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Chapter 1

Introduction

1.1 The role of close binary stars

The physics of close binary stars is much more complicated than that of
single stars. Due to gravitational interaction the component stars are tidally
distorted. The mutual irradiation of the atmospheres heats the portions
facing one another to higher temperatures. On a long time scale the evolution
of a component of a binary system differs from that of a single star of similar
mass. Tidal distortions induce faster mixing of the material in the stellar
interior which affects the chemical evolution of the star. The volume of
space that a star can occupy is limited by the geometry of the system. When
a component of a binary star expands due to stellar evolution matter may be
transferred to the other component resulting in a contact or a semidetached
configuration.

Despite of their complexity, the binary stars are sometimes said to be ‘the
royal road to the stars’. The components serve one to another as probes. The
double-lined spectroscopic binaries, and in particular the eclipsing ones, play
an especially important role. Through combined modeling of the light curves
and measurements of the radial velocities during the orbital cycle accurate
masses and radii can be determined. The possibilities extend even to studying
the distribution of mass within the components stars through the analysis of
the apsidal motion in binary stars with eccentric orbits.

Over the past two decades several new methods for analysis of close bi-
naries were developed. In some of them the concepts from other fields of
application, such as tomography or maximum entropy image reconstruction,
were utilized to extract as much information as possible from a single time
dependent point source on the sky. On the other hand, methods initially
developed through the work on binary stars played crucial roles in recent
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detections of planets orbiting stars.

1.2 Separation and disentangling of the com-

posite spectra, description of the problem

The term close binary star is most frequently used to designate a system
consisting of two stars that are close enough to affect each others evolution.
Such systems are not visible binaries, i.e. the two light sources cannot be
directly resolved even with the most powerful telescopes, nor can the spectra
of component stars be recorded separately. This is as well true for many
well-detached systems that might not fall into the category of close binary
stars defined as above. Even some visual binaries, which can be separated
photometrically, may not allow the spectra of components to be recorded
separately. In all such systems, unless the luminosities of the components of
the binary star differ greatly, the spectrum that can be recorded consists of
the spectral features of both components and is called the composite spec-
trum. A time series of such spectra well distributed over the orbital cycle
contains information on:

• the dependence of the radial velocities of the component stars on the
orbital phase, and

• spectral features of component stars.

In almost all cases, this information is ‘entangled’, and is difficult to extract.
The spectral lines blend to form shapes that can not be analyzed as such.

Measurements of radial velocities in the composite spectra are required
for the determination of the masses of the component stars. Simple meth-
ods such as fitting Gaussians into well resolved lines, and not so simple
methods such as cross-correlation techniques are considered to be standard
RV-measurement tools. But such measurements are in general hampered by
a number of difficulties, e.g. line blending, large rotation, component confu-
sion, signal-to-noise ratio, etc. Big advance has been achieved through the
application of the cross-correlation technique, but even this method suffers
from drawbacks, the need for template spectra being the most serious one.

The spectra of component stars are needed if the surface temperatures
are to be determined or if the abundances of chemical elements in the stellar
atmospheres are to be studied. The techniques based on ‘spectral subtrac-
tion’, i.e. on subtracting the spectral features of an assumed spectral type
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can be applied, but at the risk of biasing the results if inadequate templates
are used. These difficulties motivated the development of more objective
techniques.

Spectral separation: Given a time series of composite spectra, and cor-
responding radial velocities and light contributions of the component
stars, this technique reconstructs the spectra of component stars. This
technique does not make use of any a-priori information on the spectral
features in the component spectra.

Spectral disentangling: This is an extension to the spectral separation
technique where in addition to component spectra we determine a rea-
sonably selected subset of the parameters of the binary system, usually
the parameters of orbit.

The fundamental difference when compared to predecessors is that these
techniques do not require the use of spectral templates. They are, however,
computationally intensive, and their performance improves with the size and
the quality of the data set.

1.3 The most important solutions

The first successful reconstruction of component spectra that did not rely
on spectral templates was the tomographic separation of AO Cas by Bag-
nuolo & Gies (1991). In this work the radial velocities of component stars
were measured by the cross-correlation technique. The reconstruction was
carried out through an iterative least-squares technique and was named ‘the
tomographic separation of composite spectra’. The technique was success-
fully applied in a series of works by the same group, see Gies et al. (2002)
and references therein.

Simon & Sturm (1994a) implemented the separation technique using the
singular value decomposition technique to handle the large scale linear least
squares problem. More importantly they introduced the disentangling tech-
nique by optimizing the radial-velocity semi-amplitudes of the component
stars. The earliest applications of the technique are by Simon & Sturm
(1994b) and by Simon et al. (1994).

Hadrava (1995) proposed to use discrete Fourier transforms of the spectra
in order to uncouple the large system of linear equations. This resulted in a
computationally very simple and robust separation and disentangling tech-
nique, albeit with some limitations compared to the predecessors. This tech-
nique has seen many successful applications, e.g. by Hensberge et al. (2000) or
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by Griffin (2002). Hadrava (1995) proposed to use the separation technique
to treat higher multiplicity systems, as well as to optimize the light-variability
related parameters through disentangling procedures (Hadrava 1997).

1.4 Aim of this work

The motivation to undertake the revision of the concepts behind the spec-
tral separation and disentangling techniques came from the work of Hens-
berge, Pavlovski and Verschueren (2000) on the binary star V578 Mon. They
applied the disentangling technique to determine the radial velocity semi-
amplitudes and to reconstruct the spectra of the component stars. Echelle
spectra with merged orders obtained with the caspec spectrograph on the
3.6 m telescope at ESO were used. Despite of the successful application of
the fore-mentioned technique it was realized that deeper understanding of
some of its aspects is required for the planned future work in this field. In
particular, this applies to:

• propagation of errors into the component spectra and parameters of
orbit, and

• normalization of the component spectra obtained through separation.

Furthermore, the code used during the work on V578 Mon could handle only
very short stretches of spectra compared to the spectral region covered by
the echelle spectrograms. It was therefore decided to build the disentangling
code from scratch and to start error analysis work.

I start by reviewing the concepts behind the spectral separation tech-
niques in the Chapter 2 of this work. The ‘wavelength-domain’ approach
by Simon & Sturm (1994a) and the ‘Fourier-domain’ approach by Hadrava
(1995) are discussed in detail. I also present the matters of normalization
of the component spectra obtained through spectral separation that are cur-
rently understood. The error analysis work is still under way and some of
the results are published elsewhere (Ilijić, Hensberge & Pavlovski 2001a,b).
In the Chapter 3 of this work the disentangling method is applied to the
spectra of the hot binary star V453 Cyg. The Fourier-based disentangling
code that I wrote has already been used by Griffin (2002) and is described in
the Chapter 4. The Appendix A deals with the equations of the orbital mo-
tion that are of importance in the context of disentangling of the composite
spectra. A procedure for physically correct normalization of the component
spectra obtained through the separation technique is proposed in Appendix
B.
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Chapter 2

Formulation of the methods

In the first Section of this Chapter I introduce the mathematical model of the
spectra of the binary star in terms of functions of a continuous variable. This
model is the basis of the spectral separation and disentangling techniques. In
the following three Sections I deal with the mathematical properties of the
problem of separation of composite spectra. A very general formulation is
given in Section 2.2 in order to prepare the grounds for the approximations
that are introduced later. Section 2.3 deals with the ‘wavelength domain’
separation that was historically first introduced and has proven itself useful
in practice. Section 2.4 covers the ‘Fourier domain’ separation that speeds
up the computation. Section 2.5 addresses currently well understood sources
of apparent misbehaviour of the component spectra obtained through sepa-
ration and gives procedures for bringing them into the ‘expected’ form. The
disentangling method is introduced in Section 2.6 as an application of the
separation technique. Propagation of random error in the input quantities to
the results of separation and disentangling is briefly covered in Section 2.7.

2.1 The model of the composite spectrum

A composite spectrum of a binary star is the spectrum of the summed lights
of component stars. The concept straightforwardly generalizes to composite
spectra of stellar systems with higher order of multiplicity. Whenever the
component stars of a multiple stellar system are not be resolved individually,
only the composite spectra can be recorded. A simple mathematical model
of the composite spectra can be formulated using the following assumptions:

1. The component stars of a multiple stellar system perform orbital mo-
tion around the center of mass of the system. Observed radiation of
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each component is therefore Doppler-shifted according to the time de-
pendent radial velocity of the component.

2. The spectra of the component stars are time independent apart from
the above mentioned Doppler-shift and an overall intensity factor in-
troduced to account for possible distortions of the star and/or eclipses.

3. The time series of composite spectra of the stellar system is recorded by
a spectrograph with linear response in intensity and at resolution suf-
ficient to resolve the spectral features of interest as well as the Doppler
shifts due to orbital motion. Exposure time is negligible compared to
the timescale on which the change in the orbital radial velocities could
be detected. The recorded spectrum is free of the effects of absorption
in the interstellar medium or the atmosphere of the Earth, or any other
systematic effects. Random photon-shot noise is present in the spectra.

The first assumption is valid in all cases of interest and should not be viewed
as an approximation. For the functional dependence of the radial velocities on
time in case of a binary system see Appendix A. The assumption 2 is the key
assumption for application of the method. It is, however, an approximation
and only as long as it is acceptable it makes sense to apply the method. The
assumption 3 is an idealization needed not to over-complicate the formulation
that follows.

The stellar spectrum is, for practical reasons, usually understood as the
product of two functions. One is the smooth function with the dimension
of the flux known as the ‘continuum’ and the other is the dimensionless
function that describes all short-scale structure in the spectra (spectral lines),
known as the ‘normalized spectrum’. Where there are no spectral lines the
normalized spectrum is unity. In accord with this I use the notation F (λ) =
F̄ (λ)f(λ) where F (λ) is the stellar flux and F̄ (λ) and f(λ) are the continuum
and the normalized spectrum respectively.

I begin by expressing the composite spectra in terms of the spectra of
component stars as continuous functions, not including the random noise. I
use the symbol Y for the composite spectra and X for the component spectra
throughout this text. Index k loops over the component stars. Index j loops
over the times tj when the composite spectra were observed. Therefore:

Yj(λ) =
∑

k

εkjX((1− βkj)λ) , (2.1)

where εkj is the eclipse factor to star k at time tj. The eclipse factor for a
spherically symmetric star out of eclipse is unity. During ingress, egress, or
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partial eclipse 0 < ε < 1, and in total eclipse ε = 0. Eclipse factors may
be used to introduce brightness changes due to tidal distortions of the stars.
βkj is the radial velocity of the star k at time tj here in units of the speed of
light. Making use of our notation (2.1) expands to:

Ȳj(λ)yj(λ) =
∑

k

εkjX̄k((1− βkj)λ)xk((1− βkj)λ) . (2.2)

As this holds for any component spectra it also holds for xk(λ) = 1 (no lines)
in particular. In this case I expect yj(λ) = 1. It follows:

Ȳj(λ) =
∑

k

εkjX̄k((1− βkj)λ) . (2.3)

Substituting (2.3) into (2.2):

yj(λ) =
∑

k

`kj(λ)xk((1− βkj)λ) , (2.4)

where:

`kj(λ) =
εkjX̄k((1− βkj)λ)∑

l εljX̄l((1− βlj)λ)
. (2.5)

The function `kj(λ) specifies the fractional contribution of the continuum
of the component k at tj to the continuum of the composite spectrum at
wavelength λ. The equation (2.4) relates the normalized composite spectra
to the normalized spectra of component stars.

