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Abstract 

In this paper a framework for efficient irregular wave simulations using Higher Order Spectral method coupled with fully nonlinear 
viscous, two-phase Computational Fluid Dynamics (CFD) model is presented. CFD model is based on solution decomposition via Spectral 
Wave Explicit Navier–Stokes Equation method, allowing efficient coupling with arbitrary potential flow solutions. Higher Order Spectrum is 
a pseudo-spectral, potential flow method for solving nonlinear free surface boundary conditions up to an arbitrary order of nonlinearity. It 
is capable of efficient long time nonlinear propagation of arbitrary input wave spectra, which can be used to obtain realistic extreme waves. 
To facilitate the coupling strategy, Higher Order Spectrum method is implemented in foam-extend alongside the CFD model. Validation of 
the Higher Order Spectrum method is performed on three test cases including monochromatic and irregular wave fields. Additionally, the 
coupling between Higher Order Spectrum and CFD is validated on three hour irregular wave propagation. Finally, a simulation of a 3D 

extreme wave encountering a full scale container ship is shown. 
© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

With increased availability of CPU resources during past
ew decades, Computational Fluid Dynamics (CFD) is becom-
ng a standard practice for simulation of transient free-surface
aves. CFD methods that model fully-nonlinear, two-phase,
iscous flow exhibit high computational costs, which prohibit
ong time wave evolution in a large domain. This disadvantage
s partially overcome using domain decomposition strategies,
here the flow in a small, relevant part of the domain is re-

olved using CFD, while the farfield flow is resolved using
otential flow, a computationally cheaper model. Given the
otential flow solution, the CFD simulation naturally develops
onlinear, viscous flow with vorticity effects. First decompo-
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ition method was developed by Van Dalsem and Steger [1] ,
alled Fortified Navier–Stokes (FNS) method. Van Dalsem
nd Steger used the decomposition to ‘fortify’ the solution of
ubset equations in the boundary layer, while solving ordinary
avier–Stokes in the rest of the domain. Jacobsen et al. [2] in-

roduced a domain decomposition method for wave modelling
sing relaxation zones. Paulsen et al. [3] used one-way cou-
ling between fully nonlinear potential flow solver (developed
y Ensig-Karup et al. [4] ) and fully nonlinear viscous CFD
olver to investigate wave loads on a circular surface piercing
ylinder. The same method was used to calculate steep reg-
lar wave loads on a bottom mounted cylinder [5] . Pistidda
nd Ottens [6] used the Euler Overlay Method for domain
ecomposition to calculate the Response Amplitude Operator
RAO) for a moonpool of a deep water construction vessel. 

Vuk ̌cevi ́c and Jasak [7] developed a modified Spectral
ave Explicit Navier–Stokes Equation (SWENSE) [8–10] so-

ution decomposition method which is used alongside domain
ecomposition. The solution is decomposed into incident and
 is an open access article under the CC BY-NC-ND license. 
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diffracted fields, where the incident field is obtained from the
potential flow model, while the diffracted field is solved via
two-phase, viscous CFD model. All of the above mentioned
CFD methods are computationally expensive because they are
modelling highly resolved spatial flow features with nonlinear
and coupled equations in time domain. Hence, they cannot be
used to perform a large number of long time irregular wave
field propagations needed to obtain a naturally emerging ex-
treme wave. 

Extreme wave loads are gaining more attention due to in-
creasing number of offshore objects being installed world-
wide. Extreme waves emerge due to focusing of wave spec-
trum components, which is influenced by nonlinear wave
modulation and wave-to-wave interaction. It is considered that
the influence of wind and atmospheric pressure, bathymetry
and current [11] also plays a role in extreme wave generation.
Apart from the focusing of unidirectional spectrum, geomet-
ric focusing of directional spectrum can also cause extreme
wave events. 

Assessment of extreme wave loads demands accurate wave
modelling. Since extreme waves occur randomly in an irreg-
ular sea state, in order to obtain a statistically and physically
accurate extreme wave, irregular sea state needs to be evolved
for a long time on a large domain. Moreover, the evolution
of the irregular sea state has to take into account nonlin-
ear effects of wave interaction and modulation. CFD takes
into account all nonlinearities of the flow, and inherently the
nonlinearities of wave-to-wave interaction and wave modula-
tion. However, even with domain decomposition methods, it is
challenging to propagate arbitrary wave field for a sufficient
amount of time to observe a natural emergence of extreme
waves. Apart from that, long time CFD simulation might ac-
cumulate discretization errors which will inevitably influence
the wave field. To obtain a realistic extreme wave in an ir-
regular sea state, as much as a thousand peak periods need
to be simulated. Paulsen et al. [3] reported that one irregu-
lar wave peak period took 8 hours to compute on 10 CPU’s,
extrapolating to almost a year for 1000 peak periods, which
might be necessary to obtain a realistic extreme wave. 

Nonlinear wave field can be efficiently propagated using
spectral potential flow approach. In this work, potential flow
pseudo-spectral Higher Order Spectral (HOS) method is used.
Nonlinearities of wave-to-wave interaction and wave modu-
lation are taken into account, while viscous effects, vorticity,
wave breaking, diffraction and radiation are neglected. Since
the latter effects have minor influence on extreme wave emer-
gence, HOS method can be used to perform a long time evo-
lution of an irregular wave field on a large-scale domain to
obtain a statistically and physically consistent extreme wave.
HOS can then be coupled with CFD in a small spatial domain
containing the extreme wave, and for a short period of time
to capture viscous effects, wave breaking and fluid–structure
interaction. In this work one-way coupling between HOS and
CFD is achieved using the decomposition model [7] . 

HOS method was first developed by Dommermuth and Yue
[12] and West et al. [13] independently. West et al. used order
consistent Taylor and perturbation series expansion, which is
dopted by most HOS algorithms today [14,15] . Since the
ublication of the original method in 1987, numerous au-
hors continued its development. Ducrozet et al. [15] enhanced
umerical efficiency and aliasing treatment, while Tanaka
14] combined HOS with complex amplitude function. Dom-
ermuth [16] developed a time relaxation scheme which en-

bles HOS calculation to be initialized with a linear solution.
his is of crucial importance since wave energy spectra are
efined for linear wave components. 

