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Y. Wunderlich,1 A. Švarc,2 R. L. Workman,3 L. Tiator,4 and R. Beck1

1Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn, Nussallee 14-16, 53115 Bonn, Germany
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It is well known that the observables in a single-channel scattering problem remain invariant once the amplitude
is multiplied by an overall energy- and angle-dependent phase. This invariance is called the continuum ambiguity
and acts on the infinite partial-wave set. It has also long been known that, in the case of a truncated partial wave
set, another invariance exists, originating from the replacement of the roots of partial-wave amplitudes with their
complex conjugate values. This discrete ambiguity is also known as the Omelaenko-Gersten-type ambiguity. In
this paper, we show that for scalar particles, discrete ambiguities are just a subset of continuum ambiguities with
a specific phase and thus mix partial waves, as the continuum ambiguity does. We present the main features of
both continuum and discrete ambiguities and describe a numerical method which establishes the relevant phase
connection.
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I. INTRODUCTION

In this work, we will consider the simple case of a 2 → 2
reaction amplitude A(W,θ ) for scalar particles. We make
this choice for illustrative and pedagogical purposes. The
amplitude has the conventional partial-wave expansion

A(W,θ ) =
∞∑

�=0

(2� + 1)A�(W )P�(cos θ ). (1)

The extraction of partial waves from data shall be studied,
with data given in the case of the scalar reaction just by the
differential cross section, which is defined as the modulus
squared of A(W,θ ) (ignoring explicit phase-space factors)

σ0(W,θ ) = |A(W,θ )|2. (2)

Taking the positive branch of the square root on both sides
of this equation, it is seen that at each point (W,θ ) in phase
space, the cross section confines the amplitude to a circle
in the complex plane: |A(W,θ )| = +√

σ0. Figure 1 shows a
depiction of this fact. From the geometrical depiction as well
as from the mathematical form of (2), it is quickly seen that
the cross section remains unchanged under a rotation of the
amplitude A(W,θ ) by a phase, which is generally allowed to
depend on energy and angle (see Fig. 1):

A(W,θ ) → Ã(W,θ ) := ei�(W,θ)A(W,θ ). (3)

The invariance under such transformations has long been well
known and is generally referred to as the continuum ambiguity
[1].

A different kind of ambiguity arises whenever the amplitude
A(W,θ ) has a zero in the angular variable, for instance, in
cos θ [2]. This can be seen by splitting the original amplitude
A(W,θ ) into the product of the linear factor belonging to the
complex zero α, times a reduced amplitude Â(W,θ ):

A(W,θ ) = Â(W,θ )(cos θ − α). (4)

When writing the differential cross section for this case, i.e.,

σ0 = |Â(W,θ )|2(cos θ − α∗)(cos θ − α), (5)

it is evident that the complex conjugation of α, i.e., α → α∗,
does not change this observable. Since α is an angular zero,
it has to be connected to the partial-wave amplitudes in some
way. Thus, by leaping from one value of α to another one
α∗, one achieves the same effect in the amplitude space. This
means one transitions to a discretely diconnected point in this
space, which yields the exact same cross section. In this way,
these so-called discrete ambiguities acquire their name and
they are a most prominent (but not fully exclusive) feature
of truncated partial-wave analyses (TPWAs). The latter term
refers to any analysis that involves a truncation of the infinite
series (1) at some angular momentum L. With this knowledge,
also the name continuum ambiguity given to the general
rotations (3) can be understood. As it turns out [1], the vast size
of this class of symmetry transformations, owing to the fact that
they can be performed with in principle any function �(W,θ ),
makes it possible to trace out connected arcs or even whole
regions in amplitude space, which all have the same cross
section. In fact, quite involved and sophisticated studies have
been done in the past, in order to estimate and calculate such
ambiguity continua [3]. Figure 2 gives a schematic illustration
of the different types of ambiguites in partial-wave analyses.
In this work, we investigate both continuum and discrete
ambiguities as purely mathematical phenomena, which occur
once partial waves are to be extracted from the quadratic form
defined by the cross section (2). We will compare the large
class of symmetry transformations generated by the general
rotations (3), to the smaller class of discrete symmetries
caused by root conjugation and elaborate how and under
which circumstances traces of the latter class can be found
in the former. The amount of ambiguity encountered may, of
course, be reduced by introducing further physical constraints
into the analysis, the most prominent one being the unitarity
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FIG. 1. The geometrical picture of the general continuum ambi-
guity (3) is depicted here. The differential cross section (2) constrains
the true solution for the amplitude A(W,θ ) (blue solid arrow) to
be located on a circle of radius +√

σ0 in the complex plane (thin
orange-colored circle). A rotation of the amplitude A(W,θ ) to Ã(W,θ )
(red dashed arrow and thick dashed curved line) does not alter the
cross section.

of the Ŝ matrix [1]. We do not further pursue ambiguities
under unitarity constraints here but leave them as a further
avenue of exploration. It should just be mentioned that TPWAs
performed below the first inelastic channel, where elastic
unitarity is a very powerful contraint, are known to have
discrete ambiguites,

so-called Crichton ambiguities [4]. The explorations of
continuum ambiguities by Atkinson et al. [3] have also been
performed under quite strict unitarity constraints.

We focus on the scalar amplitudes in order to keep the
discussion as simple and illustrative as possible. However,
it should be stated that the obtained results often carry over
to analyses of more complicated reactions involving particles
with spin (πN scattering, photoproduction), in many cases
without large modifications.1 Therefore, what is discussed here
may also turn out to be relevant in recently initiated programs
on analyses of so-called complete sets of polarization-data,
performed for the spin reactions (see, for instance, Refs. [5–7]).
This work is complementary to the study of Švarc et al. [8],
which deals with related issues of ambiguities in partial-wave
analyses.

II. CONTINUUM AMBIGUITIES
AND THE MIXING FORMULA

Here, we consider continuum ambiguities, i.e., new partial-
wave solutions generated by transforming the original am-
plitude A(W,θ ) as in Eq. (3), using a general energy- and
angle-dependent phase rotation ei�(W,θ). We choose to write

1Some possible complications for the generalization to spin reac-
tions are hinted at in the conclusions of this work.

