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ABSTRACT

In this paper we present some new results on Brocard
points of a harmonic quadrangle in isotropic plane. We
construct new harmonic quadrangles associated to the
given one and study their properties dealing with Brocard
points.
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O Brocardovim točkama harmoničnog četvero-
kuta u izotropnoj ravnini

SAŽETAK

U radu se prikazuju neki novi rezultati o Brocardovim

točkama harmoničnog četverokuta u izotropnoj ravnini.

Konstruiraju se novi harmonični četverokuti pridruženi

danom četverokutu, te se proučavaju njihova svojstva

vezana uz Brocardove točke.

Ključne riječi: izotropna ravnina, harmonični četverokut,

Brocardove točke

1 Introduction

The geometry of harmonic quadrangle has been discussed
in [3]. The harmonic quadrangle is a cyclic quadrangle
ABCD (see [5]) with the following property: the point of
intersection of the tangents at the vertices A and C lies on
the line BD, and the intersection point of the tangents at the
vertices B and D lies on the line AC. If one of the requests
is fulfilled, the other one automatically follows. The quad-
rangle ABCD is chosen to have y = x2 as a circumscribed
circle and the vertices A = (a,a2),B = (b,b2),C = (c,c2),
and D= (d,d2), with a,b,c,d being mutually different real
numbers, where a< b< c< d. In that case, sides of ABCD
are

AB . . .y = (a+b)x−ab, DA . . .y = (a+d)x−ad,
BC . . .y = (b+ c)x−bc, AC . . .y = (a+ c)x−ac,
CD . . .y = (c+d)x− cd, BD . . .y = (b+d)x−bd.

(1)

and tangents to y = x2 at A,B,C,D are

A . . .y = 2ax−a2, B . . .y = 2bx−b2,
C . . .y = 2cx− c2, D . . .y = 2dx−d2.

(2)

Equations (1) and (2) can be found within Lemma 1 in
[5]. In that paper the diagonal triangle of a cyclic quadran-
gle was introduced where diagonal points U = AC∩BD,
V = AB∩CD and W = AD∩BC are given by

U =

(
ac−bd

a−b+ c−d
,

ac(b+d)−bd(a+ c)
a−b+ c−d

)
,

V =

(
ab− cd

a+b− c−d
,

ab(c+d)− cd(a+b)
a+b− c−d

)
,

W =

(
ad−bc

a−b− c+d
,

ad(b+ c)−bc(a+d)
a−b− c+d

)
.

(3)

Taking ac = bd =−k2,k > 0 we deal with harmonic quad-
rangle in a standard position. As every harmonic quadran-
gle can be represented in the standard position, in order to
prove geometric facts for each harmonic quadrangle, it is
sufficient to give a proof for the standard harmonic quad-
rangle. The diagonal points given by (3) in the case of

11
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standard position turn into

U = (0,k2), V =

(
ab− cd

a+b− c−d
,−k2

)
,

W =

(
ad−bc

a−b− c+d
,−k2

)
.

(4)

Due to Theorem 1 in [3] more characterizations of har-
monic quadrangles among the cyclic ones are given.

Theorem 1 Let ABCD be an allowable cyclic quadran-
gle with vertices A = (a,a2), B = (b,b2), C = (c,c2),
D = (d,d2), sides (1) and tangents of its circumscribed
circle y = x2 at its vertices are given by (2). These are the
equivalent statements:

1. the point TAC = A ∩C is incident with the diagonal
BD;

2. the point TBD = B ∩D is incident with the diagonal
AC;

3. the equality

d(A,B) ·d(C,D) =−d(B,C) ·d(D,A) (5)

holds;

4. the equality

2(ac+bd) = (a+ c)(b+d) (6)

holds.

In the sequel we will deal with Brocard points of these
quadrangles defined in [3] and show several properties of
them connected to the harmonic quadrangles associated to
ABCD. For that purpose the following lemma will be very
useful.

