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Abstract: In Fluid Structure Interaction (FSI) problems encoun-
tered in marine hydrodynamics, the pressure field and the velocity
of the rigid body are tightly coupled. This coupling is traditionally
resolved in a partitioned manner by solving the rigid body motion
equations once per nonlinear correction loop, updating the position
of the body and solving the fluid flow equations in the new configura-
tion. The partitioned approach requires a large number of nonlinear
iteration loops per time–step. In order to enhance the coupling, a
monolithic approach is proposed in Finite Volume (FV) framework,
where the pressure equation and the rigid body motion equations are
solved in a single linear system. The coupling is resolved by solving
the rigid body motion equations once per linear solver iteration
of the pressure equation, where updated pressure field is used to
calculate new forces acting on the body, and by introducing the
updated rigid body boundary velocity in to the pressure equation. In
this paper the monolithic coupling is validated on a simple 2D heave
decay case. Additionally, the method is compared to the traditional
partitioned approach (i.e. “strongly coupled” approach) in terms of
computational efficiency and accuracy. The comparison is performed
on a seakeeping case in regular head waves, and it shows that the
monolithic approach achieves similar accuracy with fewer nonlinear
correctors per time–step. Hence, significant savings in computational
time can be achieved while retaining the same level of accuracy.
Keywords: monolithic coupling, pressure equation, rigid body
motion, computational fluid dynamics, marine hydrodynamics,
seakeeping
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1 Introduction
In computational marine hydrodynamics, the problems

including Fluid Structure Interaction (FSI) involving floating
bodies are often encountered. Furthermore, elasticity of the
body can be neglected in most applications, modelling only
six degrees of freedom for the rigid body motion. In majority
of cases, the problem includes a body at the free surface,
forced into motion by wave forces or initial non–equilibrium
of mass and displaced volume. In either case, the oscillatory
motion of the floating body is primarily a result of interplay
of pressure forces acting on the body, and the gravitational
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force. Since the fluid is incompressible, the pressure field
is sensitive to the change in the body velocity. For this
reason, this paper focuses on the coupling of the pressure
equation and rigid body motion equations. The coupling is
performed monolithically, where the pressure equation and
rigid body motion equations are solved simultaneously. The
development is performed in Naval Hydro software pack
based on foam–extend open–source software.

Monolithic solution strategy is well documented in the
literature for FSI involving deformable bodies, where the
fluid and the structure are modelled within the same spatial
discretisation framework (Hachem et al., 2013; Legay et al.,
2011), or on separate grids (Farah et al., 2016; Hu et al.,
2016). Finite Element Method is mostly used to discretise the
structure and fluid flow equations (Bna et al., 2013; Farah
et al., 2016; Hachem et al., 2013; Heil et al., 2008; Jog and
Pal, 2011; Langer and Yang, 2016; Legay et al., 2011; Yang
et al., 2016), while FV is used in some publications (Eken
and Sahin, 2016; Hu et al., 2016). Some authors state that
the monolithic FSI model with a discretised structure can
calculate rigid body dynamics as a special case. Hachem
et al. (2013) state that the rigid body can be modelled by
imposing special conditions to the Navier–Stokes equations
for the stencils inside the structure. Legay et al. (2011) and
Robinson-Mosher et al. (2011) show that rigid body can
be simulated within the presented model by substituting the
structural system of equations with the rigid body motion
equations.

The publications mentioned above discretise the structure
in order to provide a general framework for deforming bodies.
In case of rigid bodies, the discretisation of the body volume
would present an unnecessary overhead. Integrating the rigid
body motion equations only requires information of mass,
angular inertia of the body, and relative position of the centre
of gravity, which are constant.

The novelty of this work is in the monolithic approach
to the pressure–rigid body motion coupling within the FV
framework where the body is represented as a boundary of
the fluid domain, while the volume inside the body is not
discretised. The approach offers a more resolved solution
of the coupling comparing to the widely used partitioned
approach (Orihara and Miyata, 2003; Castiglione et al., 2011;
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Wu et al., 2011; Simonsen et al., 2013; Vukčević and Jasak,
2015a; Simonsen et al., 2013; Tezdogan et al., 2015; Miyata
et al., 2014), enabling a reduction of the number of nonlinear
iterations per time–step. In the present approach, the pressure
field and the solid body motion equations are coupled at the
level of linear solver step of the pressure equation. After each
linear solver iteration, the updated pressure field is used to
calculate forces acting on the rigid body, which are in turn
used to repeatedly integrate the solid body motion equations.
The updated velocity of the solid body is then injected in
the right hand side of the pressure equation as the change of
volumetric flux at the body boundary.