FIG. 2. Three schematics are shown in order to illustrate the
meaning of the terms discrete and continuum ambiguities. The
gray-colored box represents in each case the higher dimensional
space furnished by the partial-wave amplitudes, be it for infinite
partial-wave models or for truncated ones. Top: One-dimensional
(for instance circular) arcs can be traced out by continuum ambiguity
transformations, both for infinite and truncated models. Center:
More general connected continua in amplitude space, containing
an infinite number of points belonging to the same cross section,
can be generated by use of the continuum ambiguity (3). However,
this phenomenon is only present once the partial-wave series goes
to infinity. The connected patches are also referred to as islands of
ambiguity [1,3]. Bottom: Discrete ambiguities refer to cases where the
cross section is the same for disconnected, discretely located points
in amplitude space. These ambiguities are most prominent in TPWAs
[1,14] (see Sec. III below). However, twofold discrete ambiguities can
also appear for infinite partial-wave models, where elastic unitarity is
employed [1].

the latter as a Legendre series:

ei�(W,θ) =
∞∑

k=0

Lk(W )Pk(cos θ ). (6)

As mentioned in the introduction, quite a lot of work has been
done in the past on the capability of such rotations, which
themselves have infinitely many real degrees of freedom, to
generate ambiguous partial-wave solutions. Here, we want
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to focus only on one aspect of the problem, namely the
transformation of the original partial waves A� into waves
Ã� belonging to the rotated amplitude Ã(W,θ ), caused by
the rotation (6). In the following derivation, we employ the
notation x = cos θ . The projection integral for the transformed
waves becomes

Ã�(W ) = 1

2

∫ 1

−1
dxÃ(W,x)P�(x)

= 1

2

∫ 1

−1
dxeiφ(W,x)A(W,x)P�(x)

= 1

2

∫ 1

−1
dx

∞∑
k=0

Lk(W )Pk(x)A(W,x)P�(x)

=
∞∑

k=0

Lk(W )
1

2

∫ 1

−1
dxA(W,x)Pk(x)P�(x), (7)

where in the last step, the permutation of the integral and
the infinite k sum was just assumed to be valid. The product
of Legendre polynomials under the integral in (7) is again
expandable into the basis of Legendre polynomials. The
resulting formula is known from the theory of the rotation
group and can be written using either the Wigner 3j symbols
or the well-known Glebsch-Gordan coefficients [9]:

Pk(x)P�(x) =
k+�∑

m=|k−�|

(
k l m
0 0 0

)2

(2m + 1)Pm(x)

=
k+�∑

m=|k−�|
〈k,0; �,0|m,0〉2Pm(x). (8)

For the remainder of this work, the Clebsch-Gordan co-
efficients 〈k,0; �,0|m,0〉 are utilized. Using this recoupling
formula, the partial-wave projection (7) becomes

Ã�(W ) =
∞∑

k=0

Lk(W )
1

2

∫ 1

−1
dxA(W,x)

×
k+�∑

m=|k−�|
〈k,0; �,0|m,0〉2Pm(x)

=
∞∑

k=0

Lk(W )
k+�∑

m=|k−�|
〈k,0; �,0|m,0〉2

× 1

2

∫ 1

−1
dxA(W,x)Pm(x)

=
∞∑

k=0

Lk(W )
k+�∑

m=|k−�|
〈k,0; �,0|m,0〉2Am(W ). (9)

We see that the final result on the right-hand side takes the
form of a linear combination, or mixing, of the partial waves
A�(W ) from the original amplitude. The precise form of the
mixing is of course dictated by the energy-dependent Legendre
coefficients Lk(W ) that define the phase rotation (6). Since this
mixing formula is vital to the remainder of this work, we state

it again in closed form:

Ã�(W ) =
∞∑

k=0

Lk(W )
k+�∑

m=|k−�|
〈k,0; �,0|m,0〉2Am(W ). (10)

The general relation given in Eq. (10) has been derived using
straightforward algebra and identities involving the Legendre
polynomials. After this study was completed, we became
aware of a paper by Dedonder et al. [10], which derives
and states a similar mixing formula, however, for the special
case of a phase �(W,θ ) linear in the Mandelstam variable
t = −2k2(1 − cos θ ). We have not found the mixing formula
in the general form (10) reproduced in the literature. For
reactions involving particles with spin, on the other hand,
similar mixing phenomena have been found either derived
explicitly, or at least hinted at. Dean and Lee [11] give
a very detailed treatment of analogous relations for πN
scattering. Omelaenko [12] hints, near the end of his famous
paper on discrete ambiguities in photoproduction, at similar
circumstances for this particular reaction. Angle-dependent
phase rotations and their effects in photoproduction are also
discussed by Keaton and Workman [13]. Some mathematical
comments on the mixing formula (10) are in order. First of
all, angle-independent phase rotations are defined only by
the lowest Legendre coefficient L0(W ), with all higher ones
vanishing [see Eq. (6)]. The mixing formula immediately
tells that for these purely energy-dependent rotations, no
mixing occurs at all and all partial waves are rotated by the
same angle. However, once the continuum ambiguity phase
�(W,θ ) has at least some angular dependence, the Legendre
expansion (6) regains the full complexity of an infinite series.
However, it is indeed feasible to construct phase rotations
whose Legendre series converges rather quickly. In fact, for
most examples considered in this work, they do. However,
the mixing formula (10) then implies that for any angle
dependence of the continuum ambiguity, mixing of partial
waves necessarily occurs and furthermore is defined by an
infinite tower of strictly speaking nonvanishing Legendre
coefficients Lk(W ). Having discussed the effect of the general
continuum ambiguity transformations on partial waves, we
now introduce discrete ambiguities proper and outline the
way in which they leave traces in the former, larger class
of symmetry transformations.