Lemma 1 Let ABCD be an allowable cyclic quadrangle in
the standard position with vertices A = (a,a2), B = (b,b2),
C = (c,c2), D = (d,d2). The following equalities are valid

ab+ k2 = k(b−a), bc+ k2 = k(c−b),

cd + k2 = k(d− c), da+ k2 = k(a−d).

Proof. Let us prove ab+ k2 = k(b−a). Taking (see [3])

(a− c)(b−d)
a+ c−b−d

=−2k (7)

in

−2k(a−b)−2ab = 2k2

we get

−a2b+ab2−a2d+b2c−4abc+4abd+abc−abd+acd−bcd
a−b+ c−d

= 2k2,

i.e.

−a2b+ab2−a2d +b2c−4k2(a−b)
a−b+ c−d

+ k2 = 2k2.

After employing (a+c)(b+d) =−4k2 from [3], the upper
equality turns into

−a2b+ab2−a2d +b2c+(a+c)(b+d)(a−b)
a−b+ c−d

+ k2 = 2k2.

Immediately,

k2(a−b+ c−d)
a−b+ c−d

+ k2 = 2k2

follows and the claim of Lemma is proved. �
Further on we will always deal with the harmonic quadran-
gle in the standard position.

2 Brocard points

There is an interesting result discussed in [3]: whole family
of harmonic quadrangles can be obtained out of the given
harmonic quadrangle. Namely, let ABCD be a harmonic
quadrangle. Lines a′,b′,c′,d′ are taken in a way to be inci-
dent to vertices A,B,C,D, respectively, and make equal an-
gles to the sides AB,BC,CD,DA, respectively. The quad-
rangle formed by lines a′,b′,c′,d′ is a harmonic quadran-
gle as well. Furthermore, denoting obtained quadrangle
by A′B′C′D′, the ratios of the corresponding sides of given
quadrangle ABCD and obtained quadrangle A′B′C′D′ are
equal. Only in one case, points A′,B′,C′,D′ coincide with
one point P1, the first Brocard point. In similar manner, the
second Brocard point P2 is obtained as well. In the latter
case lines P2A, P2B, P2C, and P2D form the equal angles
with the sides AD,DC,CB, and BA, respectively. Brocard
points are of the form

P1 =
(
k,3k2) , P2 =

(
−k,3k2) . (8)

The Brocard points can easily be constructed by using the
fact that

P1 =WMAC ∩V MBD, P2 =V MAC ∩WMBD (9)

where MAC, MBD are midpoints of the line segments AC,
BD, respectively.

The Euclidean case of Theorem 2 can be found in [1], and
the Euclidean analogue of Theorem 3 is stated in [2] and
[4].
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Theorem 2 Let ABCD be a harmonic quadrangle and
P1,P2 its Brocard points. The following equality holds:

d(A,P1) ·d(B,P1) ·d(C,P1) ·d(D,P1)

= d(A,P2) ·d(B,P2) ·d(C,P2) ·d(D,P2).

Proof. Since

d(A,P1) ·d(B,P1) ·d(C,P1) ·d(D,P1)

= (k−a)(k−b)(k− c)(k−d)

=
(
k2− k(a+ c)+ac

)(
k2− k(b+d)+bd

)
= k2(a+ c)(b+d) =−4k4

and

d(A,P2) ·d(B,P2) ·d(C,P2) ·d(D,P2)

= (−k−a)(−k−b)(−k− c)(−k−d)

=
(
k2 + k(a+ c)+ac

)(
k2 + k(b+d)+bd

)
= k2(a+ c)(b+d) =−4k4

the theorem is proved. �

Theorem 3 Let ABCD be a harmonic quadrangle and
P1,P2 its Brocard points. The four points AP1 ∩ BP2,
BP1 ∩CP2, CP1 ∩DP2, DP1 ∩AP2 lie on a circle, that is
incident with the points U, P1, P2, MAC and MBD as well.
Furthermore, they are parallel with the midpoints of the
line segments AB, BC, CD and DA, respectively.