2.2 The general formulation

The next step is to replace the continuous representation of the spectra by the
discrete representation, and to include the random noise. If the composite
spectrum yj(λ) observed at tj is sampled at the grid of Nj wavelength points
λji, i = 1, . . . , Nj, I can write:

yji = ρσji + yj(λji) (2.6)

where ρ is a random number drawn from a unit variance normal distribution
and σji is the uncertainty of a particular measurement. The second term on
the right hand side must as well be written in the discrete form:

yji = ρσji +
∑

k

`kjix̂k((1− βkj)λji, {xkα}) (2.7)
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where `kji = `kj(λji) and the function x̂k(λji, {xkα}) estimates the am-
plitude of the component spectrum k from a set of Mk parameters xkα,
α = 1, . . . ,Mk, at wavelength λ. The equation (2.7) can be viewed as having
the observed data on its left hand side and the mathematical model on the
right hand side.

The function x̂k(λji, {xkα}) deserves several comments. The extent to
which it will be able to reproduce the continuous function xk(λ) at each
wavelength depends on the way it is defined and on the number of param-
eters it is uses. The errors originating from the inability of x̂k(λji, {xkα})
to reproduce xk(λ) are considered to be negligible compared to uncertainties
in the data. Choosing the parameters xkα to represent the amplitudes at a
grid of wavelength points λkα, α = 1, . . . ,Mk, is certainly the simplest way
of defining the function x̂. More importantly, this choice makes x̂ linear in
xkα.

Let me now, in addition to assumptions 1–3, introduce the following
assumptions:

• The observed composite spectra of a stellar system show blends of
spectral features of N? ≥ 2 stars orbiting around their center-of-mass.

• A time series consisting of Nobs composite spectra is observed. The
exposure times tj, j = 1, . . . , Nobs, are well distributed over the orbital
cycle(s).

• The radial velocity of the star k, k = 1, . . . , N? ≥ 2, at the time tj,
j = 1, . . . , Nobs, is known for each k and j and is labeled βkj

• The fractional contribution of the continuum of the star k to the con-
tinuum of the composite spectrum observed at tj at wavelength λji is
known and is labeled `kji = `kj(λji).

• The function x̂k(λji, {xkα}) that represents the spectrum of the com-
ponent of the stellar system is linear in the parameters xkα.

It follows that (2.7) represents a set of
∑Nobs

j=1 Nj equations linear in
∑N?

k=1Mk

parameters xkα. This system of equations can be solved for xkα which means
that the normalized spectra of component stars are reconstructed. However,
the system of equations must be well posed. There should be more equations
than unknowns which is fulfilled if Nobs > N? and Mk ' Nj, although this
alone is not a sufficient condition for well-posedness.

An over-determined system of linear equations, especially when modeling
real data is not expected to have an exact solution. Rather, for the system
A · x = y, where A has more rows than columns (i.e.. more equations
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than unknowns), the so called ‘least squares solution’ is required such that
it minimizes the quantity r = |A · x − y|. In our case the set of equations
that is being solved is:

yji

σji

=
1

σji

∑
k

`kjix̂k((1− βkj)λji, {xkα}) , (2.8)

so that the minimized quantity is:

r2 =

Nobs∑
j=1

Nj∑
i=1

1

σ2
ji

(
yji −

N?∑
k=1

`kjix̂k((1− βkj)λji, {xkα})

)2

, (2.9)

The parameters xkα can, therefore, be considered as free parameters in a
large scale least-squares fit of a mathematical model to observed data. How-
ever, for practical reasons it is essential that the model remains linear in the
parameters.

2.3 Separation in the wavelength domain

The general formulation of the separation technique of the preceding Section
has not yet proven itself useful in practical applications. Rather than that,
a much simpler and therefore more limited formulation is used. The most
important simplifications are the following:

• While the general formulation allows each composite spectrum to be
sampled on its own grids of wavelength points and does not require any
regularity in sampling, the simple formulation requires all composite
spectra to be sampled on the same grid of wavelength points equidistant
in the logarithm of the wavelength. This choice allows the Doppler
shifts to be expressed in number of data-bins independently of the
position in the spectrum. The same grid is also used for the resulting
component (model) spectra.

• The coefficients `kji (fractional contribution of the continuum of com-
ponent k to the continuum at time tj at wavelength λji) are assumed to
be independent of wavelength so that the third index can be omitted.
Furthermore, the time dependence is frequently neglected so that only
first index remains. They are simply called light-factors.

• The measurement uncertainties are considered equal for all amplitude
points of a composite spectrum. This is equivalent to assigning fitting
weights to the full wavelength region of the composite spectra, and not
to individual amplitudes.
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With minor differences these apply to the ‘tomographic separation’ of Bagn-
uolo & Gies (1991), to the ‘wavelength domain separation’ of Simon & Sturm
(1994a) as well as to the ‘Fourier domain separation’ of Hadrava (1995).

Let us consider the ‘wavelength domain separation’ in some detail. The
problem is formulated as an over-determined system of linear equations. The
N composite (observed) spectra contain the same number of data points and
are thought of as vectors yj, j = 1, . . . , N . They are concatenated into one
long vector y that will be on the r.h.s. of (2.10). The l.h.s. consists of a
matrix, A, multiplying a vector, x, that is defined as concatenation of the
two (or more) spectra of component stars, xk, k = 1, 2. The matrix A
consists of blocks, Ajk, each responsible of transferring the amplitudes of
one component spectrum into one of the composite spectra. The block Ajk

transfers xk into yj taking into account both βkj and `kj. The system of
equations (2.8) can be written as: A11 A12

...
...

AN1 AN2

 · ( x1

x2

)
=

 y1
...

yN

 (2.10)

or A ·x = y in short. The observed data is on the r.h.s. in the vector y while
the βkj and `kj, that are assumed to be known, are used to construct the ma-
trix A. Solving (2.10) for x requires the inverse of A. Since A is not a square
matrix, and since it may be rank deficient, the recommended technique for
computing the inverse makes use of the singular value decomposition (Simon
& Sturm 1994a). Note that this formulation straightforwardly extends to
include more than two component spectra.

Thanks to logarithmic binning in wavelength, equal spectral resolutions
in data and the model and uniform weighting of data points in the fit the
structure of blocks Ajk is particularly simple. Basically these are diagonal
matrices with the diagonal shifted according to βkj and multiplied by `kj.
An example setup of (2.10) is shown in Figure 2.1. Four composite spectra,
each 11 data bins long, are modeled by two model spectra. Note that the
vectors xk must be somewhat longer than the vectors yj in order to provide
the amplitudes to the r.h.s. under different Doppler shifts (the βkj). Conse-
quently the blocks Ajk must have more columns than rows (for the shifting
‘diagonal’ not to fall off the edge of the block). The values of βkj and `kj

used in Figure 2.1 are:

(βkj) =

(
1 0 −2 −1
−2 0 4 2

)
and (`kj) =

(
2
3

1
2

2
3

2
3

1
3

1
2

1
3

1
3

)
(2.11)
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Figure 2.1: Density plot of the matrix equation (2.10). The blocks Ajk and
the sub-vectors xk and yj are separated by lines. Gray-scale spans from zero
(white) to unity (black) within the matrix, and reverse within the vectors.
See also (2.11).
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where βkj are given in the number of data bins. For simplicity the βkj were
kept at integral values. At non-integral shifts the ‘diagonal’ is diluted to
perform linear or higher order interpolation of the component spectra. Note
that at j = 2 the radial velocities of both stars are zero, and that the star 1
contributes less light relatively to the other star due to eclipse.

In practice, due to the large size of the matrix A, computing its inverse
is a problem worth of considering. The time required by the computations
sets the limit to the size of the data set that can be used in one run. The
system of equations similar to the one described above has been solved in
Bagnuolo & Gies (1991) by means of an iterative least squares technique.
The computational time seems not to have been a concern, but a remark
on problems with the numerical stability of their approach can be found
in Hynes (1996). Simon & Sturm (1994a) advocate inverting the matrix
by means of the singular value decomposition (Press et al. 1992; Wolfram
1991). If applied straightforwardly this requires a lot of time. Simon (2001)
has succeeded to take advantage of the sparsity of A in order to compute the
singular value decomposition in a reasonable time (apparently at the price of
not being able to use the time dependent `kj or deferentially weighted data
points). Unfortunately, his algorithm has not been published.

2.4 Separation in the Fourier domain

If there are Nbin data bins per each of the Nobs observed spectra the sys-
tem of equations (2.10) consists of Nobs ×Nbin coupled equations linear in a
little more than 2Nbin unknowns for a binary system (or N? × Nbin in gen-
eral). Using the discrete Fourier transforms (DFTs) of the data the system
of equations can be uncoupled into 1

2
Nbin + 1 systems of Nobs complex equa-

tions involving only two unknowns for a binary (or N? in general). The use
of DFT in the context of the separation of the composite spectra was first
proposed by Hadrava (1995).

The discrete Fourier transform (DFT) of a string of amplitudes ai, i =
0, . . . , N − 1, where N is even, is defined as:

ãn =
1

N

N−1∑
i=0

e−
2πi
N

niai , n = −N
2

+ 1, . . . ,
N

2
. (2.12)

Choosing n to range from −N/2 + 1 to N/2 is a matter of a convention (ãn

are periodic with period N) as is the choice of the normalization constant
and of the sign of the argument of the exponential function. The DFT
amplitude ãn is said to correspond to frequency ωn = 2πn/N . The DFT
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amplitude ã0 corresponding to ‘zero frequency’ is recognized as the average
of the amplitudes ai. The ãN/2 corresponds to the highest frequency not
equivalent to some lower frequency that is known as the critical or Nyquist
frequency. Note that for real amplitudes ai it holds ã−n = ã∗n. The inverse
transform of (2.12) is:

ai =

N/2∑
n=−N/2+1

e
2πi
N

inãn , i = 0, . . . , N − 1 (2.13)

The normalization and the sign of the argument of the exponential function
are in accord with the choice taken in (2.12).