III. DISCRETE AMBIGUITIES IN TPWAS AND
GENERATING PHASE ROTATIONS

Next we consider TPWAs, i.e., those based on the partial
wave series (1) cut off at some maximal angular momentum
L. Gersten [14] has first noted the usefulness of decomposing
such polynomial amplitudes into the product over their linear
factors, i.e., by writing

A(W,θ ) =
L∑

�=0

(2� + 1)A�(W )P�(cos θ )

≡ λ

L∏
i=1

(cos θ − αi), (11)
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where the αi are a set of L complex zeros defining the
amplitude. The complex normalization factor λ is, in the
convention chosen above, proportional to the highest partial
wave: λ ∝ AL. Furthermore, since the differential cross
section (2) is a modulus squared, even in the truncated PWA,
one energy-dependent overall phase has to be fixed prior to
fitting the model (11) to data. One common choice could be to
require the S wave to be real and positive: A0 = Re[A0] > 0.
This is the convention we will adhere to later. However, one
could also choose to fix the normalization λ in (11) to be real,
thereby also implying the same convention for the highest
wave AL. As mentioned in the introduction, the complex
conjugation of a zero of any, either truncated or even infinite,
partial-wave expansion generates a discrete ambiguity. Since
in the truncated case, the amplitude (11) is nothing but a
product over linear factors, the cross section

σ0 = |λ|2
L∏

i=1

(
cos θ − α∗

i

)
(cos θ − αi) (12)

is unchanged by all possibilities of conjugating subsets of roots
[14]. There exist in total 2L such possibilities and we adhere
to the formalization of all those possibilities introduced by
Gersten [14]. Therefore, we define a set of 2L maps

πp(αi) :=
{
αi , μi(p) = 0

α∗
i , μi(p) = 1

, (13)

where the binary representation of the number p,

p =
L∑

i=1

μi(p)2(i−1), (14)

has been employed. The index p just labels all combinatori-
cally possible ambiguities acting on the roots αi , with π 0 being
the identity. Now, it is easy to define ambiguity-transformed
truncated amplitudes A(p)(W,θ ) which, since the number of
factors in (11) is unchanged by any of the Gersten ambiguities
(13), retains the same truncation order L as the original
amplitude

A(p)(W,θ ) = λ

L∏
i=1

(
cos θ − πp[αi]

)

≡
L∑

�=0

(2� + 1)A(p)
� (W )P�(cos θ ). (15)

The ambiguous amplitudes A(p) have the same cross section
as the original model A. According to remarks made in the
introduction, this means that they have to be connected to
the original amplitude by rotations (see Fig. 1). These phase
rotations are, once the Gersten formalism has been established,
computed without effort:

eiϕp(W,θ) = A(p)(W,θ )

A(W,θ )

=
(
cos θ − πp[α1]

)
. . .
(
cos θ − πp[αL]

)
(cos θ − α1) . . . (cos θ − αL)

. (16)

Remembering the definition of the maps (13), it can be seen
quickly that the resulting expression has modulus 1 for all
cos θ ∈ [−1,1], as it should. Some more remarks have to be
made about the result (16). First of all, for all ambiguities
except the identity π 0 (which leads to eiϕ0(W,θ) = 1), the phase
rotation is explicitly angle dependent. As mentioned in Sec. II,
a purely energy-dependent phase rotation rotates all partial
waves by the same angle. The discrete Gersten ambiguities
have a different nature, leading via the conjugations of the
roots αi to more intricate transformations on the level of partial
waves A�. Already for low truncation orders L, conjugations
of single waves can be observed, or more generally rotations
of different waves by different angles. In order to achieve
this, the generating phase rotations (16) have to have at least
some angle dependence. Second, in establishing the discrete
Gersten ambiguities to be generated by phase rotations (16), a
connection has been drawn between the discrete partial-wave
ambiguities discussed in this section and the more general
continuum ambiguities treated in Sec. II. In particular, since
the generating phases (16) are angle dependent, they have, by
means of Eq. (10) above, to lead to partial-wave mixing. In
any case, an angle-dependent phase has an infinite Legendre
expansion. However, from their definition the phases (16)
again lead to manifestly truncated amplitudes (15). Therefore,
these generating phase rotations are finely tuned such that they
lead to exact cancellations on the right-hand side of the mixing
formula (10), for all � > L.

Gersten [14] stated, without proof, that the transformations
(13) exhaust all possibilities to form discrete ambiguities in
a TPWA. To be more precise, he mentions a further discrete
symmetry, namely

A(p)(W,θ ) −→ −[A(p)(W,θ )
]∗

, (17)

which has, however, been removed by fixing a suitable phase
convention in the analysis, requiring one specific partial wave
(for instance, A0) to be real and positive. We have to state that
we consider Gersten’s claim to be true. There really are no
more ways to transform to disconnected points in amplitude
space where the truncated PWA model is ambiguous. However,
having reformulated the Gersten ambiguities in a language that
fits the general continuum ambiguities of Sec. II, we would like
to reformulate the claim in a different guise:

The phase rotations eiϕp(W,θ) form a discrete subclass of
the general continuum ambiguity phases ei�(W,θ), representing
all possible phase rotations capable of rotating the original
truncated amplitude A(W,θ ) again into a truncated one. Thus,
all the remaining infinite rotations contained in the larger class
of symmetries ei�(W,θ) produce rotated models which are no
longer truncated at L. The generating phases eiϕp(W,θ) are fully
exhaustive in their capability to produce truncated models out
of continuum ambiguity transformations.

Like Gersten, we do not have a precise mathematical proof
of this claim. However, in the next section a numerical method
is introduced capable of substantiating what has been stated
above.
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IV. FUNCTIONAL MINIMIZATION FORMALISM
AND THE EXHAUSTIVENESS OF

THE GERSTEN AMBIGUITIES

In the following, we again employ the notation x = cos θ .
Furthermore, since phase rotations [such as those in Eq. (16)]
will have to be searched numerically in what is to come, we
switch from working with the phases themselves directly to
the complex rotation functions

F (W,x) := ei�(W,x). (18)

Using the rotations has several advantages. Mainly, equations
such as (16) only fix the phases �(W,x) themselves up to
the branch-point singularity of the logarithm, which has to
be encountered once the exponential is inverted. One could
fix a convention, such as choosing the principal branch of
the logarithm for the phases. Usage of the rotation functions
circumvents this problem altogether. In the following, we will
sometimes loosely refer to the concept of vector spaces of
functions. However, observe that the functions F (W,x) do not
form a vector space, since they do not close under addition
and scalar multiplication. The functions �(W,x), on the other
hand, do. From now on, we consider the action of the rotation
(18) in a general continuum ambiguity transformation (3),
i.e., A(W,x) → Ã(W,x) = F (W,x)A(W,x). The amplitude
A(W,x) is truncated at L and a known input. In order to look
for Gersten-type ambiguities, or potential further symmetries
with similar properties, we solve the following two constraints
at a fixed energy W :