Proof. Due to Theorem 5 in [3] the circle incident to the
points U,P1,P2,MAC and MBD is given by

y = 2x2 + k2. (10)

Let us take for example the point AP1∩BP2. Lines AP1 and
BP2 have the equations (see Theorem 4 in [3])

y = (a+b+2k)x−a(2k+b),

y = (b+a−2k)x−b(−2k+a).

Thus, the point AP1∩BP2 is of the form

(
a+b

2
,k(b−a)+

a2 +b2

2

)
.

Due to Lemma 1 the equality k(b− a) = ab+ k2 is valid,
and therefore the point AP1∩BP2 is incident to (10). �

A

B C

D

MAC

MBD

MAB

MBC

MCD

MDA

P1
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Figure 1: Visualization of Theorem 3

In the sequel we will study two quadrangles associated to
the given harmonic quadrangle ABCD. Let Ai, Bi, Ci, Di

be the intersection points of its circumscribed circle y = x2

with the lines APi, BPi, CPi, DPi, respectively, i = 1,2. Ac-
cording to [3] (Theorem 4, for h = −2k), the line AP1 has
the equation y = (a+b+2k)x−a(2k+b). Hence, A1 has
coordinates

(
b+2k,(b+2k)2

)
. Similarly, we get the other

intersections:

A1 =
(

b+2k,(b+2k)2
)
, B1 =

(
c+2k,(c+2k)2

)
,

C1 =
(

d +2k,(d +2k)2
)
, D1 =

(
a+2k,(a+2k)2

)
, (11)

and

A2 =
(

d−2k,(d−2k)2
)
, B2 =

(
a−2k,(a−2k)2

)
,

C2 =
(

b−2k,(b−2k)2
)
, D2 =

(
c−2k,(c−2k)2

)
. (12)

Some interesting properties of the obtained quadrangles
are stated in Theorems 4-9 that follow. The authors haven’t
found their Euclidean counterparts in the literature avail-
able to them, but they are convinced in their validity in the
Euclidean plane as well.

Theorem 4 The quadrangles A1B1C1D1 and A2B2C2D2,
associated to the harmonic quadrangle ABCD, are har-
monic quadrangles as well.

Proof. From (11) we get equations (see Theorem 4 in [3])

d(A1,B1) ·d(C1,D1) = (c−b)(a−d) = d(B,C) ·d(D,A),

d(B1,C1) ·d(D1,A1) = (d− c)(b−a) = d(C,D) ·d(A,B).
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Obviously, d(A1,B1) · d(C1,D1) = −d(B1,C1) · d(D1,A1)
precisely when d(A,B) · d(C,D) = −d(B,C) · d(D,A).
Therefore, A1B1C1D1 is a harmonic quadrangle. Similar
procedure gives the proof for A2B2C2D2. �
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y

Figure 2: Harmonic quadrangles A1B1C1D1 and
A2B2C2D2.

Theorem 5 For the quadrangles A1B1C1D1 and
A2B2C2D2 associated to the harmonic quadrangle ABCD
the equalities

∠(D2A2,A2B2) =−∠(AB,BC) = ∠(B1C1,C1D1),

∠(A2B2,B2C2) =−∠(BC,CD) = ∠(C1D1,D1A1),

∠(B2C2,C2D2) =−∠(CD,DA) = ∠(D1A1,A1B1),

∠(C2D2,D2A2) =−∠(DA,AB) = ∠(A1B1,B1C1),

and

d(A1,B1) = d(B,C) = d(C2,D2),

d(B1,C1) = d(C,D) = d(D2,A2),

d(C1,D1) = d(D,A) = d(A2,B2),

d(D1,A1) = d(A,B) = d(B2,C2)

hold.