A simple ‘theorem’ reads that multiplying ãn by e
−2πi

N
βn is equivalent to

shifting the ai by β places toward right:

a′i =

N/2∑
n=−N/2+1

e
2πi
N

in
(
e
−2πi

N
βnãn

)

=

N/2∑
n=−N/2+1

e
2πi
N

(i−β)nãn

= ai−β . (2.14)

As all amplitudes shift by the same number of bins I can use this expres-
sion to write the Doppler shifts of spectra sampled equidistantly in the
logarithm of the wavelength. It is therefore possible to write the equa-
tion analogous to (2.10) in terms of DFTs of the observed composite spec-
tra ỹjn, j = 1, . . . , Nobs, and the component spectra x̃kn, k = 1, . . . , N?,
n = −Nbin/2 + 1, . . . , Nbin/2:

N?∑
k=1

`kje
− 2πi

Nbin
βkjn

x̃kj = ỹjn , j = 1, . . . , Nobs , (2.15)

where βkj are the shifts expressed in the number of data bins and `kj are light
factors. The system (2.15) consists of Nobs equations linear in N? unknowns.
For each n = 0, . . . , Nbin/2 the system (2.15) can be solved independently,
i.e. the system (2.10) is now uncoupled. Note that for n < 0 the system
(2.15) is the complex conjugate of the corresponding system with n > 0, so
only one has to be solved. (Also note that for n = 0 and for n = Nbin/2
the system (2.15) is purely real.) Each of the systems is over-determined if
Nobs > N?, but may still not have a unique solution, see Section 2.5. The
use of singular value decomposition for calculating the inverse of the matrix
is recommended by Ilijić et al. (2001b).
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The eq. (2.15) is easily modified to include measurement uncertainties
assigned to composite spectra as whole. It suffices to divide its both sides
with σj, the ‘average’ measurement uncertainty assigned to the amplitudes
yji. Solving the system is then equivalent to minimizing:

r2
n =

Nobs∑
j=1

1

σ2
j

(
ỹjn −

N?∑
k=1

`kje
− 2πi

Nbin
βkjn

x̃kn

)2

(2.16)

for each n independently. However, uncertainties cannot be assigned to indi-
vidual amplitudes of yji any more since they were already taken with equal
weights when ỹjn was computed.

The most important advantage of the ‘Fourier domain’ approach over the
‘wavelength domain’ approach considered in Section 2.3 is the significantly
smaller CPU time requirement. Instead of solving one large system of Nobs×
Nbin equations in (approximately) N? × Nbin unknowns as in (2.10), using
(2.15) I am solving Nbin/2+1 small complex (all but two) systems consisting
of Nobs equations in N? unknowns. Assuming that time required to compute
the inverse of an M ×N matrix goes as (MN)γ/2 the advantage of the DFT
approach goes as Nγ−1

bin . Adopting γ = 3 for a square matrix (Press et al.
1992), this is N2

bin, so it is not surprising that the ‘Fourier domain’ separation
was chosen for treating data sets with Nbin ≈ 16000 as in Griffin (2002).

The discrete Fourier transforms of the composite spectra must be calcu-
lated before (2.15) can be used, and the inverse transform must be applied
to the results after-wards. The price of calculating the transforms varies
strongly in Nobs. It is high for prime numbers and cheap for powers of 2
(Johnson & Frigo 1999), but is usually not a concern. Particularly in disen-
tangling procedures (see Section 2.6) where many separations must be cal-
culated during the optimization process, and the result does not have to be
brought to wavelength domain after each separation, calculating the DFTs
pays off.

The serious drawback unavoidably introduced by the DFT is that it un-
derstands the model spectra of the component stars as periodic functions
(Ilijić et al. 2001a,b). If a string of amplitudes is shifted by multiplying its
DFT by the exponential factor as in (2.14) the amplitudes that are pushed
out through one end re-enter through the other. This nonphysical feature
of the model may lead to the inability of the model to reproduce the data
even when the latter is completely in accord with the assumptions 1–3 of
Section 2.2. The effect is most pronounced at the ends of the spectral range
and is therefore called ‘end of range effect’ (ERE), but it propagates all over
the spectral region that is processed. Particular care must be taken when
choosing the spectral range that is to be processed in order to make ERE
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negligible. A rule of thumb is to cut the composite spectra in the middle of
regions of continuum that are at least twice as wide as the radial velocity
semi-amplitude of the least massive star. Furthermore, the continuum should
be at the same level at both ends.

2.5 The degrees of freedom

Remarks on the mathematical indeterminacies in the component spectra
reconstructed through separation techniques appear since Bagnuolo et al.
(1992). There are setups of βkj and `kj such that the mathematical solu-
tions to (2.10) or (2.15) nonetheless exist, but do not resemble the spectra
of the stars. Partial ill posedness of the system of equations may lead to
non-physical degrees of freedom in the component spectra that are either

• used to obtain a better fit to the data,

• or, if they are not capable of improving the fit, they are just initialized
to non-physical values (according to some mathematical convention).

If component spectra are subject to such degrees of freedom this must be
taken into account if attempting physical interpretation. Most applications
of spectral separation were carried out assuming equal light contributions of
both component stars in all composite spectra that were used. Such a setup,
known as the ‘no light variability’ case, is more than any other prone to
problems. Although at present only incomplete understanding of the inde-
terminacies in the systems of equations and the resulting degrees of freedom
in the spectra can be offered, I continue the discussion because of its practical
importance. The discussion will be limited to the ‘no light variability’ case.

Assuming equal light contribution of the two component stars to all the
composite spectra the light factors `kj reduce to `k. The basic indetermi-
nacy introduced by this assumption is most evident in the ‘Fourier domain’
formulation. Let us consider the system of equations (2.15) for n = 0 (fre-
quency zero). This system is purely real and it deals with the averages of
the amplitudes in the spectra. It can be written in matrix form as: `1 `2

...
...

`1 `2

 · ( x̃10

x̃20

)
=

 ỹ10
...
ỹN0

 (2.17)

There are more equations than unknowns so I am requiring the least squares
solution. But it is evident that if (x̃10, x̃20) is the least squares solution, than
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so is also any solution of the form (x̃10+`2c, x̃20−`1c), where c is an arbitrary
real constant. In such situations, according to a mathematical convention,
one chooses the shortest length solution defined as the one that minimizes
x̃2

10 + x̃2
20. Let us carry this out with uncertainties included as in (2.16). The

least squares requirement leads to:

`1x̃10 + `2x̃20 =

∑
j σ

−2
j ỹj0∑

j σ
−2
j

, (2.18)

which is undetermined. The shortest length requirement picks one solution
out of infinity of least squares solutions:(

x̃10

x̃20

)
=

∑
j σ

−2
j ỹj0

(`21 + `22)
∑

j σ
−2
j

(
`1
`2

)
. (2.19)

This is obviously not a physical result, since the averages in the normalized
component spectra are by no means proportional to the assumed light ratio.
I must not consider the shortest length result as unique. It is only a mathe-
matically correctly initialized solution. The solution including the degree of
freedom is:(

x̃10

x̃20

)
=

∑
j σ

−2
j ỹj0

(`21 + `22)
∑

j σ
−2
j

(
`1
`2

)
+ const.

(
`2
−`1

)
(2.20)

Technically, if solving a system like (2.17) using singular value decomposition
one automatically obtains the least squares shortest length solution, while the
more traditional techniques, such as normal equations, might simply break
down complaining on a singular matrix. Note that (2.15) being singular for
n = 0 does not imply that (2.15) is singular for n > 0. In Appendix B a simple
procedure is formulated that proposes running separation with the so called
‘generic’ light factors and adjusting the solution to the assumed (trial) light
ratio after-wards. The procedure takes into account the ‘additive constant’
degree of freedom.

In practical work, especially if using long stretches of spectra, the ‘additive
constant’ is not the only way the component spectra misbehave. The spectra
‘bend’ on a scale much longer than the radial velocity semi-amplitudes of the
component stars. Bending is not without regularity, where one component
goes up the other goes down, which suggests that I should look more carefully
for additional indeterminacies in the sets of equations. An attempt went as
follows:
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The component spectra xk(u), where u = lnλ and k = 1, 2, can be written
using the Taylor expansion in the neighbourhood of the point u0:

xk(u) =
∞∑

n=0

x
(n)
k (u0)

n!
(u− u0)

n . (2.21)

In a binary system with the mass ratio q = m1/m2 the time dependent
Doppler shifts can be written as:

β1,2(t) = a1,2β(t) where
a2

a1

= −q (2.22)

where a1,2 are the radial velocity semi-amplitudes (in lnλ units) and β(t) is
a single time dependent function. The composite spectrum at u0 follows as:

y(u0) =
∑
k=1,2

`kxk(u0 + akβ)

=
∑
k=1,2

`k

∞∑
n=0

x
(n)
k (u0)

n!
(akβ)n . (2.23)

I now look for two spectra ξ1,2(u) such that if added to x1,2 they do not affect
the l.h.s. of the above equation. If these exist then they represent the true
degrees of freedom in x1,2. They should obey:

0 =
∞∑

n=0

(∑
k=1,2

`k
ξ

(n)
k (u0)

n!
an

k

)
βn (2.24)

for any β. If this expansion is cut off at some n I end up with a polynomial
in β, and if the latter is to vanish at any β its coefficients must all be equal
to zero. It follows:

ξ
(n)
1 (u0)

ξ
(n)
2 (u0)

= −`2
`1

(
a2

a1

)n

= (−1)n+1 `2
`1
qn (2.25)

For n = 0 and n = 1 this is:

ξ1(u0)

ξ2(u0)
= −`2

`1
and

ξ′1(u0)

ξ′2(u0)
=
`2
`1
q (2.26)

The first condition is equivalent to (2.20). The second condition tells that
if there are slopes in ξ1 and ξ2 they are of the same sign. But if these two
conditions are fulfilled at some u0, they cannot be fulfilled at any other.
Therefore we must conclude that slopes in the component spectra are not
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part of the true degrees of freedom in the ‘no light variability’ solution. And
as the slopes are not allowed, I need not look at higher derivatives.

The most I can do at present to remove the ‘bends’ from the component
spectra is to extend the relation (2.20) by replacing the constant by a smooth
‘slowly’ variable function of u.(

x1(u)
x2(u)

)
adjusted

=

(
x1(u)
x2(u)

)
best fit

+ f(u)

(
`2
−`1

)
(2.27)

Unfortunately, it still remains unclear how slowly f(u) must vary in u before
it starts spoiling the fit significantly, or what is most appropriate mathemat-
ical form of f(u).

2.6 Disentangling of the composite spectra

Disentangling of composite spectra is an application of the spectral separation
technique that is not directed only toward reconstructing of the spectra of
component stars, but also toward determining the parameters of orbit of the
stellar system. The technique was introduced by Simon & Sturm (1994a),
see also Sturm (1994) for details.

In Sections 2.3 and 2.4 I was assuming that the correct light factors `kj

and the radial velocities βkj are known for each component spectrum (k) in
each composite spectrum that is being used (j). I could say that the coeffi-
cients βkj and `kj determine the entangling of the component spectra in the
composite spectra, and that faithful reconstruction of the component spectra
from the composite spectra is possible only if these coefficients are known.
Light-factors can be determined through the analysis of the light curves and
the radial velocities can be directly measured in the composite spectra by
means of the traditional techniques such as fitting of Gaussians into the
well-resolved lines or by two-dimensional cross-correlation with the template
spectra. While the separation of composite spectra can be carried out within
the ‘no-light-variability’ assumption even without a-priori knowledge on the
light-ratio (see Appendix B), inaccurately determined radial velocities seri-
ously affect the reconstruction of the component spectra. Accurate radial
velocities can therefore be considered the second most critical part of the
data, first being the composite spectra, needed to reconstruct the spectra of
the individual components of the stellar system.