The paper is organized as follows. First, the numerical
model is presented, comprising the discretisation of the
coupling of the pressure equation and the rigid body motion
equations, followed by details regarding the linear solver and
the Aitkens relaxation method. Next, validation of the present
approach is performed on a 2D heave decay test case by
comparing with the well established partitioned approach.
In the fourth section the two methods are compared on a
seakeeping case in regular head waves. Finally, an overview
of results and conclusion are given.

2 Numerical model
In this section the mathematical and numerical formulation

of the monolithic coupling of the pressure equation and rigid
body motion equation is described.

The momentum equation or incompressible, two phase
flow states (Vukčević et al., 2016a):

∂u

∂t
+ ∇ ·((u − uM ) u) − ∇ ·(νe∇u) = −

1
ρ
∇pd (1)

where u stands for the velocity field, while uM is the relative
grid motion velocity accounting for the Space Conservation
Law (Demirdžić and Perić, 1988). νe stands for the effective
kinematic viscosity, ρ is the density, while pd stands for
the dynamic pressure: pd = p − ρg ·x, where g denotes the
gravitational constant, while x represents the radii vector.

The pressure equation is derived from the mass
conservation law, which can be written in the following form
for incompressible flow:

∇ ·u = 0 (2)

The change of the boundary velocity δub of the rigid body
can be accounted for explicitly in the continuity equation as:

∇ ·u + ∇ ·(δub) = 0 (3)

The discretisation of Eq. (2) in the integral FV framework will
be omitted for brevity, the reader is directed to Jasak (1996)
for details. The discretisation of Eq. (2) yields the pressure
equation, which can be written in the form:∑

f

s f ·

(
1

aP

)
f

(
∇pd

ρ

)
f

=
∑
f

s f ·
(H(uN )) f

(aP) f
(4)

where f denotes the face index, s f stands for the surface area
vector: s f = s f n, where s f stands for the area of the face,
while n denotes the face unit normal vector. aP is the diagonal
coefficient from the discretised momentum equation, Eq. (1)
(Jasak, 1996). H is a linear operator stemming from the
discretisation of the momentum equation, which is a function
of explicit neighbouring cell velocities uN . The discretisation
of the divergence of change of the boundary velocity in
integral form states:∫

V

∇ ·(δub)dV =
∮
S

n ·δubdS =
∑
f

s f ·δub f (5)

where the Gauss’s theorem is employed to transform the
volume integral into a surface integral. The final discretised
form of the pressure equation monolithically coupled with the
rigid body motion states:∑

f

s f ·

(
1

aP

)
f

(
∇pd

ρ

)
f

=

∑
f

s f ·
(H(uN )) f

(aP) f
−

∑
f

s f ·δub f

(6)

The last term on the right hand side of Eq. (6) provides the
coupling between the pressure equation and the rigid body
motion. Note that mathematically, ub f presents a velocity
field defined at face centres, with non–zero values only where
only for faces at the rigid body boundary.

To obtain the change of velocity δub , rigid body motion
equations are integrated:

∂v

∂t
= F/m

∂ω

∂t
= I−1

· (M − ω × (I ·ω))

(7)

where v denotes the translational velocity of the centre of
mass, F is the total exerted force on the body, while m stands
for the mass of the body. ω is the rotational velocity, I is
the tensor of inertia, while M stands for the external moment
acting on the body. The force and moment acting on the body
are calculated as the sum of pressure and viscous forces:

F =
∑
b f

sb f pb f + Fv

M =
∑
b f

rb f × sb f pb f + Mv

(8)

where the summation is carried out on boundary faces
denoted with index b f , while Fv and Mv denote the viscous
portion of the force and moment, respectively. The pressure
at the boundary face pb f is calculated from the dynamic
pressure as: pb f = pd,b f + ρg ·xb f . Hence, it represents the
cross coupling term with the pressure equation, Eq. (6). The
change of the boundary velocity δub f is finally calculated as
the change of the translational and rotational velocity of the
boundary face b f in the two adjacent linear solver iterations:

δun
b f = vn − vn−1 + (ωn − ωn−1) × xb f (9)
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where n denotes the linear solver iteration, while xb f denotes
the radii vector of the boundary face.