Proof. Let us prove ∠(D2A2,A2B2) =−∠(AB,BC). From
(12) we get

A2B2 ... y = (d +a−4k)x− (d−2k)(a−2k),

A2D2 ... y = (d + c−4k)x− (d−2k)(c−2k),

and therefore, ∠(D2A2,A2B2) = a − c. The equality
∠(AB,BC) = c− a, obtained from (1), completes the first
part of the proof.
The second part of the theorem follows directly from (11)
and (12). �

Theorem 6 For the quadrangles A1B1C1D1 and
A2B2C2D2 associated to the harmonic quadrangle ABCD
the following statements on their diagonal points U i =
AiCi∩BiDi, i = 1,2, are valid:

1. d(U1,U) = d(U,U2).

2. The connection line U1U2 is parallel to the connec-
tion lines P1P2 and VW.

3. The points U1, U2 are incident with the lines UP1,
UP2, respectively.

Proof. Directly from (11) and (12) the coordinates of U1,
U2 are obtained to be

U1 = (2k,5k2), U2 = (−2k,5k2).

Thus, d(U1,U) =−2k = d(U,U2).
The connection line U1U2 has the equation y = 5k2 and it
is parallel to the lines P1P2 and VW having the equations
y = 3k2 and y =−k2.
The last part of the theorem holds since the coordinates of
the points U,U1,P1 satisfy the equation y= 2kx+k2, while
the coordinates of the points U,U2,P2 satisfy the equation
y =−2kx+ k2. �

Theorem 7 The diagonal points V i = AiBi ∩CiDi and
W i = AiDi∩BiDi of the quadrangles AiBiCiDi are incident
with the lines V Pi and WPi, respectively, i = 1,2.

Proof. Let us prove that V 1 =A1B1∩C1D1 is incident with
V P1, i.e. V 1,V,P1 are collinear points. From (3) and (11)
we get

V 1 = (
ad−bc

a−b− c+d
+2k,4k

ad−bc
a−b− c+d

+3k2).

Now, the slopes of the lines V P1 and V 1P1 are obtained to
be

−4k2(a+b− c−d)
ab− cd− k(a+b− c−d)

,
4k(ad−bc)

ad−bc+ k(a−b− c+d)
,

respectively, and are equal precisely when

− k(a+b− c−d)[ad−bc+ k(a−b− c+d)]

= (ad−bc)[ab− cd− k(a+b− c−d)]

i. e.

−k2(a+b− c−d)(a−b− c+d) = (ad−bc)(ab− cd).
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This is true since

− k2(a2−2ac+ c2−b2 +2bd−d2)

=−a2k2 +d2k2 +b2k2− c2k2.

The other three collinearities can be proved in a similar
way. �

Theorem 8 Let MAiCi and MBiDi be the midpoints
of the line segments AiCi and BiDi, respectively,
i = 1,2. Then the following quadruples of points
are collinear: {MA1C1 ,V,MBD,P1}, {MB1D1 ,W,MAC,P1},
{MA2C2 ,W,MBD,P2}, {MB2D2 ,V,MAC,P2}.

Proof. Let us prove the claim of Theorem for
the quadruple of points {MA1C1 ,V,MBD,P1}. Ac-
cording to (9) the points V,MBD,P1 are collinear.
Therefore, it is sufficient to show that the points
MBD

(
b+d

2 , b2+d2

2

)
, MA1C1

(
b+d+4k

2 , (b+2k)2+(d+2k)2

2

)
, and

P1(k,3k2) are collinear. Their coordinates satisfy the equa-
tion y = (b+d +2k)x− (b+d)k+ k2.
Indeed,

(b+d +2k)
b+d

2
− (b+d)k+ k2

=
(b+d)2

2
+(b+d)k− (b+d)k+ k2 =

b2 +d2

2
.