Disentangling is a procedure that applies spectral separation to the com-
posite spectra of a binary without a-priori requiring complete knowledge of
the ‘entangling’ coefficients, but rather considering them the free parameters
of the fit. It is based on a reasonable assumption that the fit of the model to
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Figure 2.2: The flowchart of the disentangling procedure.

the data obtained through spectral separation is better if the radial velocities
are accurate. The measure of the ‘goodness of fit’ is the usual weighted sum
of the squares of the residuals of model and the data. In the wavelength
domain formulation (2.10) this is simply ||A · x − y||, while in case of the
Fourier formulation this is according to (2.16):

r2 =

Nbin/2∑
n=1

Nobs∑
j=1

1

σ2
j

(
ỹjn −

N?∑
k=1

`kje
− 2πi

Nbin
βkjn

x̃kn

)2

(2.28)

(the n = 0 term was omitted because it is independent of βkj). The principal
difference is that now the ‘entangling coefficients’ `kj and possibly βkj as well,
are free parameters of the fit. The model is still linear in x̃kn, but it is non-
linear in `kj and possibly βkj. To preserve the computational efficiency the
strategy for minimizing r2 is therefore divided into two levels, non-linear and
linear. A general purpose multidimensional optimization routine is applied
on the small number of non-linear parameters and separation is calculated
for each setup of these parameters as described in Sections 2.3 and 2.4. The
flowchart of the procedure is depicted in Fig. 2.2.

An attempt to optimize the radial velocities βkj directly adds Nobs ×N?

free parameters to the model. Although this number is not large compared
to the number of free parameters in the linear part, the free βkj contribute
tremendously to the flexibility of the model. As a result the disentangling
procedure is likely to be unstable. A reasonable way out of this pitfall is to
constrain the βkj by the applicable physical laws. For a well-detached binary
system, where proximity and vicinity effects can be neglected, the solution
to the Kepler problem provides the functional dependence of the radial ve-
locities on time. For an overview of the equations of the orbital motion in
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a binary system see Appendix A. Therefore, instead of optimizing 2Nobs ra-
dial velocities in a binary system, one chooses to optimize a suitably chosen
combination of the parameters of orbit. In most applications to eclipsing
binaries the ephemeris is known to high accuracy and epochs are assigned to
the spectrograms. In circular orbit the radial velocity semi-amplitudes K1,2

might be the only free parameters in the fit, while for an eccentric orbit the
eccentricity, the longitude of periastron, and an overall phase shift might be
the additional free parameters.

2.7 Progression of random noise

Several works agree that, at least in principle, random error in the input
quantities does not influence the results of separation and disentangling in
a systematic way (Simon & Sturm 1992; Sturm 1994; Hynes 1996; Hynes
& Maxted 1998; Ilijić et al. 2001a,b). But there are also several warnings
that the separation and disentangling techniques might introduce systematic
effects if not used carefully. The matter is quite difficult to trace analytically
and the analyzes are based on processing of the simulated data.

The most convincing demonstration of the spectral separation technique
at its time was the application to the double lined eclipsing binary V453 Cyg
(Simon & Sturm 1994a). The spectrum of the fainter component obtained
through separation of eight out-of-eclipse composite spectra was shown to
match the spectrum recorded during the totality of the secondary eclipse.
This result is partly reproduced in Chapter 3.

A useful empirical formula relating the rms scatter of the amplitudes of
the reconstructed component spectra to the rms of the amplitudes in the
composite spectra is proposed in Ilijić et al. (2001a):

σ1,2 ≈
σinput

`1,2

√
Nobs − 2

. (2.29)

This result has shown to be valid for different values of Nobs, σinput and `1,2

through Monte Carlo simulations where disentangling was applied to 200
equivalent realizations of a particular synthetic data set. The mean recon-
structed spectra showed no systematic effects apart of end-of-range effects
introduced by the Fourier-based separation routine.

In Ilijić et al. (2001b) sets of 400 equivalent realizations of (only) four
composite spectra were subjected to separation using known ‘entangling pa-
rameters’. Fig. 2.3 shows that the Fourier based separation introduced no
systematic effects in the reconstructed spectra. Care was taken to place the
ends of the spectral regions into continuum regions as wide as I could find
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Figure 2.3: Fourier domain separation: spectral region around Hγ and He I
lines, βgrid = 25 km s−1, S/N = 40. Two synthetic component spectra (blue
and red lines labeled P and S ) are combined into composite spectra (violet
lines labeled with orbital phase). 400 artificial data sets are created (one
shown in black) and subjected to separation. The resulting ±1σ region is
shown (black lines). All spectra are plotted on the same scale; shift 1

4
is

applied among spectra for clarity.

them. On the other hand in the setup of Fig. 2.4 one of the ends was in-
tentionally not placed in a continuum region. This is one of the causes of
the systematic effects in the spectra obtained through Fourier domain sep-
aration, the other being the ‘blemish’ in the composite spectra artificially
introduced as an static absorption feature at 4096 Å. The spectra obtained
through wavelength domain separation are free of bias. The wavelength do-
main separation is as such not susceptible to end-of-range effects, and the
possibility of assigning measurement uncertainty to each data point indepen-
dently was used to ‘mask off’ the narrow spectral region affected by the static
absorption feature.
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Figure 2.4: Wavelength domain vs. Fourier domain separation: spectral re-
gion around Hδ line, βgrid = 15 km s−1, S/N = 50. Note the ‘blemish at
4096 Å. The ±1σ regions obtained with wavelength domain separation (the
bottom two spectra) and with Fourier domain separation (the next two spec-
tra) are shown (see also caption to Figure 2.3).
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Chapter 3

Application to V453 Cyg

Simon & Sturm (1994a) chose the double lined eclipsing binary star V453 Cyg
as the test system when they were introducing the spectral disentangling
technique. The spectrum that they obtain for the brighter component ma-
tches the spectrum observed during the totality of the secondary eclipse.
In this Chapter the Fourier-based separation routine is shown to pass the
same test on the same data. The observed spectra used in Simon & Sturm
(1994a) were kindly provided to me by Dr. Klaus Simon. In the first Section
I summarize the basic facts about V453 Cyg. In Sections 3.2 and 3.3 I
present the observed spectra of V453 Cyg and show how they were prepared
for Fourier-based separation. In Section 3.4 I discuss the application of the
disentangling technique and compare the radial velocity semiamplitudes that
I obtain to the results published in the literature. In Section 3.5 I carry
out the separation in two different ways. The renormalization procedure of
Appendix B, based on the results of Section 2.5, is applied step-by-step to
show that it leads to correctly normalized spectra of component stars.

3.1 The massive binary system V453 Cyg

V453 Cygni or HD227696, α = 301◦.645698, δ = 35◦.740632 (J2000) is a
massive, detached, eclipsing, double-lined binary star, a member of the open
cluster NGC 6871. The variability of V453 Cyg was discovered by Wachmann
(1939). The light curve shows an annular and a total eclipse, and was ob-
served and analyzed by Cohen (1971, 1974) and by Wachmann (1973, 1974).
The annular eclipse is deeper (primary) than the total eclipse (secondary)
from which it follows that the larger star is the hotter star. To avoid any
confusion throughout this text I will be referring to the stars as the brighter
(B) and the fainter (F), keeping in mind that during the total eclipse F is
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eclipsed by B.
The system was found to exhibit apsidal motion with the period of Paps =

71 years at an orbital eccentricity of about e ' 0.02 by (Wachmann 1974).
Unfortunately, the only recently observed and published time of minimum
that I could find (B́iró 1998) is not in line with this orbital solution. Radial
velocities of components of V453 Cyg were measured by Popper & Hill (1991).
As already mentioned, the spectra were disentangled by Simon & Sturm
(1994a).

In a disentangling procedure one tries to fix as many parameters of orbit
as possible so that as few as possible remain to be optimized. For V453 Cyg
the only parameter of orbit that is well determined is the orbital (sidereal)
period. According to Cohen (1974):

TMin.I = HJD 2439340.0988 + 3d.8898128E . (3.1)

However, because of the apsidal motion and of the uncertainties I must not
rely on the above ephemeris for prediction of the times of the minima at
epochs much different from the epochs of the observations that were used to
establish this result. Another input that is required for the separation tech-
nique to produce the correct results is the phase and wavelength dependence
of the light-ratio of the system. For all spectra of V453 Cyg taken out of
eclipse I adopt the result of Wachmann (1974):

L =
`B
`F

= 2.66667 . (3.2)

The wavelength dependence of the light ratio will not be considered because
the spectral types are not very different and a fairly short spectral range will
be treated.

3.2 Spectra of V453 Cyg

Eight spectra of V453 Cyg were obtained by Fiedler and Sturm with a coude-
spectrograph and a 2.2 m telescope at the Calar Alto Observatory in July
1992. Seven of these were taken out of eclipse and one was taken during the
totality of the secondary eclipse (see Table 3.1). The spectra cover the range
of 4290–4510 Å at the resolution of ' 0.2 Å/px (1024 pixels in total). The
data reduction was completed by the observers and I received the wavelength
calibrated and continuum normalized spectra. The only operation on the
data that I applied was the correction to the radial velocities and the dates
of the mid-exposures to account for motion of the Earth around the Sun.
I calculated parameters for these corrections using SkyCalc (Thorstensen
2000).
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Table 3.1: The observed spectra of V453 Cyg. The epoch is calculated
according to (3.1).

Label HJD Texp. Epoch Note
2448810+ [s] 2430+

a 1.489869 1200 4.922
b 2.480025 1200 5.177
c 3.424391 1200 5.419
d 4.472093 900 5.689
e 6.531810 1200 6.218
f 7.651999 1500 6.506 tot. ecl.
g 8.474703 900 6.718
h 8.615600 900 6.754

3.3 Preparation of the spectra for disentan-

gling

The epochs in Table 3.1 are calculated using the ephemeris (3.1). As all
eight spectra were recorded within less than two successive orbital cycles of
the binary system any inaccuracy in the determination of the period will not
significantly affect the relative consistency in the assignment of the orbital
phases. The error in the period may, however, accumulate over time and lead
to erroneous prediction of the times of minima. In our case this results in a
phase shift which is of no concern in the disentangling procedure because the
phase shift can be used as a free parameter. The distribution of the spectra
over the orbital cycle is shown in Figure 3.1.

In order to apply the Fourier domain separation to a time series of com-
posite spectra they must be sampled on identical grids of wavelength points
equidistantly distributed in the logarithm of the wavelength. I decided to use
a grid with the radial-velocity resolution of βgrid = 10 km s−1/bin which is
somewhat higher than the resolution of the detector. Linear interpolation of
the data was used during re-sampling. The ends of the spectral range must
be placed so that the end-of-range effects are reduced as much possible (see
Sect. 2.4) The vertical lines on the Fig. 3.1 show my choice. The resulting
number of data points per spectrum is Nbin = 1344.

I assigned the light factors to the seven out-of-eclipse spectra according
to (3.2):

`B =
L

L+ 1
= 0.7273 and `F =

1

L+ 1
= 0.2727 (3.3)
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Figure 3.1: The distribution of the observed spectra of V453 Cyg over the
orbital cycle (see Table 3.1). The RV curves obtained through disentangling
are shown for the He I 4471 Å line core of the brighter component (solid)
and of the fainter component (dashed). The vertical lines in the background
show the wavelength-cuts that are used for the Fourier-domain separation
(4297 Å–4494 Å).
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Table 3.2: The jackknife procedure of estimating the bias in the parameters
of orbit determined through disentangling. The longitude of periastron ω
applies to the brighter star (B).

