Faecal microbiota composition in adult, newly diagnosed, treatment-naïve IBD patients

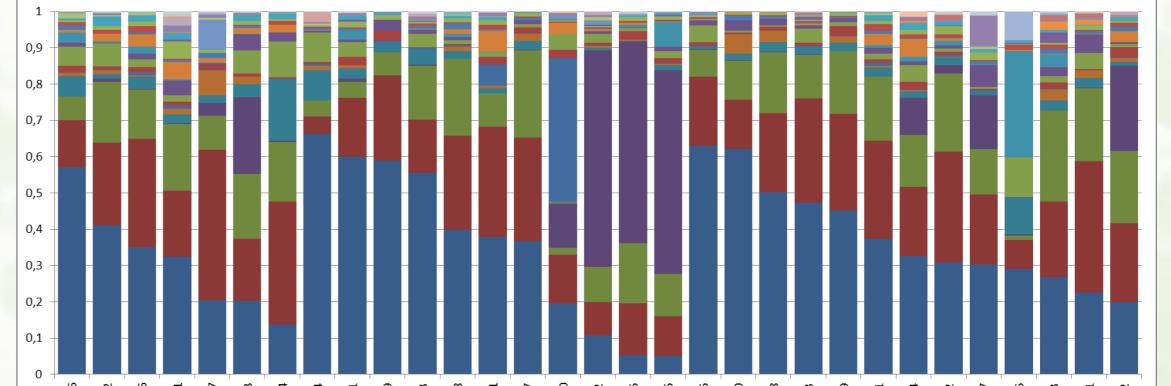
Željko Krznarić¹, Marina Panek², Mihaela Perić², Hana Čipčić Paljetak², Mario Matijašić², Anja Barešić³, Darija Vranešić Bender¹, Ana Kunović¹, Silvija Čuković Čavka¹, Marko Brinar¹, Nikša Turk¹, Marija Crnčević Urek⁴, Mirjana Kalauz¹, Vera Kufner², Karmen Brajša⁵, Gabrijela Ergović⁶, Ivana Kraljević¹, Dina Ljubas Kelečić¹, Dora Grgić¹, Dunja Rogić¹, Marko Banić⁴, Tomislav Meštrović⁷, Donatella Verbanac²

¹University Hospital Zagreb, Croatia, ²University of Zagreb School of Medicine, Zagreb, Croatia,³MRC London Institute of Medical Sciences, London, UK, ⁴Clinical Hospital Dubrava, Zagreb, Croatia, ⁵Fidelta d.o.o. Zagreb, Croatia, ⁶Xellia d.o.o. Zagreb, Croatia, ⁷Polyclinic "Dr. Zora Profozić", Zagreb, Croatia

INTRODUCTION

RESULTS

The intestine represents an interface where host tissues come in contact with microbiota in a balanced state of homeostasis. Mounting knowledge on gut microbiota led to many important findings associating the composition of bacterial taxa in the human gastrointestinal tract with many human disorders including the Inflammatory Bowel Disease (IBD). Ulcerative Colitis (UC) and Crohn's Disease (CD) as the most prevalent forms of IBD are characterized by chronic relapsing inflammation affecting the intestinal mucosa. Despite both diseases having an unknown aetiology, there is increasing evidence that intestinal microbial dysbiosis has a role in the pathogenesis (1).


Demographic data of included patients: 15 females (F) and 17 (M) males (4F and 3M in CD, 5F and 6M in UC, 6F and 8M in IBS group) with mean age of 46, 37 and 35 for CD, UC and IBS group, respectively. Relative abundance data on family level revealed substantial inter-individual differences among patients at all levels (Fig. 1). PCA analysis showed a certain level of grouping according to diagnosis, and UC group displayed lower richness using phylogeny-sensitive alpha diversity (Fig 2). Taxon analysis confirmed significance between groups in size effects (>0,5) and in Kruskal Wallace test (p<0,05) analyses but not after applying BH correction. Mainly, the number of taxa differing between groups was higher when comparing CD vs. IBS than UC vs. IBS. On the family level, of the taxa that had effect size >0,5 in CD vs. IBS comparison higher medians were seen for Erysipelotrichaceae, Bifidobacteriaceae, Coriobacteriaceae, Enterobacteriaceae, Pasteurellaceae, Turicibacteraceae, and Fusobacteriaceae but lower for Verrucomicrobiaceae. UC compared to IBS group had lower medians for Rikenellaceae and Verrucomicrobiaceae and higher median for *Turicibacteraceae*. These data demonstrate differences in bacterial content, both in terms of richness and contributions by individual taxa, pertinent to disease pathology in different types of IBD.

AIM

One of the main objectives of the Minute for IBD study is to investigate the contribution of the faecal microbiota composition to the disease specific phenotype in newly diagnosed and treatment naïve IBD patients.

