialized using a linear directional spec-
trum. Directional spreading is modelled using the following
expression [31]:

A(n)cos"6 for 0] <m/2,

0 for 10| > 7 /2, (36)

D) = {
where A(n) is the normalisation coefficient, 6 is the domi-
nant wave propagation direction, and n is the arbitrary di-
rectionality parameter. As the initial condition for HOS sim-
ulation, JONSWAP spectrum is used with significant wave
height H; = 10.5 m, peak period 7, = 9.5 s, and direction-
ality constant n = 8. Dominant wave propagation direction is
set to 6 = 25° with respect to longitudinal ship axis. Extreme
wave occurred after ~ 567, with wave height H = 21.91 m,
as it can be seen on Fig. 15 at approximately x = 900 m and
y =200 m.

30 s of simulation took 132 h of CPU time on a Intel
Core i7-4820K CPU at 3.70 GHz. Fig. 16 sequentially shows
the encounter of the extreme wave on the KCS. At time
zero, CFD simulation is initialized with the HOS solution
corresponding to time Tpos = 526 s. HOS simulation is then
ran alongside the CFD simulation to produce the necessary
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Fig. 15. Free surface elevation with freak wave event, t = 532 s.
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Fig. 16. Three-dimensional freak wave encountering a full scale KCS. (The colour legend in this figure corresponds to Fig. 15).

blending results at the required time instances. At CFD sim-
ulation time 7 = 5.8 s the extreme wave encounters the bow
of the container ship, while the green water event can be seen
after the impact at T = 7.8 s. Fig. 17 shows the translational
motion of the ship’s centre of gravity during the simulation. It
can be noticed that sway motion is greater than surge motion,
due to the angle of dominant wave propagation direction. On
Fig. 18 the rotation of the ship is shown, where significant
roll angle can be seen.

Unfortunately, neither experimental nor numerical data are
available for comparison today.

7. Summary

In this paper a framework for efficient irregular wave sim-
ulation using HOS and CFD coupling is presented. HOS is a

pseudo-spectral, potential flow method for solving nonlinear
free surface boundary conditions. It is primarily used to prop-
agate arbitrary wave energy spectra, taking into account non-
linear wave-to-wave interaction and wave modulation. Among
other applications, HOS can be used for low CPU cost ex-
treme wave initialization for fully non-linear CFD simulations
of wave impact and wave breaking.

The accuracy and validity of the implemented HOS model
is assessed with three validation test cases. In the first test
case, HOS solution of a propagating monochromatic wave
train is considered, where modal amplitudes up to 8th order
compare well with the analytical Stokes solution. The com-
parison verifies that given a linear initial condition, HOS can
evolve the nonlinear solution accurately. Rate of convergence
is also compared and shows good agreement with results ob-
tained by Dommermuth [16].
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Fig. 17. Translational motion of the ship’s centre of gravity during the ex-
treme wave impact.
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Fig. 18. Rotational motion of the ship around the centre of gravity during
the extreme wave impact.

The second test case presents the propagation of four dif-
ferent uniformly steep, uni-directional input spectra where the
solutions are compared with the viscous study performed by
Lupieri et al. [22]. Results show good agreement, especially
for wave spectra with smaller steepness.

The final validation case simulates the occurrence of
Benjamin-Feir type instability in a propagating monochro-
matic wave train. Benjamin-Feir instability produced by HOS
method agrees well with experimental and theoretical studies.

In order to test the precision of the HOS—CFD coupling,
energy wave spectra obtained in HOS and corresponding CFD
simulation is compared. The two spectra correspond well, in-
dicating minor damping of wave energy.

Finally, an example CFD simulation is shown where the
coupling of HOS and CFD is used to simulate a 3D direc-

tional extreme wave encountering a full-scale, freely floating
container ship.

In future efforts the presented coupling will be utilised in
order to calculate extreme response of naval objects such as
green water, slamming and motion.
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