Eq. (6) to Eq. (9) present a closed system regarding
the pressure–rigid body motion coupling. At linear solver
iteration level the following algorithm is employed to conduct
the coupling:

1) Initialize δub f to zero,
2) Perform one iteration of the linear solver for the

dynamic pressure equation, Eq. (6),
3) Update the dynamic pressure pd ,
4) Calculate the new forces and moments, Eq. (8), while

keeping the viscous portion of the force constant,
5) Integrate the rigid body motion equations, Eq. (7),
6) Calculate the change of the boundary velocity, Eq. (9).
7) Go to next linear solver iteration,
8) Repeat 2) to 7) until convergence.

A flow chart of the nonlinear corrector used in this work is
shown on Fig. 1. Note that multiple pressure corrections are
performed in one nonlinear corrector.

In the two phase flow solver, Ghost Fluid Method is
used (Vukčević, 2016) to impose the free surface boundary
conditions in the FV framework, while Spectral Wave
Explicit Navier Stokes Equations (SWENSE) (Vukčević et
al., 2016a) is used to imposed the wave field in the CFD
domain.

2.1 Linear solver and rigid body motion integration
In this work the discretised pressure equation is solved

using a preconditioned Conjugate Gradient (Saad, 2003)
method for sparse linear systems. Cholesky factorisation is
used as a preconditioner.

Integration of rigid body motion equations is performed
using Fifth-order Cash-Karp embedded Runge-Kutta scheme
with error control and adjustive time-step size (Press et al.,
2002).

2.2 Aitkens relaxation
In order to stabilise the calculation of the rigid body

motion, Aitken’s adaptive relaxation (Irons and Tuck, 1969)
is employed. Since the solution of the pressure can vary
dramatically in the first several iterations of the linear solver,
the coupling with the rigid body motion equations can be
unstable. In order to circumvent the instability, a dynamic
relaxation is needed to exert heavy relaxation at the beginning
of the linear solution process, and gradually increase the
relaxation factor as the pressure solution starts to converge.

Using Aitken’s algorithm, the acceleration of translational
and rotational motion is relaxed. Here, the algorithm will
be presented only for translational acceleration a for brevity.
Acceleration ak of the kth iteration is obtained using the
relaxation factor ωk :

ak = (1 − ωk ) ãk + ωk ak−1 (10)

where tilde denotes the calculated value. The relaxation factor
is calculated based on the information from the previous

Start the nonlinear iteration loop

Solve body motion
equations, Eq. (7),

update boundary position

Convect the
free surface

Solve u

Solve pd: Eq. (4) for partitioned
approach; Eq. (6) to Eq. (9)

for monolithic approach

Update u explicitly

Pressure
converged?

Solve turbulence

Nonlinear
corrector

converged?

Advance
time–step

Yes

No

(NpCorr)

Yes
No

(NnCorr)

Fig. 1 Flow chart of the nonlinear corrector

iterations:

ωk = ωk−1 + (ωk−1 − 1)
(∆ak−1 − ∆ak ) ·∆ak

(∆ak−1 − ∆ak )
2 (11)

where ∆ak = ak−1 − ak , while ∆ak−1 = ak−2 − ak−1.

3 Heaving barge test case
In this section the novel monolithic coupling of the

pressure equation and rigid body motion is validated on
2D heave decay case of a barge. The results are compared
with the partitioned approach, where the rigid body motion
equations are updated once per nonlinear correction loop.

The 2D floating barge is set above the hydrostatic
equilibrium position by 0.01 m at time zero to produce a
heave decay motion. The mass of the barge is 0.32 kg,
with height of 0.12 m, width of 0.2 m, and draught of
0.08 m. 32 160 cells are used for both the monolithic and
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Fig. 2 Comparison of the force signal and heave motion for
the 2D heave decay case

partitioned simulation, while a fixed time step of 0.001 42 s
is set corresponding to ≈ 400 time–steps per natural period
of oscillation. The number of time–steps per period of
oscillation is selected based on the authors experience, which
can be found in Vukčević et al. (2016). The same number
of nonlinear correctors is used per time–step, as well as
the number of pressure corrections per nonlinear loop in
every simulation. Eight nonlinear correctors per time–step
and four pressure correctors per each nonlinear loop are
used. The domain is 2 meters wide, 0.5 meters deep beneath
the free surface and 0.5 meters high above the free surface.
The computational grid is rigidly moving together with
the moving body. Fixed zero value boundary condition for
velocity is prescribed on the side boundaries and bottom,
while a mixed fixed value and zero gradient boundary
condition is placed at the top boundary. For pressure, zero
gradient is placed on sides and bottom, while fixed value is
set on the top boundary. For the VOF field, zero gradient
boundary condition is placed on all boundaries.