MATERIALS & METHODS

The study included willing adult individuals without prior diagnosis of intestinal disease and willing to participate. Prior to diagnosis and diseasespecific therapy, faecal samples were collected from 58 patients using OMNIgene.Gut collection system. 32 patients, 18 IBD (7 CD and 11 UC) and 14 Irritable Bowel Syndrome (IBS), were age-stratified and their faecal microbiota composition was determined by amplification and sequencing of bacterial 16S rRNA gene using Illumina MiSeq (V3-V4 region). MP Biomedicals Fast DNA spin commercially available kit for DNA extraction was employed. Raw sequencing files were processed using QIIME pipeline and Operational Taxonomic Units (OTUs) were assigned using the vsearch algorithm and PyNast alignment against the GreenGenes database (version 13_8, May 2013). The diversity within sample was ascertained using alpha diversity index PD whole tree, as implemented in the QIIME pipeline, with rarefaction from 5000-25000 sequences. Overrepresentation of taxa is determined using generalised linear model and Kruskal Wallace test on centre-log ratio (clr) transformed counts, as implemented in the ALDeX2 R package (2).

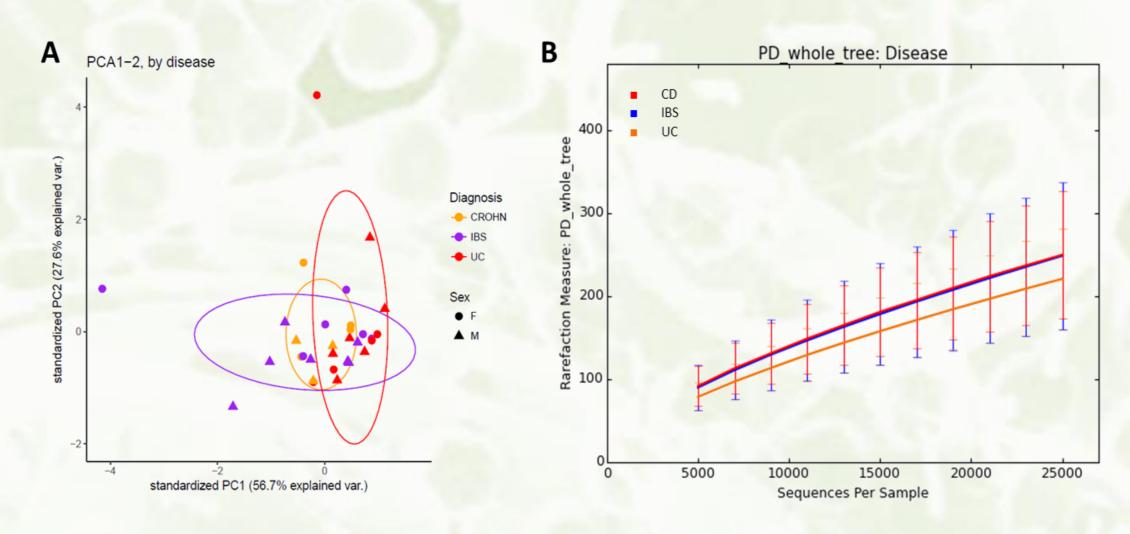
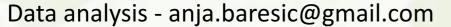
CONCLUSION

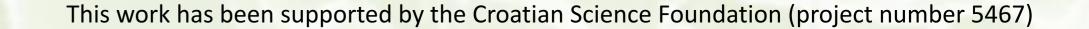
Preliminary results of our study demonstrated differences in faecal bacterial populations between adult, newly diagnosed, treatment-naïve IBD and IBS patients.

REFERENCES [1] Matijašić et al. Int. J. Mol. Sci. 2016 Apr 19;17

CD 6	CD 2	CD 5	CD 1	CD 7	CD 3	CD 4	UC 4	UC 1	UC 9	UC 3	UC 8	UC 11	UC 7	UC 10	UC 2	UC 6	UC 5	IBS 5	IBS 10	IBS 8	IBS 3	IBS 9	IBS 11	IBS 4	IBS 2	IBS 7	IBS 6	IBS 13	IBS 1	IBS 12
		 St [C D Fi 	trepto Odorib esulfo		ceae (ceae] naceae	1	Veilla Clost Chris	onella tridiac stense		eae	■ Al ■ Er ■ Pa	asteur	nacea otrich ellace	e aceae		Preve Riker S24-7 Enter Enter	ellace 7 obact	ae eriace		■ [Pa ■ Co ■ Vie	arapre prioba ctivall	omona evotell cteriac aceae obacte	aceae œae]	Bifido Verru [Mog	obacte ucomic gibacte bacilla	riacea crobia riacea	e ceae		

Figure 1. Relative abundance data for all patients from CD, UC and IBS groups at family level.


Figure 2. (A) Principle component analysis (PCA) of families detected with ffirst two components covering 84,3 % of total variance. (B) Alpha diversity analysis for CD, UC and IBS groups after rarefaction: PD_whole_tree index.

[2] Gloor & Reid. Can. J. Microbiol. 2016 703, cjm-2015-0821

Sample processing – marina.panek@mef.hr