In this paper a mathematical overview of the HOS method
s given, followed by a detailed description of numerical pro-
edure. The CFD model and coupling with potential flow by
uk ̌cevi ́c and Jasak [7] is used. Three test cases are consid-
red for HOS validation purposes. The first case considers
onochromatic wave train propagation, where modal ampli-

udes are compared with analytical Stokes solution. Second
est case considers propagation of four uniformly steep spec-
ra, where the HOS solution is compared to viscous, two-
hase CFD solution. Third test case shows naturally occurring
enjamin–Feir instabilities [17] . In addition to the validation
f the implemented HOS model, the coupling between HOS
nd CFD using SWENSE is also validated on a three hour ir-
egular wave propagation case. Finally, an example simulation
f a 3D extreme wave encountering a full scale container ship
s shown. According to ITTC guidelines, the present method
pplied on this case presents a fully-nonlinear seakeeping cal-
ulation. 

. Mathematical model 

In this section mathematical model for the HOS method is
utlined; the reader is referred to [12–15] for more details. 

Pseudo-spectral HOS method is used to reformulate non-
inear partial differential equation set via perturbation, Taylor
nd Fourier series into a set of ordinary differential equations.

.1. Governing equations 

In this model, free-surface flow is assumed irrotational,
nviscid and incompressible. Surface gravity wave propagation
s described with the following governing equations: 

• Laplace equation for incompressible, irrotational, inviscid
flow: 

∇ 

2 φ(x, y, z, t ) = 0, (1)

where φ is the velocity potential, while x, y, z are spatial
coordinates and t is time. 

• Dynamic free surface boundary condition: 

∂φ

∂t 
+ gz + 

1 

2 

( ∇φ) 2 = 0, (2)

where g is the gravitational acceleration in the direction of
negative z axis. 

• Kinematic free surface boundary condition: 

∂η

∂t 
+ 

(
∂φ

∂x 
, 
∂φ

∂y 

)
·
(

∂η

∂x 
, 
∂η

∂y 

)
= 

∂φ

∂z 
, (3)
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where η = η(x, y, t ) is a single valued function of the free
surface displacement. 

epth is considered uniform and the bottom impermeable,
hile the domain is assumed periodic in the horizontal direc-

ions [15] . 
Eqs. (2) and (3) can be rewritten in terms of surface po-

ential ψ(x, y, t ) = φ(x, y, η(x, y, t ) , t ) , as they are valid for
 = η(x, y, t ) : 

∂ψ 

∂t 
+ gη + 

1 

2 

(
∂ψ 

∂x 
, 
∂ψ 

∂y 

)2 

− 1 

2 

( 

∂φ

∂z 

∣∣∣∣
z= η

) 2 ( 

1 + 

(
∂η

∂x 
, 
∂η

∂y 

)2 
) 

= 0, (4) 

∂η

∂t 
+ 

(
∂ψ 

∂x 
, 
∂ψ 

∂y 

)
·
(

∂η

∂x 
, 
∂η

∂y 

)

− ∂φ

∂z 

∣∣∣∣
z= η

( 

1 + 

(
∂η

∂x 
, 
∂η

∂y 

)2 
) 

= 0. (5) 

.2. Higher Order Spectral method 

A pseudo-spectral, HOS method has been used to obtain a
onlinear solution of free surface boundary conditions, Eqs.
4) and (5) . All spatial derivatives are evaluated in wave num-
er space, while time derivatives are evolved in physical space
nstead of the frequency domain. The shape function for ve-
ocity potential used in the wave number space is: 

(x, y, z, t ) = 

∑ 

k 

∑ 

l 

c k,l (t ) 
cosh 

(
K k,l ( z + d ) 

)
cosh (K k,l d ) 

e iK k x e iK l y , (6)

here c k,l ( t ) are the time-dependent Fourier coefficients, while
 k,l , K k and K l are wave numbers defined as: 

 k = 

2πk 

L x 
, (7) 

 l = 

2π l 

L y 
, (8) 

 k,l = 

√ 

K 

2 
k + K 

2 
l . (9) 

Fourier series decomposition given by Eq. (6) allows us to
alculate horizontal derivatives analytically, whereas vertical 
erivative needs special treatment as it represents vertical ve-
ocity of the free surface W , at the unknown wave elevation
. Hence, it is necessary to use the full form of the shape
unction given by Eq. (6) , calculate its derivative it in z di-
ection, and evaluate it at the exact free surface location. This
resents a Dirichlet problem for the velocity potential φ on
 boundary of complicated shape η( x, y, t ). In order to cir-
umvent this difficulty, the surface potential is expanded in a
aylor series around z = 0 in terms of η: 

(x, y, η, t ) = ψ(x, y, t ) = 

∞ ∑ 

i=0 

ηi 

i! 

∂ i 

∂z i 
φ(x, y, 0, t ) . (10)
he vertical derivative of surface potential is: 

 (x, y, t ) = 

∂φ

∂z 

∣∣∣∣
z= η

= 

∞ ∑ 

i=0 

ηi 

i! 

∂ i+1 

∂z i+1 
φ(x, y, 0, t ) . (11)

o keep the solution up to an arbitrary order of nonlinearity,
he potential is expanded in perturbation series in terms of
ave slope ε = K a, where K is the wave number and a is

he wave amplitude: 

(x, y, z, t ) = φ1 + εφ2 + ε2 φ3 + · · · = 

M ∑ 

m=1 

φ(m) , (12)

here M is the perturbation series order of nonlinearity. With
very order of φ expanded in a Taylor series using Eq. (10) ,
urface potential can be written as: 

(x, y, t ) = 

M ∑ 

m=1 

M−m ∑ 

i=0 

ηi 

i! 