Similarly,

(b+d +2k)
b+d +4k

2
− (b+d)k+ k2

=
(b+d)2

2
+2k(b+d)+ k(b+d)+4k2− (b+d)k+ k2

=
(b+2k)2 +(d +2k)2

2

and

(b+d +2k)k− (b+d)k+ k2 = 3k2.

The other three collinearities can be proved in a similar
way. �

Theorem 9 Let Pi
1 and Pi

2 be Brocard points of the quad-
rangle AiBiCiDi, i = 1,2. Then the second Brocard point
P1

2 of the quadrangle A1B1C1D1 coincides with P1, while
the first Brocard point P2

1 of the quadrangle A2B2C2D2 co-
incides with P2.

Proof. According to (9), P1
2 =V 1MA1C1 ∩W 1MB1D1 . Now,

from Theorems 7-8 we get P1
2 =V MBD∩WMAC = P1.

Similarly,
P2

1 =W 2MA2C2 ∩V 2MB2D2 =WMBD∩V MAC = P2. �

By using two Brocard points of the given quadrangle
ABCD we constructed two new quadrangles. We can con-
tinue that procedure and, by using the Brocard points of the
obtained quadrangles, construct further four quadrangles.
Actually, we will get only two new quadrangles, since two
of them coincide with the referent quadrangle ABCD. In-
deed, if we use A1B1C1D1 and its first Brocard point, we
will get a new quadrangle, but if we use its second Brocard
point, which is P1, then we will get ABCD. So, in each step
of this procedure we have to use the first Brocard points,
or we always have to use the second Brocard points.
Some computations verify that if we start a pattern with
the quadrangle ABCD in the step 0, and the quadrangle
A1B1C1D1 in the step 1, then the first Brocard point in the
step n has the coordinates

(
(2n+1)k,(2n+1)2k2 +2k2

)
.

Therefore, we conclude that all Brocard points of the quad-
rangles associated to the quadrangle ABCD lie on the circle
y = x2 +2k2.

We will now focus on the other two quadrangles associated
to the given harmonic quadrangle ABCD. Let the quadran-
gles A3B3C3D3 and A4B4C4D4 be defined in the following
way: The lines lAB, lBC, lCD, lDA incident with the diago-
nal point U and parallel to AB, BC, CD, DA, respectively,
intersect the sides of the quadrangle ABCD in eight points

A3 = lAB∩AD, A4 = lAD∩AB,

B3 = lBC ∩AB, B4 = lAB∩BC,

C3 = lCD∩BC, C4 = lBC ∩CD,

D3 = lAD∩CD, D4 = lCD∩AD.

A

B
C

D

U

A3

B3

C3

D3

A4

B4

C4

D4

x

y

Figure 3: Harmonic quadrangles A3B3C3D3 and
A4B4C4D4
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It was shown in [3] that the constructed eight points lie
on a circle y = 2x2. The properties of the quadrangles
A3B3C3D3 and A4B4C4D4 in the Euclidean plane have
been discussed in [4]. Here we present the similar study
for the isotropic plane.
Since the lines lAB and AD are given by

lAB ... y = (a+b)x+ k2,

AD ... y = (a+d)x−ad,

the first coordinate of their intersection point A3 is ad+k2

d−b .

According to Lemma 1, it equals k(a−d)
d−b . Similarly, all in-

tersection points are obtained as

A3 =

(
k(a−d)

d−b
,2
(

k(a−d)
d−b

)2
)
, (13)

B3 =

(
k(b−a)

a− c
,2
(

k(b−a)
a− c

)2
)
,

C3 =

(
k(c−b)

b−d
,2
(

k(c−b)
b−d

)2
)
,

D3 =

(
k(d− c)

c−a
,2
(

k(d− c)
c−a

)2
)

and

A4 =

(
k(b−a)

b−d
,2
(

k(b−a)
b−d

)2
)
,

B4 =

(
k(c−b)

c−a
,2
(

k(c−b)
c−a

)2
)
,

C4 =

(
k(d− c)

d−b
,2
(

k(d− c)
d−b

)2
)
,

D4 =

(
k(a−d)

a− c
,2
(

k(a−d)
a− c

)2
)
.