(I) The rotated amplitude Ã, coming out of an amplitude
A truncated at L, has to be truncated as well, i.e.,

ÃL+k(W ) = 0, ∀k = 1, . . . ,∞. (19)

(II) The complex solution function F (W,x) has to have
modulus 1 for each value of x:

|F (W,x)|2 = 1, ∀x ∈ [−1,1]. (20)

The problem proposed here is a problem from functional
analysis (or functional problem for short), since one tries to
scan a full vector space of functions �(W,x) [implied up
to logarithmic singularities by our solutions F (W,x)], for
solutions of the problem. The obtained complex function is
a solution to the infinite set of functional equations

ÃL+k(W ) = 1

2

∫ +1

−1
dxF (W,x)A(W,x)PL+k(x) ≡ 0,

∀ k = 1, . . . ,∞. (21)

This set of equations corresponds to the formal statements of
the functional problem we are trying to solve. However, it
has to be clear that for any practical numerical calculation,
an equation system built out of infinitely many functionals
can never be solved. Therefore, in all practical examples we
impose a restriction on the index k, making it range up to some
finite, but sufficiently large, value Kcut:

k = 1, . . . ,Kcut. (22)

Now, we formally define a quantity which, through its
minimization, allows for the solution of conditions (I) and

(II) above. Also, due to the length of some of the ensuing
expressions, explicit energy dependences are in most cases
implicit. The quantity to be minimized reads

W [F (x)] :=
∑

x

(Re[F (x)]2 + Im[F (x)]2 − 1)2

+ Im

[
1

2

∫ +1

−1
dxF (x)A(x)

]2

+
∑
k�1

{
Re

[
1

2

∫ +1

−1
dxF (x)A(x)PL+k(x)

]2

+ Im

[
1

2

∫ +1

−1
dxF (x)A(x)PL+k(x)

]2
}

. (23)

This W [F (x)] maps any whole phase-rotation function F (x)
to a real number. Therefore, it is also formally a functional.
The individual terms in the minimization functional (23)
implement all the required constraints on the rotation function
F (x). Minimization of the first term in the first line makes the
function unimodular, cf. constraint (II) above. The sum

∑
x

is written in order to indicate that in any practical example,
this term is evaluated on a discrete grid of equidistant points
{xn} ∈ [−1,1] (more on this below). The term in the second
line invokes an overall phase convention for the partial waves,
by making the S wave A0 real. However, note that it does not
make the latter positive (as in the convention declared in Sec.
III), such that additional sign ambiguities may be expected for
the solutions. Finally, the third term filling the entire third and
fourth line of Eq. (23) formally implements constraint (I) by
setting all partial wave projections above ÃL to zero, once it
adopts its minimum. In any practical minimization, the sum
over k is truncated at some Kcut [see Eq. (22)]. We now come
to the central statement of this section. We claim that once
any suitable scheme for the minimization of the functional
W [F (x)] is applied, then those minima consistent with zero
up to a good numerical approximation will yield as solutions
only the discrete Gersten ambiguities. This can be written in
idealized form as

W [F (W,θ )] −→ min. ≡ 0, (24)

for F (W,θ ) −→ Fp(W,θ ) = eiϕp(W,θ),

p = 0, . . . ,(2L − 1). (25)

Of course, as mentioned below Eq. (23), an additional sign
ambiguity exists due to the fact that the S wave is only fixed
to be real, but not positive, in our definition of W [F (x)].
However, such sign ambiguities can be resolved easily, once
the minimization has been performed. Any numerical scheme
used to find general minima, or solution functions, from the
minimization of (23) needs to implement some method to
parametrize the functions F (x) as generally as possible. Here,
we employ a Legendre expansion

F ({y�′ ,w�′ })(x) :=
Lcut∑
�′=0

(y�′ + iw�′)P�′(x) ≡
Lcut∑
�′=0

L�′P�′(x),

(26)
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with y�′ = Re[L�′] and w�′ = Im[L�′]. The latter are the
parameters for which to solve. The expansion (26) becomes
numerically tractable with a truncation at some, possibly
large, expansion index Lcut.2 Since the partial waves A� of
the nonrotated amplitude are assumed to be known, one can
directly use the mixing formula (10) in order to parametrize the
rotated partial waves Ã� (above L) in terms of the minimization
parameters y�′ and w�′ . This has the advantage of avoiding the
need to explicitly implement numerical integration into the
minimization routine. However, the mixing formula as used
here is slightly modified due to two facts: First of all, the
original amplitude is truncated at L, and second, the Legendre
expansion of the phase rotation is cut off at Lcut. The result
reads

ÃL+k({y�′ ,w�′ })

=
min(2L+k,Lcut)∑

�′=k

(y�′ + iw�′)

×
L∑

m=|L+k−�′|
〈�′,0; �,0|m,0〉2Am, ∀ k = 1, . . . ,Kcut.

(27)

This expression implies that in the chosen ansatz for the
functional minimization, the maximal index Lcut sets a limit
on the parameter Kcut. The maximal choice, which we always
use in the following, is

Kcut = Lcut. (28)

The minimization scheme based on the Legendre parametriza-
tion (26) and the mixing formula (27) has turned out to be quite
well behaved numerically. Another, less favorable, ansatz for
the parametrization of F (x) consists of using a discretization
of this function for a discrete set of values {xn} ∈ [−1,1]. We
briefly summarize this alternative procedure in Appendix A
but do not utilize it further in the main discussion. Since the
first term in the functional (23) features a summation over x
in any case, a discrete grid of points {xn} ∈ [−1,1] is needed
for the Legendre ansatz as well. We employ a total number of
NI equidistant points with separation

�x = 1 − (−1)

NI

= 2

NI

. (29)

To define this sequence of base points, a simple prescription
is used:

xn := −1 +
(

1 + 2(n − 1)

2

)
�x. (30)

2Angle-dependent rotations are always, strictly speaking, infinite
expansions in x (see Sec. II). However, in practical cases it is clearly
impossible to solve for infinitely many Legendre coefficients. With
the finite expansion, we want to simulate a convergent infinite series.
For practical examples, Lcut has to be chosen much larger than the
order for which the calculable Gersten phases already achieve a good
convergence. Then, this ansatz works numerically, as illustrated by
the example below.