∂ i 

∂z i 
φ(m) (x, y, 0, t ) . (13)

he orders of nonlinearities are determined with respect to
he product of ηi and ∂ i φ( m ) / ∂z i , and the second sum in Eq.
13) is truncated at M − m to account for order consistency.
he unknowns in Eq. (13) are the individual orders of
elocity potential φ( m ) , which are calculated sequentially by
quating the terms of the same order: 
(1) = ψ(x, y, t ) , 

(2) = −η
∂ 

∂z 
φ(1) , 

 

 

 

(m) = −
m−1 ∑ 

i=1 

ηi 

i! 

∂ i 

∂z i 
φ(m−i) ; m = 2, 3 . . . , M. (14) 

nce the individual orders of φ are obtained, vertical velocity
 can be evaluated. Vertical velocity of the free surface is

lso expanded in a perturbation series, while the individual
rders are calculated using orders of φ as follows: 

 

(m) = 

m−1 ∑ 

i=0 

ηi 

i! 

∂ (i+1) 

∂z (i+1) 
φ(m−i) ; m = 1 , 2, . . . , M. (15) 

otal vertical velocity is then obtained by summing all
ndividual orders: 

 (x, y, t ) = 

M ∑ 

m=1 

W 

(m) . (16)

In theory, the order of nonlinearity M at which the ex-
ansion is truncated is arbitrary. The main advantage of this
pproach is that no iterations are needed per time step to re-
olve the coupling of the boundary conditions. Furthermore,
ourier transform facilitates the calculation of spatial deriva-

ives, accelerating the numerical procedure. 

. Numerical model 

The Fast Fourier Transform (FFT) algorithm is used for
fficient calculation of the Fourier transform, while the fifth-
rder Cash–Karp embedded Runge–Kutta scheme with error
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control and adjustable time-step size [18] is used to solve or-
dinary differential equations. In this section, emphasis is given
on numerical procedure and initialisation of HOS calculation.
Dealiasing, time integration and coupling with CFD are also
briefly explained. 

3.1. Numerical procedure 

The numerical procedure starts with a discrete surface po-
tential ψ and surface elevation η which are obtained from the
previous time step or initial conditions. The discrete values are
located on a uniform discrete mesh with nodes equidistantly
spaced along the domain’s length L x and width L y . Hence,
the mesh is fully defined with a number of nodes N x in x and
N y in y direction, yielding mesh resolution �x = L x /N X and
�y = L y /N y . Using Eq. (6) , the vertical derivative of velocity
potential can generally be written as: 

∂ j φ

∂z j 
= 

∂ j 

∂z j 

( ∑ 

k 

∑ 

l 

c k,l (t ) 
cosh 

(
K k,l ( z + d ) 

)
cosh (K k,l d ) 

e iK k x e iK l y 
) 

= 

∑ 

k 

∑ 

l 

c k,l (t ) K 

j 
k,l 

sinh 

(
K k,l ( z + d ) 

)
cosh (K k,l d ) 

e iK k x e iK l y . (17)

While calculating individual terms of a given order in
Eq. (14) , the spatial derivatives are calculated in wave num-
ber space. After evaluating each order φ( m ) in physical space,
it is transformed via FFT into wave number space. This is
required in order to efficiently calculate vertical derivative
of φ( m ) , used in calculation of φ(m+1) . Once the individual
derivatives are calculated, they are inversely transformed back
into physical space before multiplying with a corresponding
power of η. In the following equations, Fourier transform of
a discrete field f is denoted with F ( f ) , and the inverse trans-
form is denoted with F 

−1 ( f ) . Eq. (14) can be written as: 

φ(1) = ψ(x n , t ) , 

φ(m) = −
m−1 ∑ 

j=1 

η j 

j! 
F 

−1 

{ ∑ 

k 

∑ 

l 

c (m− j) 
k,l (t ) K 

j 
k,l e 

iK k x e iK l y 
} 

;

m = 2, 3 , . . . , M, (18)

where c (m− j) 
k,l (t ) is the Fourier coefficient of order m − j of

the k, l th Fourier mode. It is calculated by performing FFT
on preceding orders of φ on a discrete spatial mesh: 

c (m− j) 
k,l (t ) = F 

{
φ(m− j) (x, y, t ) 

}
. (19)

Once all the orders of φ are evaluated, orders of vertical
velocity W are calculated using Eq. (15) : 

W 

(1) = F 

−1 

{ ∑ 

k 

∑ 

l 

c (1) 

k,l (t ) K k,l e 
iK k x e iK l y 

} 

, 

 

(m) = 

m−1 ∑ 

j=0 

η j 

j! 
F 

−1 

{ ∑ 

k 

∑ 

l 

c (m− j) 
k,l (t ) K 

( j+1) 

k,l e iK k x e iK l y 
} 

;

m = 1 , 2, . . . , M. (20)

The inverse Fourier transforms occurring in Eq. (20) are
already calculated in Eq. (18) , except for the last order of
ertical velocity W 

( M ) , for which the inverse Fourier transform
as to be calculated separately. The inverse Fourier transforms
alculated in Eq. (18) are hence stored for efficiency. 

Once φ, η and W are known, we proceed by evaluating
he coupling terms in Eqs. (4) and (5) . Spatial horizontal
erivatives are calculated in the wave number space, hence
he surface elevation displacement η (available on discrete
patial mesh) has to be transformed via FFT. When all the
erivatives are calculated, they are transformed back to the
hysical space and multiplied. Time marching boundary con-
ition equations, Eqs. (4) and (5) can finally be written as: 

∂ψ(x, y, t ) 

∂t 
= −g η(x, y, t ) 

−1 

2 

( 

F 

−1 

{ ∑ 

k 

∑ 

l 

c ψ 

k,l (t ) iK k,l e 
iK k x e iK l y 

} ) 2 

+ 

1 

2 

W 

2 

⎛ 

⎝ 1 + 

( 

F 

−1 

{ ∑ 

k 

∑ 

l 

c ηk,l (t ) iK k,l e 
iK k x e iK l y 

} ) 2 
⎞ 

⎠ , (21)

∂η(x, y, t ) 

∂t 
= W 

⎛ 

⎝ 1 + 

( 

F 

−1 

{ ∑ 

k 

∑ 

l 

c ηk,l (t ) iK k,l e 
iK k x e iK l y 

} ) 2 
⎞
⎠

−F 

−1 

{ ∑ 

k 

∑ 

l 

c ψ 

k,l (t ) iK k,l e 
iK k x e iK l y 

} 

×F 

−1 

{ ∑ 

k 

∑ 

l 

c ηk,l (t ) iK k,l e 
iK k x e iK l y 

} 

, (22)

here c ψ 

k,l (t ) and c ηk,l (t ) are the Fourier coefficients obtained
y performing a Fourier transform on discrete values of ψ 

nd η, respectively. Fig. 1 shows the flow chart of the HOS
ethod during one time step. 