For discretisation of the temporal term in the momentum
equation backward second order scheme is used, while
implicit upwind scheme with deferred second order
correction is used for the convection term. The diffusion
term in momentum equation, and the pressure equation are
discretised using second order accurate scheme with explicit
non–orthogonal correction. Same discretisation is used in all

Fig. 3 Perspective view of the seakeeping simulation

calculations performed for this study.
The results are shown in Fig. 2, where the time signal

of vertical force acting on the barge and heave motion are
shown for the two simulations. Results of the monolithic
coupling approach show good agreement with the partitioned
approach, which validates the novel monolithic approach
since the partitioned approach has been validated (Vukčević
and Jasak, 2015a; Vukčević and Jasak, 2015b; Vukčević et al.,
2016b).

4 Seakeeping test case

A comparison of seakeeping simulation results is shown
in this section for partitioned and novel monolithic approach.
The convergence of the results with respect to the number of
nonlinear correctors per time–step and the number of pressure
correctors per each nonlinear corrector is compared, as well
as computational demands.

Seakeeping simulation for the KRISO Container Ship
(KCS) model in regular head waves is simulated (Fig. 3),
where the simulation set–up corresponds to the C5 case
from the Tokyo Workshop on CFD in Ship Hydrodynamics
(Larsson et al., 2015). Simulations are performed in model
scale for Froude number Fr = 0.261, with length LPP =

6.05 m, breadth B = 0.85 m and drought T = 0.285 m.
Regular incident wave is imposed with wave length λ =

11.84 m and wave height H = 0.196 m. Relatively coarse grid
is used with 600 000 cells to discretise half of the domain.
Implicit relaxation zones Jasak et al., (2015) are used to
initialize the waves at the inlet boundary, and to damp the
waves at the outlet. The inlet boundary is at a distance of
1LPP in front of the bow, while the outlet is 2LPP from the
aft perpendicular. Side boundary is placed at 1.5LPP from
the centre line of the ship, while the depth of the domain
is set to 1.5LPP and height above the free surface to 1LPP .
The ship is free to heave and pitch, while the surge velocity
is set to a constant value. Eight simulations are performed
altogether, where the number of nonlinear correctors per
time–step and number of pressure correctors per nonlinear
corrector in individual simulation are shown in the test matrix,
Table 1.
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Table 1 The test matrix showing the number of nonlinear
correctors, NnCorr per time–step and the number
of pressure correctors, NpCorr per each nonlinear
corrector for each simulation

Simulation No. NnCorr NpCorr

1 2 2

2 2 4
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4 4 4

5 6 4
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Fig. 4 Comparison of seakeeping results of partitioned and
monolithic approach for coupling body motion and
pressure equation, with respect to the number of
pressure corrections NpCorr

Fig. 4 shows the comparison of results of the two different
coupling strategies with respect to the number of pressure
corrections per nonlinear corrector, NpCorr (see Fig. 1). The
results correspond to simulations 1, 2 and 3 from Table 1.
Hereafter, CT stands for total resistance coefficient, z is heave,
φ is pitch. η stands for wave amplitude, while k stands for the
wave number. Mean values of harmonic oscillations in time
are indicated with index 0, and first order amplitudes with 1.
γ is the phase shift of the item indicated in the index. The
first row of graphs shows, from left to right, the mean, first
order amplitude and first order phase shift of the resistance
coefficient. The second row shows the dimensionless heave
motion, while the third shows the dimensionless pitch motion.
Experimental data from Tokyo Workshop on CFD in Ship
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Fig. 5 Comparison of required computational time per
time–step and the average number of pressure
equation iterations with respect to the number of
pressure corrections NpCorr

Hydrodynamics (Larsson et al., 2015) is also included for
reference, however the reader is referred to Vukčević and
Jasak (2015a) and Vukčević and Jasak (2015b) for detailed
validation of seakeeping with finer grids. The partitioned
approach differs significantly from the monolithic approach
for most items. The cause is that two nonlinear correctors
per time–step are not sufficient for the partitioned approach
to produce accurate results. This is further demonstrated
on Fig. 6, where the partitioned approach exhibits a large
variation in results obtained using 2, 4, 6, 8, 10 and 14
nonlinear correctors per time–step. The partitioned approach
does not update the rigid body motion equations inside the
pressure loop, i.e. the number of rigid body motion updates
per time–step does not depend on NpCorr. Hence, the variation
of results with changing number of NpCorr is due to the
unresolved fluid flow solution. For most items the results
obtained using the partitioned approach show very little
dependence on NpCorr, except for the mean value of heave,
z0. Hence, it can be concluded that the mean value of heave
is sensitive to the accuracy of the pressure field solution.
The monolithic approach shows dependence on NpCorr for
more items (γCT1, φ0, γφ1), since increasing the number
of pressure corrections improves the coupling between the
pressure force and rigid body motion. On Fig. 5 the average
computational time per time–step is compared for the two
approaches with respect to the number of pressure correctors
per nonlinear corrector, as well as the average number of
pressure equation linear solver iterations. As expected, the
monolithic approach takes more computational time per time–
step than partitioned approach, which is caused by solving the
rigid body motion equations once per pressure linear solver
iteration. Also, higher number of linear solver iterations is
required, which can be prescribed to the fact that the source
of the system of equations is changing throughout the solution
process.