The points therefore make up the set

xn ∈
{

�x

2
− 1, . . . ,

[
1 + 2(NI − 1)

2

]
�x − 1

}
. (31)

Using the definitions (26), (27), and (30), as well as the fact
that the truncation order L and partial waves A� of the original
amplitude are known input, the functional W [F (x)] can be
written as an ordinary function depending on the parameters
{y�′ ,w�′ }. The result, which is then optimized in the Legendre
ansatz, becomes

WL({y�′ ,w�′ })
:=
∑
{xn}

(Re[F ({y�′,w�′ })(xn)]2

+ Im[F ({y�′,w�′ })(xn)]2 − 1)2 + Im[Ã0({y�′ ,w�′ })]2

+
Kcut∑
k=1

(Re[ÃL+k({y�′,w�′ })]2 + Im[ÃL+k({y�′,w�′ })]2).

(32)

A useful feature of model-independent expansions into basis
functions such as (26) is that once they are employed, compli-
cated functionals become just ordinary functions depending on
the expansion coefficients. The explicit mathematical form of
the function (32) is elaborated in more detail in Appendix
B, but for the ensuing discussion it is not really needed.
An open question remains about which initial conditions
for the {y�′ ,w�′ } to choose for the minimization process.
We employ an ensemble consisting of NMonteCarlo sets of
start parameters. How many to choose depends on the order
L of the original truncated model. Mostly, we employed
values around NMonteCarlo = 50, . . . ,100 for the treatment
of simple toy-model examples, with generally satisfactory
results. For the precise method to generate the NMonteCarlo

start configurations, we have made good experiences by just
drawing each parameter randomly from the interval [−1,1],
for example by using RandomReal[{−1,1}] in MATHEMATICA.
Also, all numerical minimizations shown in the following have
been done with MATHEMATICA.

What remains to be done is to demonstrate the machinery
presented in this section on a particular example. We consider
a simple toy-model consisting of an amplitude truncated at
L = 2, with partial waves given in arbitrary units:

A(x) =
2∑

�=0

(2� + 1)A�P�(x)

= A0 + 3A1P1(x) + 5A2P2(x)

= 5 + 3(0.4 + 0.3 i)x + 5

2
(0.02 + 0.01 i)(3x2 − 1).

(33)

Note that in addition to the truncation, this model is constructed
in such a way that the nonvanishing partial waves show a soft
convergence behavior. Once the Gersten decomposition (11)
is computed for this example, the following values for the
complex normalization-factor

λ = 0.15 + 0.075 i, (34)
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FIG. 3. These plots show the real (blue solid line) and imaginary parts (red dashed line) of the phase rotations (39) extracted from the
toy-model amplitude (33) defined in the main text. The individual figures are labeled via the respective ambiguity π p belonging to each phase
eiϕp (x).

as well as the two roots

α1 = −7.05858 − 4.63163 i, (35)

α2 = −1.74142 + 3.03163 i, (36)

are obtained. Since the toy model (33) is truncated at L = 2,
there exist 22 = 4 Gersten ambiguities, which according to
Eqs. (13) and (14) are enumerated as follows:

π0(α1,α2) = (α1,α2), π1(α1,α2) = (α∗
1 ,α2), (37)

π2(α1,α2) = (α1,α
∗
2 ), π3(α1,α2) = (α∗

1 ,α
∗
2 ). (38)

The generating phases of the discrete ambiguities (37) and (38)
can be evaluated using Eq. (16) from Sec. III. Four different

rotations are obtained,

eiϕ0(x) = 1, eiϕ1(x), eiϕ2(x), eiϕ3(x), (39)

with all of them, except for the phase of the identity π 0,
depending on x = cos θ (energy dependencies suppressed).
The phase rotations (39) are plotted in Fig. 3 as complex
functions of x. Their Legendre coefficients, up to and including
L8, are collected in Table I. Apart from the trivial dependence
of eiϕ0(x), the remaining phase rotations eiϕ1(x), eiϕ2(x) and
eiϕ3(x) show a relatively quick convergence. This makes the toy
model (33) a well-suited example for the demonstration of the
functional minimization formalism, since the range Lcut of the
Legendre parametrization (26) can be chosen comparatively
low, making the calculations numerically tractable. With

TABLE I. This table collects the Legendre coefficients of the phase rotations (39) corresponding to the toy-model amplitude (33) defined
in the main text. All coefficients up to L8 are shown. All numbers are printed to 5 significant digits, in order to illustrate the quick convergence
of these examples.

Lk eiϕ0(x) eiϕ1(x) eiϕ2(x) eiϕ3(x)

L0 1 0.997 − 0.01049i 0.95864 + 0.03697i 0.97741 + 0.02781i

L1 0 0.00182 + 0.13038 i 0.02769 − 0.48277 i 0.01563 − 0.35988 i

L2 0 −0.00581 − 0.00852 i −0.08227 + 0.03939 i −0.04507 + 0.03429 i

L3 0 0.00068 + 0.00028 i 0.0126 + 0.009 i 0.00769 + 0.00427 i

L4 0 −0.00005 + 9.6 × 10−6i 0.00029 − 0.00249 i 0.00005 − 0.00148 i

L5 0 2.3 × 10−6 − 2.3 × 10−6i −0.00037 + 0.00015 i −0.00021 + 0.00011 i

L6 0 −4.4 × 10−8 + 2.1 × 10−7i 0.00005 + 0.00004 i 0.00003 + 0.00002 i

L7 0 −4.98 × 10−9 − 1.3 × 10−8i 1.6 × 10−6 − 9.1 × 10−6i 4.0 × 10−7 − 5.5 × 10−6i