.2. Time integration 

Time integration of Eqs. (21) and (22) is performed with
he fifth-order Cash–Karp embedded Runge–Kutta scheme
ith error control and adjustable time-step size. For more de-

ails on time integration the reader is referred to Press et al.
18] . 

.3. Initialization of the wave field in a HOS simulation 

In order to initialize a HOS simulation, discrete values
f ψ(x, y, t = 0) and η(x, y, t = 0) are needed. Initialization
f HOS simulation is not trivial since linear initial condi-
ions generally do not satisfy the free surface boundary con-
itions. As shown by Dommermuth [16] , initializing the sim-
lation with a linear solution leads to unstable simulation,
ince nonlinearities do not have the time to develop before
he emergence of spurious high frequency standing waves.
ommermuth developed a time relaxation scheme to avoid

his problem, enabling initialisation of HOS simulation with
 linear solution. This adjustment scheme smooths out the
atural emergence of nonlinear terms over time by relaxing
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Fig. 1. Flow chart of the HOS algorithm. 
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p  
he nonlinear RHS terms in free surface boundary conditions,
qs. (4) and (5) : 

∂ψ 

∂t 
+ gη = G 

(
1 − e 

−
(

t 
T a 

)n )
, (23) 

∂η

∂t 
− W 

(1) = F 

(
1 − e 

−
(

t 
T a 

)n )
, (24) 

here T a is the relaxation time, and n is the relaxation expo-
ent. According to Dommermuth [16] , time relaxation period
 a should be at least as long as the period of the longest
ave that can occur in the simulation. G and F are the non-

inear parts of dynamic and kinematic free surface boundary
onditions, respectively: 

 = −1 

2 

(
∂ψ 

∂x 
, 
∂ψ 

∂y 

)2 

+ 

1 

2 

W 

2 

( 

1 + 

(
∂η

∂x 
, 
∂η

∂y 

)2 
) 

, (25)

 = −W 

(1) −
(
∂ψ 

∂x 
, 
∂ψ 

∂y 

)(
∂η

∂x 
, 
∂η

∂y 

)
+ W 

( 

1 + 

(
∂η

∂x 
, 
∂η

∂y 

)2 
) 

. 

(26) 

ote that linear terms are not relaxed. 

.4. Dealiasing 

In the HOS simulation, aliasing is inevitable since mul-
iplication of periodic fields is performed in physical space
nstead of spectral space [19] for the products in the free
urface boundary conditions, Eqs. (4) and (5) , and for the
roducts in sequential system of equations for φ and W ,
qs. (14) and (15) . In this work, dealiasing is performed by
xtending the spectra using zero-padding [19] . Zero-padding
s a technique where the wave number space is extended to
he size of the physical mesh and the extended part of the
ave number space is set to zero. More details can be found

n Canuto et al. [19] . Number of modes that may be kept in
ave number space is determined using the half rule: 

 = 

M + 1 

2 

N F 

, (27) 

here N F 

is the number of modes in wave number space,
hile N is the number of physical mesh nodes. M is the
onlinearity order used in the calculation. According to Eq.
27) , to maintain the same number of alias-free wave num-
ers N F 

, for a high nonlinearity order M , larger physical
esh N should be used. This causes the simulation to be

rogressively slower with increasing order of nonlinearity M .

.5. Coupling HOS and CFD 

Decomposition model [7] based on SWENSE with implicit
elaxation zones and implicitly redistanced Level Set method
or interface capturing is used to achieve one way coupling of
OS and CFD. HOS solution in terms of velocity and surface

levation field is imposed into the CFD domain. The surface
levation in any point in time and space is provided by direct
ourier transform: 

(x, y, t ) = 

∑ 

k 

∑ 

l 

c ηk,l (t ) e 
iK k ix e iK l y . (28) 

he velocity field is not directly available, hence it is calcu-
ated from the velocity potential assuming the following shape
unction: 

(x, y, z, t ) = 

∑ 

k 

∑ 

l 

c ψ 

k,l (t ) 
cosh 

(
K k,l ( z + d ) 

)
cosh (K k,l d ) 

e iK k x e iK l y . 

(29) 

he velocity field is obtained by differentiating Eq. (29) in
hree Cartesian directions: 

 x (x, y, z, t ) = 

∑ 

k 

∑ 

l 

c ψ 

k,l (t ) iK k 
cosh 

(
K k,l 

(
z ′ + d 

))
cosh (K k,l d ) 

e iK k x e iK l y , 

 y (x, y, z, t ) = 

∑ 

k 

∑ 

l 

c ψ 

k,l (t ) iK l 
cosh 

(
K k,l 

(
z ′ + d 

))
cosh (K k,l d ) 

e iK k x e iK l y , 

v z (x, y, z, t ) = 

∑ 

k 

∑ 

l 

c ψ 

k,l (t ) K k,l 
sinh 

(
K k,l 

(
z ′ + d 

))
cosh (K k,l d ) 

e iK k x e iK l y , 

(30) 

here z ′ stands for the vertical coordinate modified using
heeler correction: 

 

′ = qz + d(q − 1) , (31)

here q = d/ ( d + η(x, y, t ) ) . 

.6. Viscous flow model 

Governing equations of the incompressible, viscous, two-
hase, and turbulent flow are shown in this section.
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Table 1 
Comparison of HOS results and exact Stokes solution modal amplitudes. 