Run KB KF µ0 e ω µ0 + ω
label [km s−1] [km s−1] [deg] [deg] [deg]

skip a 174.16 214.64 71.903 0.0303 16.878
b 173.09 217.54 89.434 0.0139 −1.886
c 173.35 214.49 38.669 0.0475 50.334
d 174.80 218.14 75.676 0.0169 12.465
e 176.05 215.80 65.520 0.0127 22.634
f 174.38 215.64 55.204 0.0505 32.269
g 174.49 216.33 53.317 0.0260 34.799
h 173.91 214.12 59.513 0.0185 28.520

use all 174.48 216.27 59.442 0.0225 28.674 88.116
σJACK 2.33 3.77 40.150 0.0385 40.687 1.314

and for the in-eclipse spectrum (f ) where the fainter component is totally
eclipsed I put `B = 1 and `F = 0. Light factors assigned like this are used
when all eight composite spectra are used for separation. If the in-eclipse
spectrum (f ) is omitted the no-light-variability assumption applies (see Sect.
2.5) and all light-factors are reset to the generic value of `gen = 1/2 (see
Appendix B).

3.4 The parameters of orbit

The expected radial velocity amplitudes (see Table 3.3) areKB,F ∼ 200 km s−1

and according to Wachmann (1974) the eccentricity of orbit is e ' 0.02. The
departure of the radial velocities in a low eccentricity orbit from the near-
est circular approximation is approximately given by (A.19) which evaluates
to ∼ 4 km s−1. The accuracy of the RV measurements is hopefully below
this value so I consider the circular approximation potentially harmful. Un-
fortunately, due to its uncertainty, I may not safely extrapolate the orbital
solution of Wachmann (1974) until the time of the spectrograms, and I am
forced to leave five parameters of an eccentric orbit as free parameters (see
Sect. A).

With eight observed spectra the radial-velocity curve is constrained at
eight points. Taking into account that it is has five degrees of freedom there
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Table 3.3: The radial velocity semi-amplitudes of the brighter (KB) and of
the fainter (KF) component of V453 Cyg.

Source KB KF Method
[km s−1] [km s−1]

Popper & Hill 1991 171.0± 1.5 222.0± 2.5 cross-correlation
Simon & Sturm 1994a 171.7± 2.9 223.1± 2.9 disentangling
Burkholder et al. 1997 173.2± 1.3 213.6± 3.0 fitting Gausians
This work 174.5± 2.3 216.3± 3.8 disentangling

is basis for expecting unstable orbital solutions. To test the stability of the
orbital solution I applied the procedure known as the jackknife estimate of
bias (Efron 1982). Having eight spectra in total there are eight different ways
of disentangling of only seven spectra at a time. The results of such runs are
shown in the upper part of the Table 3.2. The scatter of these results around
the result that is obtained using all eight spectra determines the jackknife
estimate of bias. My results are shown in the lower part of the Table 3.2.
It is clear that the eccentricity e, mean anomaly at zero epoch µ0 and the
longitude of periastron ω are weakly determined. The radial velocity semi-
amplitudes are well determined. Table 3.3 compares the results of this work
to the published results. Note that the quantity µ0 + ω, that plays the role
of an overall phase shift, is well determined. Application of the jackknife
procedure to µ0 + ω gives the value of 88◦.1± 1◦.3.

3.5 The spectra of component stars

Once the parameters of orbit are optimized I can look at the spectra of the
component stars. If the eight composite spectra are used with light factors
assigned as in (3.3) the component spectra that I obtain are correctly normal-
ized ready for spectroscopic diagnostics. The latter are shown in Figure 3.2,
upper panel. The match of the model spectrum of the brighter component
(B) and the spectrum observed during the totality of the secondary eclipse
(f) is convincing as it was in Simon & Sturm (1994a). The quality of the fit
of the model to all eight composite spectra can be examined in the Figures
3.4 and 3.5.

It must be noted that this example is fairly non-typical. On one occasion,
while the fainter star was totally eclipsed, the spectrum of the brighter star
was directly observed. and, in principle, one does not need the separation
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Figure 3.2: Upper panel: The model spectra for the brighter (B) and for
the fainter (F, shifted by 0.2) component of V453 Cyg (black) as obtained
through spectral separation using all eight observed spectra and the light-
factors as in (3.3). The spectrum observed in mid-eclipse (red). Lower panel:
as the upper panel, but for the separation of the seven out-of-eclipse spectra
alone. Note that a renormalisation (Appendix B) is required now where the
eclipse-spectrum (f, red) no longer ‘fixes’ the continuum.
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Figure 3.3: The difference of the model spectra as obtained for the brighter
(B) and for the fainter (F, shifted by 0.02) component of V453 Cyg when
using all eight observed spectra with light-factors and when using only the
seven out-of-eclipse spectra with generic light-factors and renormalization
(Appendix B).

technique to reconstruct its spectrum. But still, the separation technique
uses the information available in all composite spectra and reconstructs the
spectrum of the brighter component at higher signal-to-noise ratio than that
of the observed spectrum.

I proceed to run the disentangling procedure using only the seven out-
of-eclipse spectra. This case is, in turn, a very typical one. The no-light-
variability assumption now applies and I use the generic light-factors as ex-
plained in Appendix B. The spectra z1 and z2 resulting from such a proce-
dure, called quasi-spectra and shown in the Figure 3.2, lower panel, must not
be interpreted as continuum normalized spectra of component stars before
the renormalization procedure is carried out. I first obtain the average line
blocking b from the quasi-spectra:

b = 1− 1

Nbin

Nbin∑
i=1

z1i = 1− 1

Nbin

Nbin∑
i=1

z2i = 0.041419 (3.4)

Next I calculate the line blocking ratio of the spectra obtained in the previous
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run where all eight composite spectra were used, obtaining:

B =
Nbin −

∑Nbin

i=1 x1i

Nbin −
∑Nbin

i=1 x2i

= 1.21903 (3.5)

In general, the value of B is obtained by trial and error, but in this case where
the correct component spectra are already known, I take the opportunity to
by-pass that procedure. Using the equation (B.4) I calculate the value of the
free parameter c:

c =
L− 1

L+ 1
− BL− 1

BL+ 1
b = 0.432614 (3.6)

Finally, I use the equations (B.1) to obtain the continuum normalized com-
ponent spectra.

The difference of the spectra obtained when using all eight composite
spectra and light-factors and the spectra obtained from seven out-of-eclipse
spectra using the renormalization procedure is shown in Figure 3.3. As can
be seen, there is a correlation among the deviation of the spectra for the
brighter and the fainter component. This can be corrected for through the
coupled additive correction according to (2.27).
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Figure 3.4: The model spectra for the brighter (B) and the fainter (F )
component star and the model composite spectra (a–h) as they match the
observed spectra (red). The observed spectra are shown in original sampling.
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Figure 3.5: The model spectra for the brighter (B) and the fainter (F )
component star and the model composite spectra (a–h) as they match the
observed spectra (red). The observed spectra are shown in original sampling.
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Chapter 4

The Code FDBinary

The code fdbinary is a tool for separation and disentangling of composite
spectra of binary stars. I wrote it with two objectives in mind. Firstly, it had
to provide a flexible interface to the disentangling method in order to allow
the critical error-analysis work that is still under way (Ilijić et al. 2001a,b).
Secondly, in view of the real applications of the method, it had to be a stable
and reliable tool. In particular it was required that the code is capable
of handling large data sets such as those coming from the modern echelle
spectrographs. fdbinary operates in the Fourier domain as described in
Section 2.4. The code was written in the C programming language for the
unix operating system; it uses the routines from Johnson & Frigo (1999) and
from Press et al. (1992). It has undergone only minor changes since January
2001 and has already been applied by Griffin (2002). This Chapter is an
overview of the basic features of the code and can be used as a manual.1

4.1 Input files

All fdbinary input files and all but one output files obey the same format.
They are plain-text files containing rectangular arrays of numbers and are
hereinafter referred to as matrixfiles. The first line has a special syntax. The
first character must be a hash (#), then after some whitespace comes the
number of data columns in the matrixfile, then after some whitespace the
capital letter X, and finally, after some whitespace comes the number of data
rows. The syntax of the body of the a matrixfile is very loose. Anything
that follows a hash character is ignored which allows extensive commenting
of the input matrixfiles. The examples in this Chapter will clarify this simple

1The documentation to fdbinary was originally published on the Web:
http://www.geof.hr/~silijic/fdbinary/refman
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concept.
The basic application of fdbinary requires three input matrixfiles. The

first matrixfile contains the continuum normalized composite spectra of the
binary star. The spectra must be sampled equidistantly in the logarithm of
the wavelength, all at the same resolution. The radial velocity that corre-
sponds to one data-bin shift of a spectrum toward red is called the radial-
velocity resolution of the grid and is denoted βgrid. Preferably the spectra
should be wavelength calibrated so that the radial velocity of the center of
mass of the binary is the same in all spectra. The amplitudes of the spectra
must be written into a matrixfile as columns, with the wavelength ascending
down the file. If one uses M composite spectra sampled on the grid of N
wavelength points the syntax of this matrixfile can be illustrated as follows:

# M X N
y11 y21 . . . yM1

y12 y22 . . . yM2
...

...
...

y1N y2N . . . yMN

(*.obs)

The tag *.obs indicates the required file-name suffix. where yji is the am-
plitude of the composite spectrum observed at epoch Ej and wavelength λi.
Note that since the actual wavelengths are not used during the calculations
they do not enter this or any other fdbinary input matrixfile. The user has
to keep record of the wavelength range independently.

The additional information on the composite spectra must be prepared
in a separate matrixfile. Its syntax is:

# 5 X M
E1 γ1 `11 `21 w1

E2 γ2 `12 `22 w2
...

...
...

...
...

EM γM `1M `2M wM

[Psid] [βgrid] [1] [1] [1]

(*.des)

and the required file-name suffix is des (for descriptors). The quantities
in square brackets indicate the required units. The lines in this matrixfile
correspond to columns in the obs-matrixfile. Ej is the epoch, its integral
part can be left out unless apsidal motion is considered. γj is the center of
mass radial velocity correction. A positive value should be supplied for a
spectrum that is shifted toward red. Note that this does not mean that the
true systemic velocity has to be known. The parameters γj should be used
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only to remove the sub-pixel inconsistencies in radial velocity (wavelength)
calibration of the spectra. The parameters `1j and `2j are the light factors, the
assumed fractional contributions of the continua of the component spectra to
the continuum in the composite spectrum at certain epoch. Unless they differ
among the composite spectra and thus remove the first order singularity from
the separation problem, it is advisable to set all light-factors to the generic
value `gen = 1/2 and to apply the renormalization procedure (Appendix B).
wj are the fitting weights assigned to composite spectra. Typically these are
set to values proportional to the square of the signal-to-noise ratio in the
spectra.

The third input matrixfile specifies the initial setup of the parameters of
orbit and initializes the optimization procedure. The syntax is:

# 2 X 7

K1 ∆K1 [βgrid]
K2 ∆K2 [βgrid]
µ0 ∆µ0 [rad]
e ∆e
ω0 ∆ω0 [rad]
ω1 ∆ω1 [rad/Pano]
q ∆q [1]

(*.op0)

and the required file-name suffix is op0. The radial-velocity semiamplitudes
K1,2 should both be supplied as positive numbers. The mean anomaly at
epoch zero µ0 and the longitude of periastron of the first star at epoch zero
(or at all epochs if ω1 = ∆ω1 = 0) ω0 should be supplied in radians. Eccen-
tricity of orbit is however 0 ≤ e < 1. The parameter ω1 is the periastron
advance in radians per anomalistic cycle in presence of apsidal motion. The
parameter q is intended for the adjustment of the sidereal period relative
to the value that was used to calculate the epochs. Before some experience
is gathered with optimizing the period through disentangling it is strongly
recommended to keep q = ∆q = 0. The parameters that are to be keept
fixed during disentangling should be given zero ∆-values, while the ones to
optimize should be given positive ∆-values.