Fig. 6 shows the comparison of results for the two
approaches with respect to the number of nonlinear correctors
per time–step. The results correspond to simulations with
indices 2 and 4 to 8 from Table 1. Again, experimental
data is included for reference. Most items exhibit differences
within 10%, while some exhibit higher differences. It should
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Fig. 6 Comparison of seakeeping results of partitioned and
monolithic approach for coupling body motion and
pressure equation, with respect to the number of
nonlinear correctors per time–step NnCorr

be noted here that the focus of this paper is not on
validation of seakeeping, rather on proving the benefits of
the monolithic coupling. Hence, coarse spatial resolution
is used since authors believe it is sufficient to show the
advantages of the proposed approach. For detailed validation
of the same test case the reader is referred to Vukčević
and Jasak 2015a. For the partitioned approach the solution
generally converges with 8 or more PISO correctors. For
most items, the monolithic approach exhibits convergence
with smaller number of correctors, and significantly smaller
deviations between the solutions using 2, 4 and 6 correctors.
For most items the monolithic approach achieves solution
that is closed to the converged value with only 2 correctors.
Hence, the monolithic approach shows smaller sensitivity to
the number of nonlinear correctors per time–step. The most
important items from the practical point of view (CT0, z1
and φ1) are virtually insensitive to the number of nonlinear
correctors. Hence, savings in computational time can be
achieved while retaining the same level of accuracy for this
items by using fewer nonlinear correctors per time–step.
The items that showed larger sensitivity to the number of
nonlinear correctors are the mean of heave z0, mean of pitch
φ0 and phase shift of pitch γφ1. The variation of mean of
heave with the varying number of nonlinear correctors is
similar for partitioned and monolithic approach. It is likely
that the accuracy of fluid flow solution influences the result
more than the accuracy of the pressure–rigid body motion
coupling, which is indicated in Fig. 4. Mean of pitch, φ0, has
a very small absolute value, hence the absolute differences
between the partitioned and monolithic approach are not large.
Again, Fig. 7 shows that it takes more computational time
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Fig. 7 Comparison of required computational time per
time–step and the average number of pressure
equation iterations with respect to the number of
nonlinear correctors per time–step NnCorr

per time–step and more iterations of the pressure equation
linear solver for the monolithic approach comparing to the
partitioned approach.

Despite the fact that the monolithic approach requires
more computational time per nonlinear corrector, significant
savings can be achieved by using two instead of eight
nonlinear correctors per time–step. According to Fig. 7, a
reduction in overall computational time by a factor of 2.4 can
be achieved in this manner.

5 Conclusions
Monolithic coupling of pressure equation and rigid body

motion equations is shown in this paper for application
in the field of computational marine hydrodynamics. The
novel approach is first validated, and compared against the
traditional partitioned approach in order to establish the
validity and benefits of the method.

The validation is performed on a 2D heave decay
simulation of a barge. The monolithic coupling approach
is compared against the partitioned approach, showing very
good agreement.

The performance of the two coupling methods is tested on
a seakeeping case in regular head waves, where sensitivity to
the number of pressure correctors per nonlinear corrector, as
well as the number of nonlinear correctors per time step is
investigated. Accuracy and computational time is compared
for the two methods: monolithic coupling showed smaller
sensitivity to the number of nonlinear correctors per time step,
and it is shown that accurate results can be obtained with only
two nonlinear correctors per time step. It is observed that the
monolithic approach is computationally more expensive then
the partitioned approach per nonlinear corrector, however it
enables fewer nonlinear correctors to be used per time–step,
offering a significant speed–up (by a factor of 2.4 for the
given test case).

The developed monolithic coupling of pressure equation
and rigid body motion is insensitive to the number of
nonlinear correctors per time–step due to the better resolved
coupling between the pressure equation and rigid body
motion equations. The method offers significant savings in
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computational time and is applicable in a wide range of
problems in the field of marine hydrodynamics.
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