Order Modal amplitude, m Relative error, % 

Analytical solution HOS solution 

1 9.9870520 ×10 −2 9.9870524 ×10 −2 4.34 ×10 −6 

2 5.0594125 ×10 −3 5.0594197 ×10 −3 1.43 ×10 −4 

3 3.8584235 ×10 −4 3.8584342 ×10 −4 2.78 ×10 −4 

4 3.4929691 ×10 −5 3.4929838 ×10 −5 4.20 ×10 −4 

5 3.4769679 ×10 −6 3.4769678 ×10 −6 −3 . 26 × 10 −6 

6 3.6763951 ×10 −7 3.6763189 ×10 −7 −2.07 ×10 −3 

7 4.0531740 ×10 −8 4.0530830 ×10 −8 −2.24 ×10 −3 

8 4.6076934 ×10 −9 4.6026818 ×10 −9 −1.09 ×10 −1 
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Conservation of mass is described with the following equa-
tion: 

∇ · u = 0, (32)

where u stands for a velocity field in global coordinate sys-
tem. Equation of momentum conservation for a moving com-
putational grid reads: 

∂u 

∂t 
+ ∇ · ( ( u − u M 

) u ) − ∇ · ( νe ∇u ) = − 1 

ρ
∇ p d , (33)

where u M 

represents the relative grid motion velocity accord-
ing to the Space Conservation Law [20] , νe is the effective
kinematic viscosity taking into account the fluid kinematic
viscosity and turbulent eddy viscosity, allowing general eddy
viscosity turbulence models. ρ is the density field, while pd
stands for dynamic pressure: p d = p − ρg •x, where p stands
for total pressure, g is the gravitational acceleration, and x
is the radii vector. In the present numerical model, the Ghost
Fluid Method (GFM) is used to discretize free surface bound-
ary conditions in the CFD model [21] . The GFM method
takes into account the jump in density and pressure gradient
on the interface, removing the spurious air velocities near the
free surface. The reader is referred to Vuk ̌cevi ́c et al. [21] for
more details on the GFM method. 

The Level Set method is used for interface capturing with
implicit redistancing [7] : 

∂�

∂t 
+ ∇ · (c�) − �∇ · c − b∇ · ( ∇ �) = b 

√ 

2 

ε
tanh 

(
�

ε
√ 

2 

)
,

(34)

where � stands for the Level Set field, while b and ε are nu-
merical parameters, diffusion coefficient and width parameter,
respectively. c is the modified convective velocity. For further
details regarding viscous flow model the reader is referred to
Vuk ̌cevi ́c et al. [7] . 

4. Validation of the implemented HOS method 

Three test cases are performed to validate the implemented
HOS algorithm: 

• Comparison of nonlinear monochromatic wave propaga-
tion with nonlinear analytical Stokes solution, following
Dommermuth [16] . 

• Comparison of irregular sea state propagation with viscous,
two-phase CFD study performed by Lupieri et al. [22] . 

• A qualitative comparison of Benjamin–Feir (BF) instability
emergence with experimental results performed by Su et al.
[23] and Lake et al. [24] , and a quantitative comparison
of induced BF instability emergence with analytic solution
obtained by Stiassnie and Shemer [25] . 

4.1. Monochromatic wave train validation 

Long time evolution of a progressive monochromatic wave
train is conducted and compared with a nonlinear analytical
Stokes solution following Dommermuth [16] . Linear solution
s imposed as the initial condition from which a nonlinear
olution up to 8th order is obtained. 

Dommermuth [16] presented a HOS simulation for a wave
ith intermediate steepness K a = 0. 1 , showing convergence
f modal amplitudes during the simulation. In this study, the
ave number is set to K = 1 , giving the wave amplitude of
 = 0. 1 m. Relaxation time is T a = 8 T , where T is the wave
eriod, and the relaxation exponent is set to n a = 4. 

The wave train is propagated using HOS during 100 pe-
iods, yielding 200 s of simulated time, which required 80 s
f CPU time on a single core of a Intel Core i5-3570K CPU
t 3.40 GHz. 

Table 1 presents the comparison of HOS simulation modal
mplitudes with analytical solution in terms of relative errors
efined as: 

= ( c kHOS − c kS ) /c kHOS , (35)

here c kHOS is the k th modal amplitude from the HOS simula-
ion, while c kS is the k th modal amplitude from the analytical
tokes solution. It can be seen that the relative errors are very
mall, being only 4. 34 × 10 

−6 % for the first order. Relative
rror increases for higher orders; however it remains accept-
bly small: the largest being ≈0.1% for 8th order with modal
mplitude of ≈ 4. 6 × 10 

−9 m. Order-wise rate of convergence
ver time is compared with the solution obtained by Dommer-
uth [16] in Fig. 2 . The convergence rates agree well with
ommermuth’s results, indicating consistent and valid imple-
entation. It should be noted that order consistency proposed

y West et al. [13] is not used here since it produced inferior
esults. Instead, the formulation developed by Dommermuth
nd Yue [12] is employed for this particular test case. 

.2. Propagation of unidirectional wave spectrum 

Lupieri et al. [22] presented a viscous, two-phase CFD
imulation of uniformly steep uni-directional spectra. Wave
omponents are focused to create a steep focused wave, and
hanges in each spectrum are observed due to nonlinear and
iscous effects. Focusing technique [26] is used to obtain a
ositive superposition of components at a desired location,
nd the wave energy spectrum is calculated for various loca-
ions along the basin. In HOS, FFT is performed in the spatial
omain, i.e. spatial signal is transformed into wave number
pace. Lupieri et al. performed FFT to transform a temporal
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Fig. 2. Convergence rate of modal amplitudes, (a) Dommermuth [16] , (b) 
present HOS result. 
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Fig. 3. Input spectrum for steepness H i /λi = 1 / 715 . 

Table 2 
HOS simulation parameters. 