Theorem 10 For the quadrangles AiBiCiDi, i = 3,4, the
equalities

d(Ai,Bi)

d(A,B)
=

d(Bi,Ci)

d(B,C)
=

d(Ci,Di)

d(C,D)
=

d(Di,Ai)

d(D,A)
=

1
2

(14)

and

∠(DiAi,AiBi) = ∠(DA,AB),

∠(AiBi,BiCi) = ∠(AB,BC),

∠(BiCi,CiDi) = ∠(BC,CD),

∠(CiDi,DiAi) = ∠(CD,DA)

hold.

Proof. In order to show (14) is valid, we give a proof for
d(A3,B3)

d(A,B)
=

1
2

. Indeed,

d(A3,B3) =
k(b−a)

a− c
+

k(a−d)
b−d

= k
(b−a)(b−d)+(a− c)(a−d)

(a− c)(b−d)

= k
(a−b)(a−b+ c−d)

(a− c)(b−d)
= k

(a−b)(a−b+ c−d)
−2k(a−b+ c−d)

=
b−a

2
=

d(A,B)
2

Further on, let us prove ∠(A3B3,B3C3) = ∠(AB,BC). Out
of (13) the slopes of the lines A3B3 and B3C3 are obtained
to be

2k
(

a−d
d−b

+
b−a
a− c

)
, 2k

(
b−a
a− c

+
c−b
b−d

)
,

respectively. Thus,

∠(A3B3,B3C3) =
2k(a−b+ c−d)

b−d
=
−(a− c)(b−d)

b−d
= c−a = ∠(AB,BC). �

Theorem 11 The quadrangles A3B3C3D3 and A4B4C4D4

are harmonic quadrangles as well.

Proof. It follows directly from (14) and Theorem 1. �

Theorem 12 Let U i = AiCi∩BiDi, be the diagonal points
of the quadrangles AiBiCiDi, i = 3,4. The following state-
ments are valid:

1. The diagonal point U is the midpoint of the line seg-
ment U3U4.

2. The connection line U3U4 is parallel to the connec-
tion lines P1P2 and VW.

Proof. From (14) we get the equation of the line A3C3

y =−2k(a+b− c−d)
b−d

x+
−2k2(b− c)(a−d)

(b−d)2 .

By using 2(a−d)(b− c) = (a− c)(b−d), it turns into

y =−2k(a+b− c−d)
b−d

x− k2(a− c)
b−d

.

Similarly, we get the equation of the line B3D3 as

y =−2k(a−b− c+d)
a− c

x− k2(b−d)
a− c

.
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Therefore, their intersection has coordinates U3 =(
− k

2
,k2
)
. Analogously, the diagonal point U4 = A4C4∩

B4D4 =

(
k
2
,k2
)

is obtained. The point U(0,k2) is obvi-

ously the midpoint of the points U3 and U4.
The line U3U4 is given by the equation y = k2, and there-
fore, parallel to the connection lines P1P2 and VW . �

Theorem 13 Let V i = AiBi ∩CiDi, W i = AiDi ∩BiDi be
the diagonal points of the quadrangles AiBiCiDi, i = 3,4.
Then the points V 3,W 4 are incident with BD, and the
points V 4,W 3 are incident with AC.