L8 0 7.0 × 10−10 + 4.9 × 10−10i −1.3 × 10−6 + 4.5 × 10−7i −7.6 × 10−7 + 3.5 × 10−7i
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FIG. 4. The convergence process of the functional minimization procedure as described in the main text is demonstrated here. For the
phase rotations eiϕ0(x) and eiϕ1(x), generating the discrete ambiguities π 0 and π 1 of the toy model (33), two randomly drawn initial functions
have been picked from the applied ensemble. These initial conditions have, in the process of minimization, converged to these two respective
phases. Minimizations have been performed by starting always at the same initial function, but applying different numbers for the maximal
number of iterations Nmax of the minimizer, as indicated in the headers of the plots. Values range from Nmax = 5 (minimizer has barely changed
the initial function) up to Nmax = 500 (convergence condition fulfilled for any of the minimizations). In all plots, the real and imaginary parts
of the precise Gersten ambiguity are drawn as thin blue solid lines and thin red finely dashed lines, respectively. The results of the functional
minimizations up to Nmax are drawn as thick blue coarsely dashed lines for the real parts and thick red finely dashed lines for the imaginary
parts.

the toy model (33) as input, we performed a numerical
minimization of the abstract functional (23). The Legendre
parametrization (26) for the phase rotations was utilized, such
that the procedure reduced to the optimization of the ordinary
function (32), with the Legendre coefficients {y�′ ,w�′ } as free
parameters of the problem. The truncation orders

Lcut = Kcut = 20 (40)

were employed. Minimizations started from an ensemble
of NMonteCarlo = 50 different initial parameter configurations.

The angular interval x ∈ [−1,1] has been divided into NI =
400 equidistant points {xn}. As a result of the functional
minimization, we report that the anticipated exhaustiveness
of the Gersten ambiguities, formulated generally in Eqs. (24)
and (25) above, has been fully confirmed. In the case at hand,
this fact may be briefly expressed as

WL({y�′ ,w�′ }) −→ min. ≡ 0, (41)

for F (x) −→ eiϕp(x), p = 0, . . . ,3. (42)
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FIG. 5. This is the continuation of Fig. 4. Convergence of the minimization of the functional (23) is illustrated for the phases eiϕ2(x) and
eiϕ3(x), which generate discrete symmetries for the toy model (33).

The consistency of the functional-minimum (41) with zero
means in this practical numerical case that the values of the
adopted minima range around 10−29, . . . ,10−30. Local minima
are found as well, but they are typically separated from the
global (mathematical) minima by many orders of magnitude.
They typically correspond to values of the order 1 for the
functional. These results have not been modified by raising
NMonteCarlo.

A graphical representation of the convergence process for
the functional minimizations is provided in Figs. 4 and 5.
There, four different randomly chosen initial functions have
been picked, each of them leading to a different Gersten
ambiguity in the process of minimization. Then, numerical
minimizations have been performed for eight different as-
cending values of the maximal number of iterations Nmax.
For the maximal value Nmax = 500, the minimizations have
converged to the precise Gerten ambiguity in any case.

However, apart from that, differences can be observed in the
speed of convergence. The identity eiϕ0(x) and full conjugation
ambiguity eiϕ3(x) are found most quickly via the optimization,
while the ambiguities eiϕ1(x) and eiϕ2(x) require more iterations.

V. CONCLUSIONS AND OUTLOOK

Ambiguities in the extraction of partial waves for the scalar
case have been the main focus of this work. Continuum
ambiguities caused by general energy- and angle-dependent
phase rotations, as well as discrete ambiguities stemming
from the conjugation of zeros, have been formalized and
compared. The discrete symmetries first defined by Gersten
have been found to be a specific subclass of the larger
symmetry group of continuum ambiguities, with the property
that they fully exhaust all possibilities to rotate an original
truncated amplitude again into a truncated one. This subclass is
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unique in the sense that no further transformations exist which
can lead back to truncated models. Furthermore, the partial
waves of the transformed amplitude have in all cases, i.e., for
the full continuum ambiguity group as well as for the discrete
symmetries, turned out to be mixings of the partial waves from
the original amplitude. Since the discrete symmetries lead to
truncated models again, they are finely tuned in such a way that
exact cancellation occurs in all partial waves from the rotated
model above the truncation order L.

In order to substantiate the above-mentioned exhaustive-
ness statement from a perspective which is orthogonal to the
Gersten formalism, a straightforward and, as far as we know,
new method has been introduced based on the numerical
minimization of functionals. Such functionals allow for a
flexible way to scan the infinitely possible phase-rotation func-
tions F (W,θ ) = ei�(W,θ) for those obeying the implemented
constraints, which in this case consisted of the vanishing of all
transformed partial waves above L. First numerical tests for
simple toy models yielded consistent results and have in all
cases confirmed the exhaustiveness statement on the discrete
ambiguities.

The present study is certainly just a beginning of further
formal studies on partial-wave ambiguities. We list in the
following a few interesting open questions as well as further
avenues of investigation:

(i) The exhaustiveness, or uniqueness, property of the
Gersten ambiguities has not been supported by a
formal proof in this work. To perform this task,
almost certainly a more sophisticated application of
algebra or functional analysis will be needed. Still,
a better mathematical understanding of the discrete
ambiguities and why they appear may also lead to a
better grasp of the process of partial-wave fitting and
the quadratic equation systems involved.

(ii) A discrete class of angle-dependent phase rotations
has been formulated capable of rotating all models
with the same truncation order L into each other,
i.e., of rotating L → L. One may ask whether it
is formally possible to raise the truncation order
using angle-dependent phase rotations, i.e., to rotate
truncations

L → L + N. (43)

In the present case, the answer appears negative.
However, it is not quite certain. Possibilities of
changing truncation orders by phase rotations would
in any case be interesting. The search for such phases
may, for instance, be performed using ideas similar to
the functional methods outlined in this work.

(iii) The study of ambiguities in this work did not im-
pose unitarity constraints on the amplitude. It would
certainly be interesting to see how to impose strict
unitarity requirements using ideas similar to the
functional minimization, or how to link the findings
of this work to the residual Crichton ambiguities
appearing below the first inelastic threshold.

(iv) Finally, the formal treatment of ambiguities presented
here may be extended to reactions with spin or even

with multiparticle final states. πN scattering has
been treated in some detail in the past [11]. For
photoproduction, no formal treatment of partial-wave
mixing and continuum vs discrete ambiguites as
presented in this work has been found. The functional
methods developed here may also be extended to spin
reactions.