H i / λi 1/715 1/400 1/300 1/210 

N x 1024 1024 1024 2048 
M 6 6 6 10 
T a , s 25 25 25 60 
T f , s 35 35 35 80 
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ave elevation signal into frequency domain. Although it is
ossible to perform a time spectral analysis of the wave ele-
ation signal in HOS, it is not possible to achieve the same
onditions of wave focusing. The reason for this is the time
elaxation needed by HOS to initialize the simulation using a
inear solution. As the relaxation time is several times longer
han the propagation time of waves from the wave maker
o the focusing location (used by Lupieri et al. [22] ), HOS
esults are converted to the frequency domain S ηη( ω) from
avenumber spectrum S ηη( K ) using the dispersion relation. 
Input spectra are constructed to have components with

qual individual wave steepness. Four steepnesses are used:
 i /λi = 1 / 715 , 1 / 400, 1 / 300 and 1/210. Components are

quidistantly spaced in the wavenumber space instead of
he frequency space. Fig. 3 depicts the input spectrum with
 i /λi = 1 / 715 . 

For the first three cases with H i /λi = 1 / 715 , 1 / 400, 1 / 300,

he spectra are calculated at t = 37 s while the focusing time
s T f = 35 s. In the case of the highest steepness H i /λi =
 / 210, relaxation time needs to be prolonged to T f = 80 s due
o higher nonlinearity of the spectrum, especially at focusing
ime. The time of focusing is increased to T f = 80 s. The
teeper the waves being simulated, the larger the difference
etween linear and non-linear solution. Thus, steeper waves
emand higher relaxation time to permit stable development
f the non-linear solution [16] . 

HOS simulation parameters are summarized in Table 2 for
ach test case. N x is the number of physical mesh points, M
s the order of nonlinearity, T a is the relaxation time, while T f 

s the focusing time. Following Eq. (27) , number of alias-free
ourier modes corresponds to 2 N x / (M + 1) . Length of the
omain used in all simulations is 72.3 m, which corresponds
o 18 wave lengths of the longest input wave. For the first
hree cases, 1.3 s of CPU time per one second of simulated
ime is required, while the last case took 5 s of CPU time
er second on a single core of Intel Core i5-3570K CPU at
.40 GHz. Results are shown in Figs. 4–7 . 

Results shows good agreement in all test cases compar-
ng with viscous results. Magnitude of the highest spec-
rum peak corresponding to ω ≈3.2 rad/s is well predicted
n all test cases. Furthermore, the rightmost smaller peak
t ω ≈8 rad/s is well presented. In the case of highest
teepness H i /λi = 1 / 210 two peaks are present at the right-
ost of the spectrum (6 < ω < 8 rad/s), and both are well

redicted in HOS calculation. For the first two cases with
ilder steepness, shape of the spectrum in the mid fre-

uency range (4 < ω < 6 rad/s) agrees well with the viscous
esults. According to Lupieri et al. [22] , the lower frequency
eaks (0 < ω < 2 rad/s) in Figs. 4 (a)–7 (a) correspond to sec-
nd sloshing mode of the CFD basin used in their simula-
ion. These peaks are not present in HOS simulation due to
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Fig. 4. Spectrum comparison for H i /λi = 1 / 715 , t = 37 s, ( a ) Lupieri et al. [22] , ( b ) present result. 

Fig. 5. Spectrum comparison for H i /λi = 1 / 400, t = 37 s, ( a ) Lupieri et al. [22] , ( b ) present result. 
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unbounded periodic wave propagation. The cases for steep-
ness H i /λi = 1 / 300 and 1/210 correspond to wave breaking
events at the focusing time, causing larger discrepancies in
the mid frequency range (4 < ω < 6 rad/s), which increase for
larger steepness. HOS method is not able to capture wave
braking events since η is a single valued function. When η

has more than one solution (multi-valued function), the fail-
ure of convergence is caused by spurious high wave number
components, which are truncated via filtering. In Figs. 4 (b)–
7 (b), it can be seen that the frequency range is truncated at
approximately 11 rad/s. This truncation enables HOS simu-
lation to continue beyond the breaking event, causing energy
loss. This is shown in Fig. 8 , where computed energy over
ime is compared with the initial energy of the linear spec-
rum. This energy loss is present in the viscous study as well,
owever it is caused mainly by viscous dissipation in wave
reaking mechanism. As expected, cases that correspond to
ave braking events show larger energy loss after the focus-

ng time. 

.3. Development of Benjamin–Feir instabilities 

In their study, Benjamin and Feir [17] discovered an insta-
ility that occurs in monochromatic wave train. The instabil-
ty was confirmed by numerous experiments, Feir [27] being
he first. As shown by McLean et al. [28] and McLean [29] ,
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Fig. 6. Spectrum comparison for H i /λi = 1 / 300, t = 37 s, ( a ) Lupieri et al. [22] , ( b ) present result. 

Fig. 7. Spectrum comparison for H i /λi = 1 / 210, t = 84 s, ( a ) Lupieri et al. [22] , ( b ) present result. 
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here are two main types of instabilities in wave trains. Type I
s the Benjamin–Feir instability, which occurs for waves of
teepness Ka < 0.38, while type II occurs for Ka > 0.4. Only
enjamin–Feir instabilities will be considered in this section,
hich manifest as the emergence of nonlinear side bands
hose amplitudes grow exponentially once they emerge. Side
ands emerge near the carrier frequency and near higher or-
er modes. The growth is initialized by an initial disturbance
hich is always present in nature and in numerical simulation

due to numerical errors), or it can be imposed. The growth of
onlinear sidebands occurring in HOS simulation is compared
ith theory and experiment. 
First, a qualitative comparison is performed where the nat-

ral growth is observed, i.e. there is no imposed initial dis-
urbance. Wave parameters used in the simulation and the
OS parameters are given in Table 3 . HOS simulation is ini-
ialized using a linear solution. Simulation required ≈2 s of
PU time per one second of simulated time on a single core
f Intel Core i5-3570K CPU at 3.40 GHz. 