Proof. To prove the theorem, we will show that V 3 lies
on BD. The other statements can be shown in the similar
manner.
Out of (13), elementary, but long calculation results with
coordinates of V 3 = A3B3∩C3D3 in the form

V 3 =

(
c−a

a+b− c−d
k,

a−b− c+d
a+b− c−d

k2
)

(15)

The equality ab− bc− cd + da = 2k(b− d) that can be
obtained from Lemma 1 will be used to prove that coordi-
nates given by (15) satisfy the equation y = (b+d)x−bd
of the line BD. Indeed,

(b+d)
(c−a)k

a+b− c−d
−bd =

(bc−ab+ cd−ad)k
a+b− c−d

+ k2

=
−2k2(b−d)
a+b− c−d

+ k2 =
a−b− c+d
a+b− c−d

k2. �

Theorem 14 Let MAiCi and MBiDi be the midpoints of the
line segments AiCi and BiDi, respectively, i = 3,4. Then
MAiCi are incident with AC, and BiDi are incident with BD,
i = 3,4.

Proof. Let us for example prove that MA3C3 is incident
with AC. It is sufficient to prove that the coordinates of the
midpoint

MA3C3 =

(
a+b− c−d

d−b
k
2
,
(a−d)2 +(c−b)2

(d−b)2 k2
)

(16)

satisfy the equation y = (a+ c)x− ac of the line AC. In-
deed,

(a+ c)(a+b− c−d)k
2(d−b)

+ k2 = k2 (a−d)2 +(c−b)2

(d−b)2

precisely when

(a+ c)(a+b− c−d)
2(d−b)

k= k2 (a−d)2 +(c−b)2− (d−b)2

(d−b)2 .

This is true if and only if

(a+ c)(a+b− c−d)
d−b

= 2k
(a−d)2 +(c−b)2− (d−b)2

(d−b)2 ,

which is, by using (7), equivalent to

(a+ c)(a+b− c−d)(a−b+ c−d)

= (a− c)(a2 + c2−2ad−2bc+2bd).

Taking ac = bd =−k2, we get

(a+ c)(d2−b2) =−4k2(d−b).

This is valid due to (a+ c)(b+d) =−4k2. �

Theorem 15 Let Pi
1 and Pi

2 be Brocard points of the quad-
rangle AiBiCiDi, i = 3,4. Then P3

1 = U, P3
2 = P2 and

P4
1 = P1, P4

2 =U.

Proof. The facts P3
1 =U and P4

2 =U follow directly from
Theorems 13 and 14. Indeed, P3

1 =W 3MA3C3 ∩V 3MB3D3 =
AC∩BD =U and P4

2 =V 3MA3C3 ∩W 3MB3D3 = BD∩AC =
U .
It is left to prove P3

2 = P2 and P4
1 = P1. For the illustration,

we will prove P3
2 = P2. It is sufficient to show that P2 lies

both on V 3MA3C3 and W 3MB3D3 . Let us check that it lies
on V 3MA3C3 , i. e. that P2, V 3, MA3C3 are collinear points.
From (8) and (15) we get the following equation of the line
P2V 3:

y =
−2k(a+2b− c−2d)

b−d
(x+ k)+3k2. (17)

From

−2k(a+2b− c−2d)
b−d

(
a+b− c−d

d−b
k
2
+ k
)
+3k2

=
k2

(b−d)2(a+2b− c−2d)(a−b− c+d)+3k2

=
k2

(b−d)2

(
a2+b2+c2+d2−2ac−2bd+ab−ad−bc+cd

)
=

k2

(b−d)2

(
a2−2ad +d2 +b2−2bc+ c2)

=
k2

(b−d)2

(
(a−d)2 +(b− c)2)

we conclude that the midpoint MA3C3 with coordinates (16)
is incident with the line P2V 3. �

We can start a construction of a sequence of quadran-
gles with the quadrangle ABCD in step 0, and quadran-
gle A4B4C4D4 in step 1. Some computations verify that
a quadrangle constructed in step n has Brocard points
(k,3k2) and

((
1− 1

2n−1

)
k,
(

3− n
2n−2

)
k2
)

. Obviously, all
quadrangles in the sequence have the same first Brocard
point P1 = (k,3k2), while their second Brocard points ap-
proach the point P1.

17
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