Input matrixfiles for fdbinary must be given the same first part of the
file-name, while the extensions must be given as as indicated above. The first
part of the filename is called the runid and it serves as the run-identifier.
The fdbinary input and output files are summarized in the table 4.1. The
input and output files used for the fdbinary runs of Chapter 3 are shown
in Section 4.4
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Table 4.1: The fdbinary input and output matrixfiles. M is the num-
ber of composite spectra and N is the number of the wavelength points per
spectrum. The part of the file-names indicated by * of all matrixfiles corre-
sponding to one fdbinary run is identical and is called the runid.

file cols rows contents
in: *.obs M N observed spectra

*.des 5 M descriptors
*.op0 2 7 initial parameters of orbit

out: *.log − − log-file (not a matrixfile)
*.op1 1 7 optimized parameters of orbit
*.mod 2 N model spectra
*.res M N residuals of the fit (‘o− c’)
*.op2 5 M see text
*.op3 2 M see text

4.2 Running

If the fdbinary executable file is run without any unix command line ar-
guments it will print out a short message and quit. Assuming that it can be
run simply by typing its name:

$ fdbinary

FDBinary as of 22 Apr 2002 (eps = 2.2e-16)

FDBSEP 1C KPLREQ 07 MXFUNS 3C DHSPLX 21

To start a calculation the input matrixfiles must be prepared and named as
explained in the preceding Section. Let me assume that the common part of
the filenames, the runid, is simply ecc. The input files are:

$ ls

ecc.des ecc.obs ecc.op0

The command line syntax for making fdbinary read the input files with
runid ecc and perform Nruns = 99 independent optimization runs is the
following:

$ fdbinary mode=op runid=ecc nruns=99

There will be no output visible on the screen unless errors occur. When the
calculation is done fdbinary quits leaving behind several output files:
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$ ls

ecc.cnd ecc.log ecc.obs ecc.op1 ecc.op3

ecc.des ecc.mod ecc.op0 ecc.op2 ecc.res

As can be seen, the newly created files inherited the runid of the input files.
The syntax of the output files is elaborated in the following Section.

fdbinary calculates the least squares fit of the mathematical model dis-
cussed in detail in Section 2.4 to the data supplied through the obs and
des-files. The quantity that is minimized is given by (2.28), or written out
more in line with the notation of this Chapter:

r2 =

N/2∑
n=0

M∑
j=1

wj

(
ỹjn −

∑
k=1,2

`kje
− 2πi

Nbin
(γj+βkj)nx̃kn

)2

(4.1)

The ỹjn are the amplitudes of the discrete Fourier transform (DFT) of the
observed spectra supplied in the obs-file, and the ỹjn are the DFT ampli-
tudes of the component spectra that are being calculated. The DFTs of
the observed spectra yjn are, as well as the inverse-DFTs of x̃kn, calculated
internally by fdbinary.

If one requires a separation run, i.e. if the parameters of orbit are not
to be optimized, one should specify nruns=0 on the command line, meaning
‘do no optimization of parameters of orbit (disentangling) runs’. The radial
velocities βkj are computed at each epoch according to standard equations
reviewed in the Appendix A, and using the parameters of orbit as supplied
in the first column of the op0-matrixfile. (The second column of the op0-
matrixfile is ignored if nruns=0.)

If any of the parameters of orbit are to be optimized one should require
at least one, but preferably more than just one, optimization (disentangling)
runs by specifying nruns=Nruns with Nruns ≥ 1. The parameters that are
assigned zero ∆-values in the op0-file are not optimized. A positive ∆-value
specifies the half-width of the range within which the initial set of ‘trial
points’ will be distributed. For example, specifying K1 = 5 and ∆K1 = 1
means that the trial points will be distributed so that 4 < K1 < 6. fdbi-
nary uses the downhill-simplex multi-dimensional non-linear optimization
technique implemented as described in Press et al. (1992). As this technique
is by its nature non-constrained the final solution is not necessarily located
within the range that was initially assigned to the parameters. Stray orbital
solutions may occur if the search wanders far away from the true solution, and
there it finds a minimum of (4.1). On the other hand, the true solution may
be returned even if it is not in the range that was specified to initialize the
optimization. This must be kept in mind at all times because the stray solu-
tions are likely to be found in addition to the true solution. fdbinary uses
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a random number generator to initialize each optimization run differently
and independently of earlier runs. It is strongly recommended to calculate
as many such independent optimization runs as is necessary to make sure
that the ‘best solution’ is being found repeatedly. In most cases the stray
solutions can be recognized as physically disallowed and disregarded. The
frequency of occurrence of the stray-solutions depends on the complexity of
the hyper-surface (4.1) which increases with the number of parameters that
are optimized and with the sparsity of the data set.

4.3 Output files

The output file one should always inspect first is the log-file. It is human-
readable and and mostly self-explanatory. It contains notes on most impor-
tant steps of the calculation, and it reports the command line arguments that
were given, and the quantities supplied in des and op0 files. The contents
of the obs-file that was used is not repeated. If Nruns > 0 the parameters
of orbit resulting from each optimization (disentangling) runs are reported.
The tag << indicates that the solution corresponded to minimum deeper than
any of the minima found until then. Every time such a solution is found a
set of output matrixfiles are written to disk.

The model spectra of component stars are written into a matrixfile with
the extension mod:

# 2 X N
x11 x21

x12 x22
...

...
x1N x2N

(*.mod)

The residuals of the fit to the observed spectra, δji, are written into a ma-
trixfile with the extension res:

# M X N
δ11 δ21 . . . δM1

δ12 δ22 . . . δM2
...

...
...

δ1N δ2N . . . δMN

(*.res)

The ‘observed minus calculated’ convention is obeyed, so the model compos-
ite spectra can, if required, be obtained by subtracting the residuals (res-file)
from the observed composite spectra (obs-file).
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The optimized parameters of orbit are written into a matrixfile with the
extension op1. The syntax of this file is analogous to the syntax of the op0-file
except that it has only one column:

# 1 X 7

K ′
1 [βgrid]

K ′
2 [βgrid]

µ′0 [rad]
e′

ω′0 [rad]
ω′1 [rad/Pano]
q′ [1]

(*.op1)

The primes indicate that these are, in general, the optimized parameters.
However, if only separation was run, or if a parameter was was given a zero
∆-value in the op0-file, its ‘primed’ value equals the one in the op0-file.

The optimized parameters of orbit deserve special discussion. Due to
the un-constrained nature of the optimization technique one and the same
orbital solution may be returned in various forms. For example µ0 and/or
ω0 may be returned with values out of the expected range and one is allowed
to add ±2π as many times as necessary to each to bring them back. This
transformation can be written as:(

µ′0
ω′0

)
←→

(
µ′0 + 2mπ
ω′0 + 2nπ

)
(4.2)

where m and n are integers. Less evidently, if fdbinary returns the negative
eccentricity the following transformation of the parameters of orbit can be
applied:  e′

µ′0
ω′0

←→
 −e′

µ′0 ± π
ω′0 ± π

 (4.3)

If both radial-velocity semi-amplitudes are returned negative: K ′
1

K ′
2

ω′0

←→
 −K ′

1

−K ′
2

ω′0 ± π

 (4.4)

Finally, in the no-light-variability case, the inspection of the parameters of
orbit may show that fdbinary swapped the components with respect to
what one expects to get. In such case the model spectra may be swapped
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back provided that the parameters of orbit are transformed according to: x1i
...

x1N

←→
 x2i

...
x2N

 and

 K ′
1

K ′
2

ω′0

←→
 K ′

2

K ′
1

ω′0 ± π

 (4.5)

The above transformation rules were derived by requiring the invariance of
the radial velocities (A.11).

Only for convenience fdbinary writes two additional files that do not
contain any information independent of what was already output. The syntax
of the op2-file is:

# 5 X M
E ′

1 µ′1 Ω′
1 β′11 β′21

E ′
2 µ′2 Ω′

2 β′12 β′22
...

...
...

...
...

E ′
M µ′M Ω′

M β′1M β′2M

[Psid] [rad] [rad] [βgrid] [βgrid]

(*.op2)

The optimized epochs, E ′
j differ from the input epochs only if the correction

to the sidereal period was optimized. Ω′
j = ω′0 + ω′1E

′
j is the longitude of

periastron at epoch E ′
j. The radial velocities β′kj are pure Keplerian radial-

velocities, i.e. they do not include the radial-velocity of the center-of-mass
correction γj specified in the des-file. The ‘complete’ radial-velocities are
written into the op3-file:

# 5 X M
γ1 + β′11 γ1 + β′21
γ2 + β′12 γ2 + β′22

...
...

γM + β′1M γM + β′2M

[βgrid] [βgrid]

(*.op3)

Once again note that the op2 and op3-files are redundant to des and op1-files
(they do not contain new information).

4.4 The V453 Cyg example

In the Chapter 3 I have shown the results of disentangling of the observed
spectra of the massive binary system V453 Cyg. All calculations were carried
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out with fdbinary. In this section I use the fdbinary input and output
matrixfiles of that work as examples.

The eight observed spectra are listed in the Table 3.1. The body of the
ecc.des used with these spectra was:

# 5 X 8
# descriptors to spectra of V453 Cyg (H gamma) A&A 281 286
# phase rv0 lf1 lf2 wght label
# [1] [pix]

0.17663 0 0.727273 0.272727 1 # b
0.21827 0 0.727273 0.272727 1 # e
0.41941 0 0.727273 0.272727 1 # c
0.50625 0 1.000000 0.000000 1 # f ECL!
0.68875 0 0.727273 0.272727 1 # d
0.71775 0 0.727273 0.272727 1 # g
0.75397 0 0.727273 0.272727 1 # h
0.92208 0 0.727273 0.272727 1 # a

# end of file (ecc.des)

The epochs (first column) are calculated according to (3.1). There was no
need to use γj corrections (second column) because the observed spectra were
corrected for the barycentric velocity (motion of Earth around the center of
mass of the Solar system). The light-factors are assigned to the observed
spectra according to (3.2), see also discussion to (3.3). All spectra were
weighted equally (fifth column)

The body of the ecc.obs is too large to be included here. Its first line
indicates the size of the data set, while the next lines contain a comment
regarding the origin and wavelength range of the spectra:

# 8 X 1344
# Observed spectra of V453 Cyg (H gamma) A&A 281 286
# Sampled logarithmically in wavelength 4297.00 A to 4493.86 A

Since wavelengths are not part of the body of the matrixfile it is wise to
note the wavelengths of the first and of the last data bin in the grid, as in
the example above. The radial velocity resolution of the grid can easily be
reconstructed as follows:

βgrid =
c ln(λN/λ1)

N − 1
=
c ln(4493.86/4297.00)

1344− 1
= 10 km s−1 . (4.6)

The parameters of orbit were initialized only very roughly in accord with
the expected values. The five parameters that were optimized were assigned
large range halfwidths. The file ecc.op0 is:
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# 2 X 7
# initial orbital parameters and ranges for V453 Cyg
# assumed radial velocity resolution 10 km/s
# value range hw interpretation

20.0 4.0 # 160 km/s < K1 < 240 km/s
20.0 4.0 # 160 km/s < K2 < 240 km/s
1.5708 3.1416 # 90 deg +/- 180 deg (full cycle)
0.05 0.05 # 0 < eccentricity < 0.1
0.00 3.1416 # 0 deg +/- 180 deg (full cycle)
0 0 # apsidal motion not considered
0 0 # sidereal period not optimized

# end of file (ecc.op0)

fdbinary was run with the following command line:

$ fdbinary mode=op runid=ecc nruns=36

The file obs.op1 contains the optimized parameters of orbit:

# 1 X 7
1.744781E+01
2.162759E+01
4.179180E+00
-2.253196E-02
-2.641274E+00
0.000000E+00
0.000000E+00

This orbital solution is shown in the Table 3.2 with the label ‘use all’ (be-
cause all eight observed spectra were used). Note that in this example the
eccentricity (fourth data line) was returned negative so that, according to
(4.3), µ0 and ω0 had to be shifted by ±π. The spectra resulting from this
run are shown in Figure 3.2, upper panel, and in Figures 3.4 and 3.5.