Time evolution of nonlinear side-bands in frequency do-
ain is given in Fig. 9 , and the dispersion relation is used

o transform from the wave number to the frequency domain.
ime domain Fourier analysis is difficult in HOS simulation
ince the occurrence of Benjamin–Feir instabilities is tran-
ient in time, and cannot be captured accurately by perform-
ng Fourier transform on the time elevation signal. The non-
inearities in HOS simulation evolve in time in the whole
patial domain, while in the experiment, nonlinearities evolve
ith waves propagating in space. A probe measuring eleva-

ion over time in the experiment will always be exposed to the
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Fig. 8. Spectral energy computed in space during simulated time window. 

Table 3 
Wave and HOS simulation parameters. 

Ka K , rad/m T , s T a , s n a M N x 

0.25 16.1 0.5 5 4 8 1024 
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same level of nonlinearity, since it is always equally distanced
from the wave maker. This allows a time Fourier transform
which produces spectrum in the frequency domain. Fig. 10 (a)
and (b) presents spectra for the corresponding wave steepness
from the experimental studies of Su et al. [23] and Lake et al.
[24] , respectively. 

According to Benjamin and Feir [17] , the strongest in-
stability growth is for δ = K a where δ = � f / f . �f is the
frequency separation of the carrier frequency f and the fre-
quencies of the higher and lower nonlinear side bands. It can
be seen in Fig. 9 that the frequencies of the nonlinear side
bands near the carrier frequency are approximately 9.7 and
14.8 rad/s. The carrier frequency is ω = 12. 56 rad/s which
gives �ω = 3 . 14 rad/s. The frequencies of the fastest grow-
ing side bands are expected to be 9.4 and 15.7 rad/s, which is
close to the obtained values. Part of the difference is caused
by the use of linear dispersion relation. 

A quantitative comparison is performed for a case where
the initial instabilities are imposed. Following Stiassnie and
Shemer [25] the initial solution comprises carrier Airy wave
with kA = 0. 13 and two sidebands harmonics with amplitudes
10% of the carrier wave, with ±22% wavenumber separation
in respect to the carrier wave. Following Dommermuth and
Yue [12] the carrier wavenumber is set to K c = 9 rad/m to al-
low integral wavenumbers of sidebands; for the subharmonic
K − = 7 rad/m and for the superharmonic K + 

= 11 rad/m. In
HOS simulation the order of nonlinearity is set to M = 4,

while the number of grid points is N = 128 . Time relaxation
and order consistency are not used. 

Time histories of the three harmonics obtained with HOS
and by Stiassnie and Shemer are presented in Fig. 11 , where
η/ η0 is the wave amplitude normalised by carrier wave ampli-
tude, and t / T 0 is the time scaled with carrier wave period. It
an be seen that evolution of individual harmonics agrees well
ith the analytical solution. HOS simulation predicts the first
inimum of the carrier mode near t ≈80 T , while the analyt-

cal solution predicts t ≈60 T . However, the distance between
arrier mode minima is ≈85 T for both HOS simulation and
he analytical solution. It can be concluded that there is a
elay in the nonlinearity development at the beginning of the
imulation, but the time scale of nonlinear behaviour is well
redicted. 

. Validation of coupling HOS and CFD 

The coupling between HOS and CFD described in Sec-
ion 3.6 is validated on a three hour irregular wave propa-
ation. The validation is performed by comparing the wave
nergy spectrum obtained from HOS with the spectrum ob-
ained in CFD measured at the same location. HOS simula-
ion is initialised using JOSWAP spectrum with H s = 17 m,
 p = 15 . 5 s and γ = 2. 6 . In the HOS simulation, M = 3
s used, N x = 2048 , and domain length is L x = 60, 000 m.
wo-dimensional CFD simulation is carried out with domain
160 m long, 100 m deep and 40 m high (above the calm
ree surface). Near the free surface the cells have the size of
.5 × 0.5 m, while the grid counts 136,800 cells. Fixed time
tep of �t = 0. 31 s is used which corresponds to 50 time-
teps per peak period of the spectrum. Inlet relaxation zone is
00 m long, while the outlet is 1000 m long, leaving 460 m
f unaffected CFD domain. Long relaxation zones are neces-
ary in order to prevent the reflection of the longest waves
hat can occur in the sea state, and to prevent standing waves
orresponding to the natural frequency of the numerical wave
ank. Given the small depth of the domain, the velocity field
rom HOS solution is imposed to the bottom boundary in
rder to mimic the rest of the fluid below the level of the
ottom boundary. Fig. 12 shows the volume fraction field re-
onstructed from the level set variable in one time instant.
he free surface is well preserved with very little smearing.
he waves propagate from left to right. 

As in the experimental wave basin test, the initial linear
pectrum needs to be calibrated in order to obtain the imposed
ONSWAP spectrum in the HOS realisation. Calibration of
he initial HOS condition is performed by running at least ten
hree hour realisations of the target spectrum, and acquiring
he average correction factors for the initial linear spectrum.
n Fig. 13 the target spectrum is compared to the spectrum
btained before and after calibration. 

The calibration coefficients are applied to the linear JON-
WAP spectrum with random phase shifts used to initialise

he HOS simulation coupled to the CFD simulation. Fig. 14
hows the comparison of wave energy spectrum obtained from
he HOS simulation, and the spectrum measured in the cor-
esponding CFD simulation. The damping of spectral wave
nergy is minimal, and the spectrum shape corresponds well.
he agreement is better for lower frequencies, while higher

requencies ( ω > 0.6 rad/s) exhibit larger relative damping,
hich is caused by smaller spatial and temporal resolution

elative to wave component height, length and period. In
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Fig. 9. Development of nonlinear side bands in HOS simulation. 
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Fig. 10. Experimental nonlinear side bands development, (a) Su et al. [23] , (b) Lake et al. [24] . 

Fig. 11. Time histories of the carrier, subharmonic and superharmonic wave amplitudes, ( a ) analytic solution by Stiassnie and Shemer [25] , ( b ) present result. 
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Fig. 12. Snapshot from the irregular wave propagation CFD simulation. 

Fig. 13. Comparison of wave energy spectrum obtained with HOS before 
and after calibration. 

Fig. 14. Comparison of wave energy spectrum obtained with HOS and CFD. 

Table 4 
Quantitative comparison of wave energy spectrum obtained with HOS and 
CFD. 