However, a word of warning should be said about reactions
with spin. The following statements stem from preliminary
considerations done for πN scattering and for photoproduction
of single pseudoscalar mesons, but may turn out to be more
general, at least in the context of two-body reactions. It is well
known that for such reactions the overall reaction amplitude
can be parametrized in a model-independent way using N
invariant amplitudes [15], where the integer N depends on
the spins of the participating particles. Upon converting to the
center-of-mass frame, different schemes of spin quantization
can be used to obtain N so-called spin amplitudes. It is
often convenient to use the basis of N transversity amplitudes
{bj (W,θ ),j = 1, . . . ,N}. The latter shall be chosen in the
following. In the case of πN scattering, for instance, there
exist N = 2 amplitudes. Pseudoscalar meson photoproduction
is described by N = 4 amplitudes. Once more than one
amplitude is in the game, it is important to distinguish
different types of continuum ambiguity transformations, or
in other words, rotations. The first, most general, kind of
transformation rotates every transversity amplitude bj by
a different phase φj and is thus referred to as an N -fold
continuum ambiguity3

bj (W,θ ) → eiφj (W,θ)bj (W,θ ), j = 1, . . . ,N. (44)

This is a much larger class of symmetry transformations than
the rotation of all amplitudes by the same phase �, from now
on referred to as a 1-fold continuum ambiguity

bj (W,θ ) → ei�(W,θ)bj (W,θ ), j = 1, . . . ,N. (45)

From inspection of the well-known linear factor decompo-
sitions of the πN and photoproduction amplitudes [12,14],
we have been able to infer that at least in these two cases,
the Gersten-type ambiguities (i.e., those stemming from root
conjugation) are in general generated by N -fold rotations (44)
and not by the 1-fold ones (45).4 Thus, the fact that discrete
Gersten-type ambiguities fall into the general 1-fold rotations
is a special feature only present for the scalar reactions, caused
by the fact that there exists only one amplitude. For the more
general cases with spin, one has to carefully distinguish which
kind of symmetry is generated from which kind of rotation,
and the generalization of the scalar results obtained in this
work is by no means trivial.

The distinction of N - and 1-fold continuum ambiguities
made here becomes interesting once one considers the observ-
ables measurable in a spin reaction. It is again well known

3We use here the language of Höhler [16], who discusses two-fold
continuum ambiguities in the context of πN scattering.

4This fact has been observed only for the two example reactions.
We just assume that it carries over to more general spin reactions.
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that for two-body reactions, N2 polarization observables Oa

can be accessed, at least in principle [15]. When written in
the transversity basis, there exists a subset of N observables
given just by a sum of moduli squared of the amplitudes
(proportionality in the following equation up to phase-space
factors)

Oa
d(W,θ ) ∝ ±|b1(W,θ )|2 ± · · · ± |bN (W,θ )|2, (46)

for a = 1, . . . ,N . The signs in front of each squared amplitude
depend on the observable and conventions used. When con-
sidered as a bilinear form of the amplitudes, the N observables
Oa

d are defined by diagonal matrices (thus the subscript
d). For πN scattering, the diagonal observables would be
the unpolarized cross section σ0 and the target-polarization
asymmetry P̂ [11,16]. In case of photoproduction, it is well
known that the single-spin observables σ0, �̂, T̂ , and P̂
are diagonal [12,15] in the transversity basis. The remaining
N2 − N = N (N − 1) observables are nondiagonal and thus
composed of interference terms

Oa
nd(W,θ ) ∝

∑
j,k

ca
jkb

∗
j (W,θ )bk(W,θ ), (47)

in this case for a = 1, . . . ,N(N − 1). The Hermitean matrices
ca
jk always render these observables to be either the real or

imaginary parts of a particular linear combination of interfer-
ence terms. For πN scattering, the spin-rotation parameters R̂
and Â are nondiagonal in the transversity basis [11,16], while
for photoproduction the same is true for all double-polarization
observables of type beam target, beam recoil, and target recoil
[12,15].

Comparing the forms of the diagonal (46) and nondiagonal
(47) observables, it is seen quickly that the former are generally
always invariant under the N -fold rotations (44), while the
latter are not. On the other hand, the one-fold rotations
(45) leave both kinds of observables invariant. Therefore,
for the spin reactions the interesting possibility emerges to
obtain unique solutions in a TPWA once the energy-dependent
overall phase has been fixed. The problem of such complete
experiments in TPWAs for photoproduction has been explored
before [5–7,12]. A very recent publication [17] treats the even
more involved problem of electroproduction of pseudoscalar
mesons. However, in these references the problem has not
been formulated explicitly in the language involving rotations,
which has been used in this work.
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APPENDIX A: ANSATZ FOR THE MINIMIZATION
OF W [F(x)] USING A DISCRETIZATION OF

THE FUNCTION F(x)

In the following, we outline briefly a numerical alternative
for the minimization of the functional (23) which, contrary
to the method of Legendre expansions utilized in the main
text, parametrizes the sought-after phase-rotation functions
F (x) by discretization on the interval x ∈ [−1,1]. Therefore,
we introduce a set of equidistant points {xn|n = 1, . . . ,NI }
according to the prescription (30) used in the main text. The
set of variables to be determined in the minimization procedure
is given by the real and imaginary parts of the function F (x)
on this grid, i.e.,

rn := Re[F (xn)],qn := Im[F (xn)],n = 1, . . . ,NI . (A1)

These variables fulfill a similar purpose as the real and
imaginary parts of the Legendre coefficients used in the method
described in the main text, cf. Eq. (26). In order to minimize
the quantity (23), the latter has first of all to be evaluated.
Therefore, numerical integration has to be defined. We choose
here the simplest possible way to do so and use the same grid
employed in the discretization (A1). Therefore, any integral
can be calculated using the form∫ 1

−1
dxf (x) =

NI∑
n=1

�x f (xn), using �x = 2

NI

. (A2)

It is seen that in order to obtain a precise knowledge of the
solution function, as well as a small error in the numerical
integration (A2), the number of grid points NI has to be
chosen as large as possible. In specific examples, we have
had satisfactory results with numbers in the range NI =
250, . . . ,500. Now, all ingredients necessary to formulate
the functional (23) in the case of a minimization using the
function discretization (A1) have been assembled. Again,
the truncated nonrotated amplitude A(x) is a known input.
Numerical initial conditions for the parameters {qn,rn} have to
be drawn prior to fitting, for instance from the interval [−1,1].
An ensemble of initial parameter configurations should then
be used, performing a functional minimization for each of
them. One should employ ensembles of at least NMC = 200
configurations. Omitting further intermediate steps, we quote
the final result for the functional:

W discr.({rn,qn})

:=
NI∑
n=1

(
r2
n + q2

n − 1
)2 +

[
NI∑
n=1

�x
(
rnIm[A(xn)] + qnRe[A(xn)]

)]2

+
Kcut∑
k=1

⎧⎨
⎩
[

NI∑
n=1

�x(rnRe[A(xn)] − qnIm[A(xn)])PL+k(xn)

]2

+
[

NI∑
n=1

�x(rnIm[A(xn)] + qnRe[A(xn)])PL+k(xn)

]2
⎫⎬
⎭. (A3)

065202-11



WUNDERLICH, ŠVARC, WORKMAN, TIATOR, AND BECK PHYSICAL REVIEW C 96, 065202 (2017)

Note that in this case, the parameters NI and Kcut can be
tuned independently from each other. This is different from the
minimization scheme using Legendre expansions described in
the main text, where the parameters Lcut and Kcut have been
connected. Using the minimization with the discretization

functional (A3), we have obtained the same solutions as
with the Legendre parametrization (32) for specific toy-model
examples. However, the discretization method has proven to
be the numerically more demanding and less stable of the
two.

APPENDIX B: THE FUNCTIONAL W [F(x)] AS AN ORDINARY FUNCTION W ({Lk}), DEPENDING
ON LEGENDRE COEFFICIENTS

As hinted at in the main text, the minimization functional (23) becomes, once the phase-rotation function F (x) is parametrized
as a Legendre series, an ordinary function depending on the Legendre coefficients. Here, we derive a formal expression of the
resulting functional, which is then for finite Legendre expansions equal to the form (32) used in our numerical minimizations.
We assume here an initial nonrotated amplitude A(W,θ ) truncated at L [i.e., the truncated version of Eq. (1)] and for the most
general formal case, an infinite Legendre series for the phase-rotation function

F (x) =
∞∑

k=0

LkPk(x). (B1)

Now, all three terms appearing in the formal definition (23) of the minimization functional W [F (x)] are investigated with regard
to their dependence on the complex Legendre coefficients {Lk}. The first term, i.e., the sum over x, in Eq. (23) imposes the
unimodularity of F (x). The squared modulus of the latter is appearing here, which under the present assumptions can be rewritten
as follows:

|F (x)|2 = F ∗(x)F (x) =
( ∞∑

k′=0

L∗
k′Pk′(x)

)( ∞∑
k=0

LkPk(x)

)

=
∞∑

k,k′=0

L∗
k′LkPk′ (x)Pk(x) =

∞∑
k,k′=0

k′+k∑
m=|k′−k|

L∗
k′Lk〈k′,0; k,0|m,0〉2Pm(x). (B2)

The term in the second line of Eq. (23) restricts the S wave to an overall phase constraint. The imaginary part which is squared
there becomes

Im

[∫ 1

−1
dxF (x)A(x)

]
= Im

[∫ 1

−1
dx

( ∞∑
k′=0

Lk′Pk′(x)

)(
L∑

�=0

(2� + 1)A�P�(x)

)]

= Im

[ ∞∑
k′=0

L∑
�=0

Lk′(2� + 1)A�

∫ 1

−1
dxPk′ (x)P�(x)

]
= 2 Im

[ ∞∑
k′=0

L∑
�=0

Lk′A�δk′�

]
= 2 Im

[
L∑

�=0

L�A�

]
,

(B3)

using just the basic orthogonality relation for the Legendre polynomials. Finally, the infinite sum over k in the third and fourth
line of the definition (23) sets all the higher partial wave projections above L to zero. Every summand in this infinite series consist
of the modulus squared of a complex projection integral. This integral can again be formulated explicitly as a function of {Lk}:

∫ 1

−1
dxF (x)A(x)PL+k(x) =

∫ 1

−1
dx

( ∞∑
r=0

LrPr (x)

)(
L∑

�=0

(2� + 1)A�P�(x)

)
PL+k(x)

=
∞∑

r=0

L∑
�=0

(2� + 1)A�Lr

∫ 1

−1
dxPr (x)P�(x)PL+k(x)

=
∞∑

r=0

L∑
�=0

�+L+k∑
m=|�−L−k|

(2� + 1)A�Lr〈�,0; L + k,0|m,0〉2
∫ 1

−1
dxPr (x)Pm(x)

= 2
L∑

�=0

�+L+k∑
m=|�−L−k|

(2� + 1)

(2m + 1)
A�Lm〈�,0; L + k,0|m,0〉2. (B4)
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Combining the intermediate results (B2), (B3), and (B4), we arrive at the final expression for the minimization functional W as
a function of the Legendre coefficients

W ({Lk}) =
∑

x

⎛
⎝ ∞∑

k,k′=0

k′+k∑
m=|k′−k|

L∗
k′Lk〈k′,0; k,0|m,0〉2Pm(x) − 1

⎞
⎠

2

+
(

L∑
�=0

Im[L�A�]

)2

+
∞∑

k=1

L∑
�,�̃=0

�+L+k∑
m=|�−L−k|

�̃+L+k∑
m̃=|�̃−L−k|

(2� + 1)

(2m + 1)

(2�̃ + 1)

(2m̃ + 1)
A∗

�L
∗
mA�̃Lm̃〈�,0; L + k,0|m,0〉2〈�̃,0; L + k,0|m̃,0〉2. (B5)

We note that this function is defined purely in terms of the information on the input amplitude, i.e., its truncation order L and
partial waves A�. Clebsch-Gordan coefficients and the Legendre polynomials appearing here are known. Therefore, the only
free parameters here are just the real and imaginary parts of the Legendre coefficients, as it should be. Furthermore, it should be
noted that the expression (B5) is still quite formal, especially since it still contains an infinite sum over k. For practical numerical
purposes, the infinite sum over the partial-wave projections, as well as the Legendre expansion (B1), would have to be truncated.
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