For the no-light-variability run the des-file was changed to:

# 5 X 8
# descriptors to spectra of V453 Cyg (H gamma) A&A 281 286
# N O L I G H T V A R I A B I L I T Y R U N
# in-eclipse spectrum weighted out, generic light factors
# phase rv0 lf1 lf2 wght label
# [1] [pix]

0.17663 0 0.5 0.5 1 # b
0.21827 0 0.5 0.5 1 # e
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0.41941 0 0.5 0.5 1 # c
0.50625 0 0.5 0.5 0 # f ECL!
0.68875 0 0.5 0.5 1 # d
0.71775 0 0.5 0.5 1 # g
0.75397 0 0.5 0.5 1 # h
0.92208 0 0.5 0.5 1 # a

# end of file (nolitevar.des)

Note that I did not have to remove the spectrum observed during the eclipse
from the obs-file; it was sufficient to assign it zero weight in the des-file. The
orbital solution obtained in this run is labeled ‘skip f ’ in the Table 3.2. The
quasi-spectra (the raw output mod-file, not yet renormalized) are shown in
Figure 3.2, lower panel.
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Chapter 5

Conclusion

The spectral separation and disentangling techniques (Bagnuolo & Gies 1991;
Simon & Sturm 1994a; Hadrava 1995) have been successfully applied in the
analyzes of dozens of close binary systems and are becoming more and more
widely accepted (Hensberge et al. 2000; Fitzpatrick et al. 2002; Griffin 2002;
Harries et al. 2002; Ribas et al. 2002; Fitzpatrick et al. 2003). Still, not all
aspects of the methods are fully understood. The contribution of this work
to the understanding and acceptance of the techniques can be summarized
as follows:

• It is shown that the ‘tomographic’, ‘wavelength-domain’ and the ‘Four-
ier-domain’ separation techniques are in great part equivalent one to
another. The differences among them are discussed and it is shown
that the Fourier-domain approach is the simplest, but also the most
limited.

• Disentangling of composite spectra is defined as an application of the
spectral separation technique. It is made clear that any of the fore-
mentioned separation techniques can be used in a disentangling process.

• The singularity in the separation problem is shown to be a consequence
of the no-light-variability assumption. The mathematically correct
treatment of the component spectra obtained in this case is presented
in the form of a ‘renormalization procedure’.

• The application of the disentangling method on the spectra of V453 Cyg
is shown in more detail than any other application of the method in
the published literature. The ‘renormalization procedure’ is applied
and it is shown to lead to correctly normalized spectra in the no-light-
variability case.

47



• The code FDBinary written by the author is documented and can be
used in further research.

I believe that this work will help to understand and further develop these
promising techniques.
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Appendix A

The equations of orbital motion

This appendix reviews the equations related to the motion of stars in a
binary system. Only the quantities of interest in the context of separation of
composite spectra are considered. In particular this is the time dependence
of the radial velocities of the components of a binary system in eccentric
orbits with and without the apsidal motion. Another important relation is
that of the times of the eclipses to the position of the stars in the orbit. For
the full treatment of the Kepler problem see Goldstein (1980), and for the
physical interpretation of the apsidal motion see Claret & Gimenez (2001)
or Hilditch (2001).

A.1 Keplerian orbit

As long as the component stars are understood as point masses the orbital
motion is given by the solution to the Kepler problem. For simplicity I will
be considering the trajectory of only one of the component stars which I call
the ‘primary’. The trajectory in the orbital plane with respect to the center
of mass of the binary system written using polar coordinates r and ϑ is an
ellipse:

r(ϑ) =
a(1− e2)
1 + e cosϑ

, (A.1)

where a is the major semi-axis, and e is the eccentricity of the orbit. In the
astronomical tradition the angle ϑ is known as the true anomaly. The star
is closest to the center of mass when ϑ = 0, this particular point in the orbit
is known as the periastron.

To obtain the position in the orbit as the function of time the true
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Figure A.1: The purely Keplerian orbit of a component in a binary system.
The x′y′ plane is the plane of orbit with the angular momentum vector point-
ing upward. The center of mass (the focus of the ellipse) is at the origin of
the coordinate system. The x′ axis is the intersection of the plane of orbit
and the plane of the Sky and the y′ axis is the projection of the line of sight
onto the plane of orbit with the observer at the negative end. On this draw-
ing the eccentricity e = 1/3, longitude of periastron ω = π/6, and the star is
shown at the true anomaly ϑ = 5π/12.
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anomaly ϑ is firstly related to an auxiliary angle ψ, also known as the eccen-
tric anomaly. The relation is:

tan
ψ

2
=

√
1− e
1 + e

tan
ϑ

2
. (A.2)

The eccentric anomaly is finally related to the mean anomaly, µ, an angle
proportional to time:

µ = ψ − e sinψ . (A.3)

The epoch, E, is a dimensionless quantity proportional to time. It is defined
to advance by unity over one orbital cycle of the binary system. Its integral
part is the ‘full cycle count’, and the fractional part is the orbital phase. I
may write:

µ− µ0 = 2π(t− t0)/P = 2πE (A.4)

where µ0 is the mean anomaly at epoch zero, i.e. at t = t0. As (A.3), known as
the Kepler equation, cannot be solved analytically for the eccentric anomaly
ψ there is no analytical expression for ϑ(t).

The plane of orbit can have any orientation with respect to the line of
sight. To specify this orientation only to the extent needed to explain the
observed values I introduce the ‘primed’ coordinate system x′y′z′ as follows:

• the origin of the system is at the center of mass of the binary,

• the angular momentum vector points along the z′ axis (it follows that
x′y′ is the orbital plane),

• x′ axis is (parallel to) the intersection of the plane of the Sky and
the orbital plane and is oriented such that the star is receding from the
observer when crossing its positive side (it follows that the y′ axis is the
projection of the line of sight onto the orbital plane, with the observer
on the negative side.)

The trajectory is now: x′

y′

z′

 = r(ϑ)

 cos(ω + ϑ)
sin(ω + ϑ)

0

 (A.5)

where r(ϑ) is given by (A.1) and the angle ω is the is known as the longitude of
periastron. Note that the longitude of periastron of the secondary component
is ω ± π. I can now write the orbit in a new (unprimed) coordinate system
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xyz that is rotated with respect to x′y′z′ about the x = x′ axis by an angle
i such that the z axis now points toward the observer. For the orbit I have: x

y
z

 = r(ϑ)

 cos(ω + ϑ)
cos i sin(ω + ϑ)
− sin i sin(ω + ϑ)

 . (A.6)

The angle i is known as the inclination of the orbit and is defined in this
context as 0 ≤ i ≤ π.

The real separation of the two stars r(ϑ) is given by (A.1). For e > 0 this
function has one minimum at the periastron. The apparent separation is the
projection of the real separation onto the plane of the Sky:

ρ2(ϑ) = x2 + y2 = r2(ϑ)
(
1− sin2(ω + ϑ) sin2 i

)
(A.7)

The apparent separation may have, depending on e, ω and i, one or two
minima. Assuming the stars are spherical these minima may correspond to
times of eclipses.1 Substituting ϕ = ϑ + ω into (A.7), differentiating with
respect to ϕ, and equating to zero, one is looking for a solution to:

0 = e cos2 i cosω sinϕ− cosϕ
(
sin2 i sinϕ+ e sinω

)
. (A.8)

If expressed in terms of one trigonometric function of ϕ this turns out to be
a fourth degree equation. Its roots can nonetheless be obtained analytically,
but as the expressions are fairly complicated they are not useful in practice.
For a low eccentricity orbit seen at high inclination all four roots of (A.8) are
real. The two that are approximately at ϕ1,2 = ω + ϑ1,2 ' ±π/2 correspond
minima of ρ, and therefore to eclipses. At ϕ ' π/2 the primary star is
eclipsed by the secondary, while at ϕ ' −π/2 it is the other way round.

The radial velocity (RV) of a star is the projection of the velocity of the
star onto the line of sight. Positive RV is assigned to a receding star. Since
z is the line of sight I have:

vrad = −dz

dt
= −∂z

∂ϑ

dϑ

dt
(A.9)

Using (A.1) I obtain

vrad = r2ϑ̇
sin i

a(1− e2)
(cos(ω + ϑ) + e cosω) (A.10)

1For given e, ω and i the system may or may not exhibit eclipses. Assuming spherical
stars, the condition for existence of an eclipse is that the projected separation of the stars
at its minimum is smaller than the sum of the stellar radii.
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π 2 π
µ

1

Figure A.2: Radial velocity (A.11; K = 1) (thick line), radial distance (A.6,
−z; a = 1) (dashed) and the separation projected onto the plane of Sky (A.7;
a = 1) (thin) as functions of the mean anomaly µ (phase since periastron
passage) for the orbit of Fig. A.1 at the inclination of i = π/3.

The quantity r2ϑ̇ is recognized as the angular momentum per unit mass and
can be written as 2A/P where A is the area of the orbit and P the orbital
period.2 Finally:

vrad = K (cos(ω + ϑ) + e cosω) (A.11)

where K is known as the radial velocity semi-amplitude:

K =
2πa sin i

P
√

1− e2
. (A.12)

The radial velocity (A.11) has a maximum at ω + ϑ = 0 and a minimum at
ω + ϑ = π. These points correspond to intersections of the trajectory and
the x axis, and are known as ascending and descending node.

A.2 Circular approximation

In addition to the orbital period of the binary system, five parameters are
required to specify the radial velocities and the times of the minima of the
stars in an eccentric orbit (K1,2, µ0, e and ω), while only three are necessary
in a circular orbit (K1,2 and µ0). At low orbital eccentricity the longitude

2Proof: r2ϑ̇ = 1
P

∫ P

0
r2ϑ̇dt = 1

P

∫ 2π

0
r2dϑ = 2A

P
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of periastron ω becomes correlated with the overall phase shift µ0 and only
the sum of the two can be well determined. Therefore, one is tempted to
use circular orbit as an approximation in order to diminish the number of
free parameters. However, it is important to be able to estimate the level
at which the radial velocities are affected by the ‘circular approximation’. I
therefore compare the radial velocities in a low eccentricity orbit to those in
a closest circular orbit.