H s , m T p , s 

HOS 17.12 12.76 
CFD 16.13 13.11 
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able 4 the two spectra are compared quantitatively, where
 s and T p are compared. The significant wave height cor-

esponds quite well, where damping in CFD results in 1 m
maller height corresponding to 5.8% difference. For the peak
eriod the difference is smaller, being less than 2%. Note that
he peak period differs significantly with respect to the the-
retical value of 15.5 s. This is caused by the fact that the
pectrum used in HOS is truncated for stability reasons, hence
he theoretical expression for the peak period calculation de-
ived based on the wave elevation distribution is not valid,
owever it enables a quantitative comparison. 
. CFD simulation of a 3D extreme wave encountering a 

ull scale container ship 

In this section a simulation of a 3D extreme wave en-
ountering a freely floating full-scale container ship is pre-
ented. The hull form parameters of the KRISO Container
hip (KCS) are available at the Tokyo Workshop on CFD in
hip Hydrodynamics [30] . 

Unstructured grid with 1.2 million cells is used, mostly
omposed out of hexahedral cells ( ≈83%), the rest being
olyhedral cells. At the hull surface, the grid is aligned with
he hull surface with boundary layer refinement. The transition
rom the boundary layer cells to the surrounding background
rthogonal grid is accomplished with polyhedral cells. Sec-
nd order backward scheme is used for temporal discretisation
n the momentum equation, while implicit first order upwind
cheme is used for convection with second order, upwind bi-
sed deferred correction. Second order scheme with explicit
imited non-orthogonal correction is used for the discretisa-
ion of the Laplace operator for the diffusion term in the mo-
entum equation and the pressure. No turbulence modelling

s used in this case since the ship has zero initial velocity,
ence adverse pressure gradients can be expected near the
ull in the wave field, rendering conventional eddy viscosity
urbulence models non-valid. 

A 3D extreme wave is obtained using HOS, where the
OS simulation is initialized using a linear directional spec-

rum. Directional spreading is modelled using the following
xpression [31] : 

(θ ) = 

{
A (n) cos n θ for | θ | ≤ π/ 2, 

0 for | θ | > π/ 2, 
(36) 

here A ( n ) is the normalisation coefficient, θ is the domi-
ant wave propagation direction, and n is the arbitrary di-
ectionality parameter. As the initial condition for HOS sim-
lation, JONSWAP spectrum is used with significant wave
eight H s = 10. 5 m, peak period T p = 9 . 5 s, and direction-
lity constant n = 8 . Dominant wave propagation direction is
et to θ = 25 

◦ with respect to longitudinal ship axis. Extreme
ave occurred after ≈56 T p with wave height H = 21 . 91 m,

s it can be seen on Fig. 15 at approximately x = 900 m and
 = 200 m. 

30 s of simulation took 132 h of CPU time on a Intel
ore i7-4820K CPU at 3.70 GHz. Fig. 16 sequentially shows

he encounter of the extreme wave on the KCS. At time
ero, CFD simulation is initialized with the HOS solution
orresponding to time T HOS = 526 s. HOS simulation is then
an alongside the CFD simulation to produce the necessary
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Fig. 15. Free surface elevation with freak wave event, t = 532 s. 

Fig. 16. Three-dimensional freak wave encountering a full scale KCS. (The colour legend in this figure corresponds to Fig. 15 ). 

 

 

 

 

 

 

 

 

 

 

 

p  

f  

a  

l  

o  

t  

o
 

i  

c  

t  

c  

p  

e  

i  

t

blending results at the required time instances. At CFD sim-
ulation time T = 5 . 8 s the extreme wave encounters the bow
of the container ship, while the green water event can be seen
after the impact at T = 7 . 8 s. Fig. 17 shows the translational
motion of the ship’s centre of gravity during the simulation. It
can be noticed that sway motion is greater than surge motion,
due to the angle of dominant wave propagation direction. On
Fig. 18 the rotation of the ship is shown, where significant
roll angle can be seen. 

Unfortunately, neither experimental nor numerical data are
available for comparison today. 

7. Summary 

In this paper a framework for efficient irregular wave sim-
ulation using HOS and CFD coupling is presented. HOS is a
seudo-spectral, potential flow method for solving nonlinear
ree surface boundary conditions. It is primarily used to prop-
gate arbitrary wave energy spectra, taking into account non-
inear wave-to-wave interaction and wave modulation. Among
ther applications, HOS can be used for low CPU cost ex-
reme wave initialization for fully non-linear CFD simulations
f wave impact and wave breaking. 

The accuracy and validity of the implemented HOS model
s assessed with three validation test cases. In the first test
ase, HOS solution of a propagating monochromatic wave
rain is considered, where modal amplitudes up to 8th order
ompare well with the analytical Stokes solution. The com-
arison verifies that given a linear initial condition, HOS can
volve the nonlinear solution accurately. Rate of convergence
s also compared and shows good agreement with results ob-
ained by Dommermuth [16] . 
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Fig. 17. Translational motion of the ship’s centre of gravity during the ex- 
treme wave impact. 

Fig. 18. Rotational motion of the ship around the centre of gravity during 
the extreme wave impact. 
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The second test case presents the propagation of four dif-
erent uniformly steep, uni-directional input spectra where the
olutions are compared with the viscous study performed by
upieri et al. [22] . Results show good agreement, especially

or wave spectra with smaller steepness. 
The final validation case simulates the occurrence of

enjamin–Feir type instability in a propagating monochro-
atic wave train. Benjamin-Feir instability produced by HOS
ethod agrees well with experimental and theoretical studies.
In order to test the precision of the HOS–CFD coupling,

nergy wave spectra obtained in HOS and corresponding CFD
imulation is compared. The two spectra correspond well, in-
icating minor damping of wave energy. 

Finally, an example CFD simulation is shown where the
oupling of HOS and CFD is used to simulate a 3D direc-
ional extreme wave encountering a full-scale, freely floating
ontainer ship. 

In future efforts the presented coupling will be utilised in
rder to calculate extreme response of naval objects such as
reen water, slamming and motion. 
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