Faecal microbiota composition in adult, newly diagnosed, treatment-naive IBD patients

Željko Krsnarić1, Marina Panek2, Mihaela Perić2, Hana Čipčić Paljetak2, Mario Matijasvić2, Anja barešić2, Darija Vranešić Bender1,Ana Kunović1,Silvija Ćuković Čavka1, Marko Brinar1, Nikša Turk1, Marija Crnčević Urek4, Mirjana Kalauž1, Vera Kufner2, Karmen Brajša2, Gabrijela Ergović2, Ivana Kraljević1, Dina Ljubas Kelečić1, Dora Grgić1, Dunja Rogić1, Marko Banić1, Tomislav Meštrović2, Donatella Verbanac2

1University Hospital Zagreb, Croatia, 2University of Zagreb School of Medicine, Zagreb, Croatia, 3MRC London Institute of Medical Sciences, London, UK, 4Clinical Hospital Dubrava, Zagreb, Croatia, 5Fidelita d.o.o. Zagreb, Croatia, 6Kellia d.o.o. Zagreb, Croatia, 7Polyclinic “Dr. Zora Profozić”, Zagreb, Croatia

INTRODUCTION

The intestine represents an interface where host tissues come in contact with microbiota in a balanced state of homeostasis. Mounting knowledge on gut microbiota led to many important findings associated with the composition of bacterial taxa in the human gastrointestinal tract with many human disorders including the Inflammatory Bowel Disease (IBD). Ulcerative Colitis (UC) and Crohn’s Disease (CD) as the most prevalent forms of IBD are characterized by chronic relapsing inflammation affecting the intestinal mucosa. Despite both diseases having an unknown aetiology, there is increasing evidence that intestinal microbial dysbiosis has a role in the pathogenesis (1).

AIM

One of the main objectives of the Minute for IBD study is to investigate the contribution of the faecal microbiota composition to the disease specific phenotype in newly diagnosed and treatment naive IBD patients.

MATERIALS & METHODS

The study included willing adult individuals without prior diagnosis of intestinal disease and willing to participate. Prior to diagnosis and disease-specific therapy, faecal samples were collected from 58 patients using OMNIgene.Gut collection system. 32 patients, 18 IBD (7 CD and 11 UC) and 14 Irritable Bowel Syndrome (IBS), were age-stratified and their faecal microbiota composition was determined by amplification and sequencing of bacterial 16S rRNA gene using Illumina MiSeq (V3-V4 region). MP Biomedicals Fast DNA spin commercially available kit for DNA extraction was employed. Raw sequencing files were processed using QIIME pipeline and Operational Taxonomic Units (OTUs) were assigned using the vsearch algorithm and PyNast alignment against the GreenGenes database (version 13_8, May 2013). The diversity within sample was ascertained using alpha diversity index PD whole tree, as implemented in the QIIME pipeline, with rarefaction from 5000-25000 sequences. Overrepresentation of taxa is determined using generalised linear model and Kruskal-Wallis test on centre-log ratio (clr) transformed counts, as implemented in the ALDeX2 R package (2).

CONCLUSION

Preliminary results of our study demonstrated differences in faecal bacterial populations between adult, newly diagnosed, treatment-naive IBD and IBS patients.

REFERENCES