To make the treatment simpler I first introduce the ‘low eccentricity ap-
proximation’. If e � 1 I expect ϑ ' ψ ' µ. Within this approximation the
Kepler equation (A.3) can be inverted:

ψ ' µ+ e sinµ . (A.13)

Similarly (A.2) can be approximated by:

ϑ ' ψ + e sinψ or ψ ' ϑ− e sinϑ . (A.14)

Using (A.3), (A.13) and (A.14), and keeping only the terms linear in e, I get:

ϑ ' µ+ 2e sinµ or µ ' ϑ− 2e sinϑ (A.15)

Thus the low eccentricity approximation (ϑ ' ψ ' µ) allowed me to write
the approximate analytical expression for the dependence of ϑ on µ.

Within the low eccentricity approximation the radial velocity of a star
vrad. can be written as a function of µ. Using (A.11) and (A.15):

v
(e�)
rad. = K (cos(ω + µ)− 2e sinµ sin(ω + µ) + e cosω) . (A.16)

The general form of the radial velocity of a star in a circular orbit with the
same period can be written as:

v
(e=0)
rad. = K ′ cos(µ+ µ0) . (A.17)

where µ0 plays the role of a phase shift. I now compute the least squares fit
of v

(e�)
rad. to v

(e=0)
rad. by minimizing the quantity:

r2 =

∫ 2π

0

(
v

(e=0)
rad. (µ)− v(e�)

rad. (µ)
)2

dµ

= π
(
K ′2 + (1 + e2)K2 − 2KK ′ cos(µ0 − ω)

)
. (A.18)

The minimum of r2 is at µ0 = ω and K ′ = K, which means that, assuming
uniform phase coverage, the circular approximation (A.17) introduces no bias
into the radial velocity semi-amplitude K. The difference

v
(e=0)
rad. (µ)− v(e�)

rad. (µ) = Ke cos(2µ+ ω) . (A.19)
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gives a constraint for the applicability of the circular approximation. If the
individual radial velocities can be measured at precision comparable to this
difference, which is of the order of Ke, the use of the circular approximation
is no longer justified.

The eccentricity is most easily detected in binary systems exhibiting two
eclipses. In a circular orbit the times of the two minima are half of the orbital
period apart. If e > 0 and ω 6= ±π/2 this is no longer true. As noted in the
discussion of the equation (A.8) the general solution to problem of the times
of minima is straightforward but complicated. The situation is, however,
much simpler within the low eccentricity approximation. Assuming that the
minima occur at ϕ1,2 ' ±π/2 the equation (A.8) can be expanded using
ϕ1,2 = ±π/2 + δ1,2. Keeping only the first two terms one obtains:

δ1,2 = ∓e cosω cot2 i
(
1∓ e sinω csc2 i

)
+O3(e) (A.20)

The true anomalies corresponding to the eclipses are ϑ1,2 = −ω ± π
2

+ δ1,2.
Corresponding mean anomalies can be obtained using (A.15). The quantity

∆µ = µ(ϑ2)− µ(ϑ1)− π = 2e cosω (1 + csc2 i) +O2(e) (A.21)

can be interpreted as the ‘phase shift’ of the secondary eclipse from its phase
in a circular orbit, relative to the phase of the primary eclipse. This phase
shift can be measured in the light curve and thus it provides a constraint on
the eccentricity.

A.3 Apsidal motion

In presence of apsidal motion distinction is made between three different
periods, although any two of them are sufficient to specify the rate of change
of the longitude of periastron in time. The apsidal period, Paps, is the time it
takes for the periastron to complete one revolution around the center of mass.
The anomalistic period, Pano, is the time that elapses between two successive
periastron passages. In binary stellar systems Paps � Pano. Denoting the
number of periastron passages (anomalistic cycles) during one apsidal cycle
with N (not necessarily an integer) I have Paps = NPano. The sidereal period,
Psid, is usually defined as the average time between eclipses of the same
component, or the average time of one revolution (ignoring the periastron
advance) in case of a non-eclipsing system. Assuming the line of apsides
rotates in the sense of orbital motion I have:

Paps = NPano = (N + 1)Psid (A.22)
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x’

y’

Figure A.3: A portion of the trajectory of a star in an eccentric orbit with
apsidal motion. One complete anomalistic (periastron to periastron) cycle
is indicated by the bold line. At the beginning of the bolded cycle the
parameters of orbit coincide with the ones used in Fig. A.1. The longitude of
periastron advance per sidereal cycle is in this figure ω1 = 1/8 (exaggerated
by several orders of magnitude).
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since there must be one more sidereal than anomalistic cycle during one
apsidal cycle (note that the final result (A.25) will be valid for both senses of
rotation of the line of apsides). The definition of the epoch (A.4) is modified
so that the epoch advances by unity over one sidereal cycle. Accordingly, the
periastron advance, ω1, is usually expressed in the unit of one sidereal cycle:

ω = ω0 + ω1E , (A.23)

where ω0 is the longitude of periastron at E = 0. As there are N +1 sidereal
cycles in one apsidal cycle I have:

(N + 1)ω1 = 2π . (A.24)

Combining the above relations the mean anomaly µ can be expressed in terms
of the mean anomaly at E = 0 (or t = t0), µ0, and the periastron advance
ω1:

µ− µ0 = 2π
t− t0
Pano

= (2π − ω1)
t− t0
Psid

= (2π − ω1)E (A.25)

In presence of apsidal motion (A.4) is replaced by (A.25) which is valid for
ω1 > 0 as for ω1 < 0. The Equations (A.7) and (A.11) can be used unmodified
provided that the longitude of periastron ω is being continuously updated
according to (A.23). Compared to an eccentric orbit without apsidal motion,
the orbit with apsidal motion requires the same number of initial conditions,
and only one additional parameter (common choice is ω1).

57



Appendix B

The renormalization procedure

Component spectra reconstructed by spectral separation techniques are not
unique if equal light contributions of the component stars to all composite
spectra are assumed. Section 2.5 discusses the mathematical background,
while this appendix proposes a procedure for treatment of component spectra
to facilitate correct physical interpretation. The procedure is limited to the
spectra of a binary system reconstructed through the system of equations of
Section 2.4 and it treats only the ‘additive constant’ degree of freedom. The
procedure allows bringing the component spectra into consistency with the
trial light ratio without having to re-run the separation procedure.

If the separation is carried out using the so called ‘generic light factors’,
`1 = `2 = `gen. = 1/2 I obtain two quasi-spectra that I label z1i and z2i,
i = 1, . . . , N . Note that using the generic light-factors does not mean that I
assumed equal light contribution of the component stars, the choice is only for
later convenience. The quasi-spectra fit the data under generic light factors,
but I can transform them into spectra that would fit the data under any other
set of light factors. Assuming the light ratio L I have `1 = L/(L + 1) and
`2 = 1/(L+1). The spectra that would fit the data under these light-factors
are:

x1i =
L+ 1

2L
(z1i + c) and x2i =

L+ 1

2
(z2i − c) , (B.1)

where c is a free parameter. Any value of c results in the same fit to the data,
but not necessarily with the physically meaningful spectra. The requirements
that might help constrain the allowed range of values of c could be:

• x1i and x2i should be positive at all wavelengths (except in extreme
cases when the faint component becomes so affected by random noise
that I must allow protruding into negative amplitudes) and

• in the continuum regions the amplitudes should not systematically ex-
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ceed unity (random noise and emission regions are however allowed to
exceed unity).

The first requirement is more useful with components with numerous and
deep absorption lines (late spectral types), while the second one is more
useful with stars with few broad absorption lines and wide continuum regions
(early spectral types). It turns out that, other than these two requirements
that only impose absolute limits on the physically acceptable value of c, there
is no objective way of obtaining its value. It must be obtained by trial and
error until both spectra look acceptable.

The free parameter c in (B.1) can be related to a physical quantity in
order to make adjusting easier. The average of the amplitudes, i.e. the zero-
frequency components of the DFTs, of the amplitudes in the quasi-spectra
are according to (2.19):

z̃10 = z̃20 =

∑
j σ

−2
j ỹj0∑

j σ
−2
j

= 1− b . (B.2)

This means that that they are equal to the weighted average of the amplitudes
in the composite spectra. The quantity b is defined as the weighted line-
blocking in the composite spectra or in the quasi-spectra. In addition I define
the line blocking ratio, B, as the ratio of the average line-blockings in the
two component spectra:

B =
1− x̃10

1− x̃20

. (B.3)

With a little algebra the free parameter c can be expressed in terms of L, b
and B:

c =
L− 1

L+ 1
− BL− 1

BL+ 1
b (B.4)

The renormalization procedure can now be organized as follows:

1. Calculate the quasi-spectra z1i and z2i using the generic light-factors
`1 = `2 = `gen. = 1/2.

2. Calculate the weighted line blocking in the composite spectra b (easiest
by calculating the line-blocking in any of the quasi-spectra).

3. Decide on trial values of the light ratio L and the line blocking ratio
B and compute the value of the free parameter c using eq. (B.4). The
light ratio L is hopefully constrained by the photometry, while for not
too different spectral types of component stars a reasonable first guess
for the line-blocking ratio is B = 1,
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4. Use (B.1) to calculate the component spectra z1i and z2i in accord
with B and L used in step 3. Examine both component spectra and if
necessary return to step 3 and use adjusted values of B and L. Taking
a higher (lower) B pushes x1 down (up)and x2 up (down).

It could be argued that introducing line-blockings is an unnecessary compli-
cation beyond (B.1). The reason for introducing b and B is that it is much
safer to be adjusting a quantity with a clear physical interpretation then a
mere mathematical construct.
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Abstract

Disentangling of composite spectra is a data analysis technique that can be
applied to a time-series of observed spectra of a double lined spectroscopic
binary star to simultaneously optimize the parameters of the orbit and recon-
struct the spectra of its component stars. The key feature of this technique
when compared to the predcessors (eg. cross-correlation or spectral subtrac-
tion) is that it does not rely on the template spectra. Rather, the amplitudes
of the spectra of component stars are modeled through a large scale linear
least squares fit to the observed spectra. The underlying spectral separa-
tion algorithm reconstructs the best-fit component spectra consistent with
the supplied orbital radial velocities and the light-ratio. The disentangling
technique goes one step further by including the parameters of orbit into the
parameters of the fit, thus obtaining the self-consistent solution. The radial
velocity semiamplitudes obtained through disentangling are more accurate
than those obtained with the traditional techniques and lead to more accu-
rate determinations of the masses of the component stars. The reconstructed
spectra of component stars can be analyzed with the methods developed for
the spectra of single stars. In this work I discuss the mathematical back-
ground of the separation and disentangling techniques. I elaborate in detail
the formulations of the separation problem in the wavelength domain and in
the Fourier domain, paying attention particularly to the physically correct
normalization of the component spectra that are obtained. As an example I
have applied the disentangling technique to the time series consisting of eight
optical spectra of the hot massive binary V453 Cyg. I have also documented
the computer code for disentangling and separation of the composite spectra
that I developed and used.
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